delete v0.1.0
Browse files- .github/workflows/main.yml +0 -23
- app.py +0 -1064
- assets/Video_main.mp4 +0 -3
- assets/Video_subtitled.mp4 +0 -3
- configs/32k.json +0 -46
- configs/32k_v2.json +0 -46
- configs/40k.json +0 -46
- configs/48k.json +0 -46
- configs/48k_v2.json +0 -46
- lib/audio.py +0 -21
- lib/infer_pack/attentions.py +0 -417
- lib/infer_pack/commons.py +0 -166
- lib/infer_pack/models.py +0 -1142
- lib/infer_pack/models_dml.py +0 -1124
- lib/infer_pack/models_onnx.py +0 -819
- lib/infer_pack/modules.py +0 -522
- lib/infer_pack/modules/F0Predictor/DioF0Predictor.py +0 -90
- lib/infer_pack/modules/F0Predictor/F0Predictor.py +0 -16
- lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py +0 -86
- lib/infer_pack/modules/F0Predictor/PMF0Predictor.py +0 -97
- lib/infer_pack/modules/F0Predictor/__init__.py +0 -0
- lib/infer_pack/onnx_inference.py +0 -145
- lib/infer_pack/transforms.py +0 -209
- lib/rmvpe.py +0 -432
- no_requirements.txt +0 -12
- packages.txt +0 -3
- requirements_colab.txt +0 -11
- requirements_extra.txt +0 -8
- soni_translate/audio_segments.py +0 -27
- soni_translate/text_to_speech.py +0 -33
- soni_translate/translate_segments.py +0 -13
- soni_translate/video_dubbing.py +0 -217
- vc_infer_pipeline.py +0 -445
- voice_main.py +0 -554
.github/workflows/main.yml
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
name: Sync to Hugging Face hub
|
2 |
-
on:
|
3 |
-
push:
|
4 |
-
branches: [main]
|
5 |
-
|
6 |
-
# to run this workflow manually from the Actions tab
|
7 |
-
workflow_dispatch:
|
8 |
-
|
9 |
-
jobs:
|
10 |
-
sync-to-hub:
|
11 |
-
runs-on: ubuntu-latest
|
12 |
-
steps:
|
13 |
-
- uses: actions/checkout@v2
|
14 |
-
with:
|
15 |
-
fetch-depth: 0
|
16 |
-
- name: Add remote
|
17 |
-
env:
|
18 |
-
HF: ${{ secrets.HF }}
|
19 |
-
run: git remote add space https://r3gm:$HF@huggingface.co/spaces/r3gm/SoniTranslate_translate_audio_of_a_video_content
|
20 |
-
- name: Push to hub
|
21 |
-
env:
|
22 |
-
HF: ${{ secrets.HF }}
|
23 |
-
run: git push --force https://r3gm:$HF@huggingface.co/spaces/r3gm/SoniTranslate_translate_audio_of_a_video_content main
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
DELETED
@@ -1,1064 +0,0 @@
|
|
1 |
-
#%cd SoniTranslate
|
2 |
-
# vc infer pipe 161 np.int
|
3 |
-
import os
|
4 |
-
|
5 |
-
os.system("pip install -r requirements_colab.txt")
|
6 |
-
os.system("pip install -r requirements_extra.txt")
|
7 |
-
|
8 |
-
os.system('apt install git-lfs')
|
9 |
-
os.system('git lfs install')
|
10 |
-
os.system('apt -y install -qq aria2')
|
11 |
-
os.system('aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d . -o hubert_base.pt')
|
12 |
-
os.system('wget https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt')
|
13 |
-
|
14 |
-
import numpy as np
|
15 |
-
import gradio as gr
|
16 |
-
import whisperx
|
17 |
-
from whisperx.utils import LANGUAGES as LANG_TRANSCRIPT
|
18 |
-
from whisperx.alignment import DEFAULT_ALIGN_MODELS_TORCH as DAMT, DEFAULT_ALIGN_MODELS_HF as DAMHF
|
19 |
-
from IPython.utils import capture
|
20 |
-
import torch
|
21 |
-
from gtts import gTTS
|
22 |
-
import librosa
|
23 |
-
import edge_tts
|
24 |
-
import asyncio
|
25 |
-
import gc
|
26 |
-
from pydub import AudioSegment
|
27 |
-
from tqdm import tqdm
|
28 |
-
from deep_translator import GoogleTranslator
|
29 |
-
import os
|
30 |
-
from soni_translate.audio_segments import create_translated_audio
|
31 |
-
from soni_translate.text_to_speech import make_voice_gradio
|
32 |
-
from soni_translate.translate_segments import translate_text
|
33 |
-
import time
|
34 |
-
import shutil
|
35 |
-
from urllib.parse import unquote
|
36 |
-
import zipfile
|
37 |
-
import rarfile
|
38 |
-
import logging
|
39 |
-
logging.getLogger("numba").setLevel(logging.WARNING)
|
40 |
-
logging.getLogger("httpx").setLevel(logging.WARNING)
|
41 |
-
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
title = "<center><strong><font size='7'>📽️ SoniTranslate 🈷️</font></strong></center>"
|
46 |
-
|
47 |
-
news = """ ## 📖 News
|
48 |
-
🔥 2023/07/26: New UI and add mix options.
|
49 |
-
|
50 |
-
🔥 2023/07/27: Fix some bug processing the video and audio.
|
51 |
-
|
52 |
-
🔥 2023/08/01: Add options for use RVC models.
|
53 |
-
|
54 |
-
🔥 2023/08/02: Added support for Arabic, Czech, Danish, Finnish, Greek, Hebrew, Hungarian, Korean, Persian, Polish, Russian, Turkish, Urdu, Hindi, and Vietnamese languages. 🌐
|
55 |
-
|
56 |
-
🔥 2023/08/03: Changed default options and added directory view of downloads..
|
57 |
-
"""
|
58 |
-
|
59 |
-
description = """
|
60 |
-
### 🎥 **Translate videos easily with SoniTranslate!** 📽️
|
61 |
-
|
62 |
-
Upload a video or provide a video link. Limitation: 10 seconds for CPU, but no restrictions with a GPU.
|
63 |
-
|
64 |
-
For faster results and no duration limits, try the Colab notebook with a GPU:
|
65 |
-
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://github.com/R3gm/SoniTranslate/blob/main/SoniTranslate_Colab.ipynb)
|
66 |
-
|
67 |
-
📽️ **This a demo of SoniTranslate; GitHub repository: [SoniTranslate](https://github.com/R3gm/SoniTranslate)!**
|
68 |
-
|
69 |
-
See the tab labeled `Help` for instructions on how to use it. Let's start having fun with video translation! 🚀🎉
|
70 |
-
"""
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
tutorial = """
|
75 |
-
|
76 |
-
# 🔰 **Instructions for use:**
|
77 |
-
|
78 |
-
1. 📤 **Upload a video** on the first tab or 🌐 **use a video link** on the second tab.
|
79 |
-
|
80 |
-
2. 🌍 Choose the language in which you want to **translate the video**.
|
81 |
-
|
82 |
-
3. 🗣️ Specify the **number of people speaking** in the video and **assign each one a text-to-speech voice** suitable for the translation language.
|
83 |
-
|
84 |
-
4. 🚀 Press the '**Translate**' button to obtain the results.
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
# 🎤 (Optional) How to Use RVC and RVC2 Voices 🎶
|
90 |
-
|
91 |
-
|
92 |
-
The goal is to apply a RVC (Retrieval-based Voice Conversion) to the generated TTS (Text-to-Speech) 🎙️
|
93 |
-
|
94 |
-
1. In the `Custom Voice RVC` tab, download the models you need 📥 You can use links from Hugging Face and Google Drive in formats like zip, pth, or index. You can also download complete HF space repositories, but this option is not very stable 😕
|
95 |
-
|
96 |
-
2. Now, go to `Replace voice: TTS to RVC` and check the `enable` box ✅ After this, you can choose the models you want to apply to each TTS speaker 👩🦰👨🦱👩🦳👨🦲
|
97 |
-
|
98 |
-
3. Adjust the F0 method that will be applied to all RVCs 🎛️
|
99 |
-
|
100 |
-
4. Press `APPLY CONFIGURATION` to apply the changes you made 🔄
|
101 |
-
|
102 |
-
5. Go back to the video translation tab and click on 'Translate' ▶️ Now, the translation will be done applying the RVCs 🗣️
|
103 |
-
|
104 |
-
Tip: You can use `Test RVC` to experiment and find the best TTS or configurations to apply to the RVC 🧪🔍
|
105 |
-
|
106 |
-
"""
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
# Check GPU
|
111 |
-
if torch.cuda.is_available():
|
112 |
-
device = "cuda"
|
113 |
-
list_compute_type = ['float16', 'float32']
|
114 |
-
compute_type_default = 'float16'
|
115 |
-
whisper_model_default = 'large-v2'
|
116 |
-
else:
|
117 |
-
device = "cpu"
|
118 |
-
list_compute_type = ['float32']
|
119 |
-
compute_type_default = 'float32'
|
120 |
-
whisper_model_default = 'medium'
|
121 |
-
print('Working in: ', device)
|
122 |
-
|
123 |
-
list_tts = ['af-ZA-AdriNeural-Female', 'af-ZA-WillemNeural-Male', 'am-ET-AmehaNeural-Male', 'am-ET-MekdesNeural-Female', 'ar-AE-FatimaNeural-Female', 'ar-AE-HamdanNeural-Male', 'ar-BH-AliNeural-Male', 'ar-BH-LailaNeural-Female', 'ar-DZ-AminaNeural-Female', 'ar-DZ-IsmaelNeural-Male', 'ar-EG-SalmaNeural-Female', 'ar-EG-ShakirNeural-Male', 'ar-IQ-BasselNeural-Male', 'ar-IQ-RanaNeural-Female', 'ar-JO-SanaNeural-Female', 'ar-JO-TaimNeural-Male', 'ar-KW-FahedNeural-Male', 'ar-KW-NouraNeural-Female', 'ar-LB-LaylaNeural-Female', 'ar-LB-RamiNeural-Male', 'ar-LY-ImanNeural-Female', 'ar-LY-OmarNeural-Male', 'ar-MA-JamalNeural-Male', 'ar-MA-MounaNeural-Female', 'ar-OM-AbdullahNeural-Male', 'ar-OM-AyshaNeural-Female', 'ar-QA-AmalNeural-Female', 'ar-QA-MoazNeural-Male', 'ar-SA-HamedNeural-Male', 'ar-SA-ZariyahNeural-Female', 'ar-SY-AmanyNeural-Female', 'ar-SY-LaithNeural-Male', 'ar-TN-HediNeural-Male', 'ar-TN-ReemNeural-Female', 'ar-YE-MaryamNeural-Female', 'ar-YE-SalehNeural-Male', 'az-AZ-BabekNeural-Male', 'az-AZ-BanuNeural-Female', 'bg-BG-BorislavNeural-Male', 'bg-BG-KalinaNeural-Female', 'bn-BD-NabanitaNeural-Female', 'bn-BD-PradeepNeural-Male', 'bn-IN-BashkarNeural-Male', 'bn-IN-TanishaaNeural-Female', 'bs-BA-GoranNeural-Male', 'bs-BA-VesnaNeural-Female', 'ca-ES-EnricNeural-Male', 'ca-ES-JoanaNeural-Female', 'cs-CZ-AntoninNeural-Male', 'cs-CZ-VlastaNeural-Female', 'cy-GB-AledNeural-Male', 'cy-GB-NiaNeural-Female', 'da-DK-ChristelNeural-Female', 'da-DK-JeppeNeural-Male', 'de-AT-IngridNeural-Female', 'de-AT-JonasNeural-Male', 'de-CH-JanNeural-Male', 'de-CH-LeniNeural-Female', 'de-DE-AmalaNeural-Female', 'de-DE-ConradNeural-Male', 'de-DE-KatjaNeural-Female', 'de-DE-KillianNeural-Male', 'el-GR-AthinaNeural-Female', 'el-GR-NestorasNeural-Male', 'en-AU-NatashaNeural-Female', 'en-AU-WilliamNeural-Male', 'en-CA-ClaraNeural-Female', 'en-CA-LiamNeural-Male', 'en-GB-LibbyNeural-Female', 'en-GB-MaisieNeural-Female', 'en-GB-RyanNeural-Male', 'en-GB-SoniaNeural-Female', 'en-GB-ThomasNeural-Male', 'en-HK-SamNeural-Male', 'en-HK-YanNeural-Female', 'en-IE-ConnorNeural-Male', 'en-IE-EmilyNeural-Female', 'en-IN-NeerjaExpressiveNeural-Female', 'en-IN-NeerjaNeural-Female', 'en-IN-PrabhatNeural-Male', 'en-KE-AsiliaNeural-Female', 'en-KE-ChilembaNeural-Male', 'en-NG-AbeoNeural-Male', 'en-NG-EzinneNeural-Female', 'en-NZ-MitchellNeural-Male', 'en-NZ-MollyNeural-Female', 'en-PH-JamesNeural-Male', 'en-PH-RosaNeural-Female', 'en-SG-LunaNeural-Female', 'en-SG-WayneNeural-Male', 'en-TZ-ElimuNeural-Male', 'en-TZ-ImaniNeural-Female', 'en-US-AnaNeural-Female', 'en-US-AriaNeural-Female', 'en-US-ChristopherNeural-Male', 'en-US-EricNeural-Male', 'en-US-GuyNeural-Male', 'en-US-JennyNeural-Female', 'en-US-MichelleNeural-Female', 'en-US-RogerNeural-Male', 'en-US-SteffanNeural-Male', 'en-ZA-LeahNeural-Female', 'en-ZA-LukeNeural-Male', 'es-AR-ElenaNeural-Female', 'es-AR-TomasNeural-Male', 'es-BO-MarceloNeural-Male', 'es-BO-SofiaNeural-Female', 'es-CL-CatalinaNeural-Female', 'es-CL-LorenzoNeural-Male', 'es-CO-GonzaloNeural-Male', 'es-CO-SalomeNeural-Female', 'es-CR-JuanNeural-Male', 'es-CR-MariaNeural-Female', 'es-CU-BelkysNeural-Female', 'es-CU-ManuelNeural-Male', 'es-DO-EmilioNeural-Male', 'es-DO-RamonaNeural-Female', 'es-EC-AndreaNeural-Female', 'es-EC-LuisNeural-Male', 'es-ES-AlvaroNeural-Male', 'es-ES-ElviraNeural-Female', 'es-GQ-JavierNeural-Male', 'es-GQ-TeresaNeural-Female', 'es-GT-AndresNeural-Male', 'es-GT-MartaNeural-Female', 'es-HN-CarlosNeural-Male', 'es-HN-KarlaNeural-Female', 'es-MX-DaliaNeural-Female', 'es-MX-JorgeNeural-Male', 'es-NI-FedericoNeural-Male', 'es-NI-YolandaNeural-Female', 'es-PA-MargaritaNeural-Female', 'es-PA-RobertoNeural-Male', 'es-PE-AlexNeural-Male', 'es-PE-CamilaNeural-Female', 'es-PR-KarinaNeural-Female', 'es-PR-VictorNeural-Male', 'es-PY-MarioNeural-Male', 'es-PY-TaniaNeural-Female', 'es-SV-LorenaNeural-Female', 'es-SV-RodrigoNeural-Male', 'es-US-AlonsoNeural-Male', 'es-US-PalomaNeural-Female', 'es-UY-MateoNeural-Male', 'es-UY-ValentinaNeural-Female', 'es-VE-PaolaNeural-Female', 'es-VE-SebastianNeural-Male', 'et-EE-AnuNeural-Female', 'et-EE-KertNeural-Male', 'fa-IR-DilaraNeural-Female', 'fa-IR-FaridNeural-Male', 'fi-FI-HarriNeural-Male', 'fi-FI-NooraNeural-Female', 'fil-PH-AngeloNeural-Male', 'fil-PH-BlessicaNeural-Female', 'fr-BE-CharlineNeural-Female', 'fr-BE-GerardNeural-Male', 'fr-CA-AntoineNeural-Male', 'fr-CA-JeanNeural-Male', 'fr-CA-SylvieNeural-Female', 'fr-CH-ArianeNeural-Female', 'fr-CH-FabriceNeural-Male', 'fr-FR-DeniseNeural-Female', 'fr-FR-EloiseNeural-Female', 'fr-FR-HenriNeural-Male', 'ga-IE-ColmNeural-Male', 'ga-IE-OrlaNeural-Female', 'gl-ES-RoiNeural-Male', 'gl-ES-SabelaNeural-Female', 'gu-IN-DhwaniNeural-Female', 'gu-IN-NiranjanNeural-Male', 'he-IL-AvriNeural-Male', 'he-IL-HilaNeural-Female', 'hi-IN-MadhurNeural-Male', 'hi-IN-SwaraNeural-Female', 'hr-HR-GabrijelaNeural-Female', 'hr-HR-SreckoNeural-Male', 'hu-HU-NoemiNeural-Female', 'hu-HU-TamasNeural-Male', 'id-ID-ArdiNeural-Male', 'id-ID-GadisNeural-Female', 'is-IS-GudrunNeural-Female', 'is-IS-GunnarNeural-Male', 'it-IT-DiegoNeural-Male', 'it-IT-ElsaNeural-Female', 'it-IT-IsabellaNeural-Female', 'ja-JP-KeitaNeural-Male', 'ja-JP-NanamiNeural-Female', 'jv-ID-DimasNeural-Male', 'jv-ID-SitiNeural-Female', 'ka-GE-EkaNeural-Female', 'ka-GE-GiorgiNeural-Male', 'kk-KZ-AigulNeural-Female', 'kk-KZ-DauletNeural-Male', 'km-KH-PisethNeural-Male', 'km-KH-SreymomNeural-Female', 'kn-IN-GaganNeural-Male', 'kn-IN-SapnaNeural-Female', 'ko-KR-InJoonNeural-Male', 'ko-KR-SunHiNeural-Female', 'lo-LA-ChanthavongNeural-Male', 'lo-LA-KeomanyNeural-Female', 'lt-LT-LeonasNeural-Male', 'lt-LT-OnaNeural-Female', 'lv-LV-EveritaNeural-Female', 'lv-LV-NilsNeural-Male', 'mk-MK-AleksandarNeural-Male', 'mk-MK-MarijaNeural-Female', 'ml-IN-MidhunNeural-Male', 'ml-IN-SobhanaNeural-Female', 'mn-MN-BataaNeural-Male', 'mn-MN-YesuiNeural-Female', 'mr-IN-AarohiNeural-Female', 'mr-IN-ManoharNeural-Male', 'ms-MY-OsmanNeural-Male', 'ms-MY-YasminNeural-Female', 'mt-MT-GraceNeural-Female', 'mt-MT-JosephNeural-Male', 'my-MM-NilarNeural-Female', 'my-MM-ThihaNeural-Male', 'nb-NO-FinnNeural-Male', 'nb-NO-PernilleNeural-Female', 'ne-NP-HemkalaNeural-Female', 'ne-NP-SagarNeural-Male', 'nl-BE-ArnaudNeural-Male', 'nl-BE-DenaNeural-Female', 'nl-NL-ColetteNeural-Female', 'nl-NL-FennaNeural-Female', 'nl-NL-MaartenNeural-Male', 'pl-PL-MarekNeural-Male', 'pl-PL-ZofiaNeural-Female', 'ps-AF-GulNawazNeural-Male', 'ps-AF-LatifaNeural-Female', 'pt-BR-AntonioNeural-Male', 'pt-BR-FranciscaNeural-Female', 'pt-PT-DuarteNeural-Male', 'pt-PT-RaquelNeural-Female', 'ro-RO-AlinaNeural-Female', 'ro-RO-EmilNeural-Male', 'ru-RU-DmitryNeural-Male', 'ru-RU-SvetlanaNeural-Female', 'si-LK-SameeraNeural-Male', 'si-LK-ThiliniNeural-Female', 'sk-SK-LukasNeural-Male', 'sk-SK-ViktoriaNeural-Female', 'sl-SI-PetraNeural-Female', 'sl-SI-RokNeural-Male', 'so-SO-MuuseNeural-Male', 'so-SO-UbaxNeural-Female', 'sq-AL-AnilaNeural-Female', 'sq-AL-IlirNeural-Male', 'sr-RS-NicholasNeural-Male', 'sr-RS-SophieNeural-Female', 'su-ID-JajangNeural-Male', 'su-ID-TutiNeural-Female', 'sv-SE-MattiasNeural-Male', 'sv-SE-SofieNeural-Female', 'sw-KE-RafikiNeural-Male', 'sw-KE-ZuriNeural-Female', 'sw-TZ-DaudiNeural-Male', 'sw-TZ-RehemaNeural-Female', 'ta-IN-PallaviNeural-Female', 'ta-IN-ValluvarNeural-Male', 'ta-LK-KumarNeural-Male', 'ta-LK-SaranyaNeural-Female', 'ta-MY-KaniNeural-Female', 'ta-MY-SuryaNeural-Male', 'ta-SG-AnbuNeural-Male', 'ta-SG-VenbaNeural-Female', 'te-IN-MohanNeural-Male', 'te-IN-ShrutiNeural-Female', 'th-TH-NiwatNeural-Male', 'th-TH-PremwadeeNeural-Female', 'tr-TR-AhmetNeural-Male', 'tr-TR-EmelNeural-Female', 'uk-UA-OstapNeural-Male', 'uk-UA-PolinaNeural-Female', 'ur-IN-GulNeural-Female', 'ur-IN-SalmanNeural-Male', 'ur-PK-AsadNeural-Male', 'ur-PK-UzmaNeural-Female', 'uz-UZ-MadinaNeural-Female', 'uz-UZ-SardorNeural-Male', 'vi-VN-HoaiMyNeural-Female', 'vi-VN-NamMinhNeural-Male', 'zh-CN-XiaoxiaoNeural-Female', 'zh-CN-XiaoyiNeural-Female', 'zh-CN-YunjianNeural-Male', 'zh-CN-YunxiNeural-Male', 'zh-CN-YunxiaNeural-Male', 'zh-CN-YunyangNeural-Male', 'zh-CN-liaoning-XiaobeiNeural-Female', 'zh-CN-shaanxi-XiaoniNeural-Female']
|
124 |
-
|
125 |
-
### voices
|
126 |
-
with capture.capture_output() as cap:
|
127 |
-
os.system('mkdir downloads')
|
128 |
-
os.system('mkdir logs')
|
129 |
-
os.system('mkdir weights')
|
130 |
-
os.system('mkdir downloads')
|
131 |
-
del cap
|
132 |
-
|
133 |
-
|
134 |
-
def print_tree_directory(root_dir, indent=''):
|
135 |
-
if not os.path.exists(root_dir):
|
136 |
-
print(f"{indent}Invalid directory or file: {root_dir}")
|
137 |
-
return
|
138 |
-
|
139 |
-
items = os.listdir(root_dir)
|
140 |
-
|
141 |
-
for index, item in enumerate(sorted(items)):
|
142 |
-
item_path = os.path.join(root_dir, item)
|
143 |
-
is_last_item = index == len(items) - 1
|
144 |
-
|
145 |
-
if os.path.isfile(item_path) and item_path.endswith('.zip'):
|
146 |
-
with zipfile.ZipFile(item_path, 'r') as zip_file:
|
147 |
-
print(f"{indent}{'└──' if is_last_item else '├──'} {item} (zip file)")
|
148 |
-
zip_contents = zip_file.namelist()
|
149 |
-
for zip_item in sorted(zip_contents):
|
150 |
-
print(f"{indent}{' ' if is_last_item else '│ '}{zip_item}")
|
151 |
-
else:
|
152 |
-
print(f"{indent}{'└──' if is_last_item else '├──'} {item}")
|
153 |
-
|
154 |
-
if os.path.isdir(item_path):
|
155 |
-
new_indent = indent + (' ' if is_last_item else '│ ')
|
156 |
-
print_tree_directory(item_path, new_indent)
|
157 |
-
|
158 |
-
|
159 |
-
def upload_model_list():
|
160 |
-
weight_root = "weights"
|
161 |
-
models = []
|
162 |
-
for name in os.listdir(weight_root):
|
163 |
-
if name.endswith(".pth"):
|
164 |
-
models.append(name)
|
165 |
-
|
166 |
-
index_root = "logs"
|
167 |
-
index_paths = []
|
168 |
-
for name in os.listdir(index_root):
|
169 |
-
if name.endswith(".index"):
|
170 |
-
index_paths.append("logs/"+name)
|
171 |
-
|
172 |
-
print(models, index_paths)
|
173 |
-
return models, index_paths
|
174 |
-
|
175 |
-
def manual_download(url, dst):
|
176 |
-
token = os.getenv("YOUR_HF_TOKEN")
|
177 |
-
user_header = f"\"Authorization: Bearer {token}\""
|
178 |
-
|
179 |
-
if 'drive.google' in url:
|
180 |
-
print("Drive link")
|
181 |
-
if 'folders' in url:
|
182 |
-
print("folder")
|
183 |
-
os.system(f'gdown --folder "{url}" -O {dst} --fuzzy -c')
|
184 |
-
else:
|
185 |
-
print("single")
|
186 |
-
os.system(f'gdown "{url}" -O {dst} --fuzzy -c')
|
187 |
-
elif 'huggingface' in url:
|
188 |
-
print("HuggingFace link")
|
189 |
-
if '/blob/' in url or '/resolve/' in url:
|
190 |
-
if '/blob/' in url:
|
191 |
-
url = url.replace('/blob/', '/resolve/')
|
192 |
-
#parsed_link = '\n{}\n\tout={}'.format(url, unquote(url.split('/')[-1]))
|
193 |
-
#os.system(f'echo -e "{parsed_link}" | aria2c --header={user_header} --console-log-level=error --summary-interval=10 -i- -j5 -x16 -s16 -k1M -c -d "{dst}"')
|
194 |
-
os.system(f"wget -P {dst} {url}")
|
195 |
-
else:
|
196 |
-
os.system(f"git clone {url} {dst+'repo/'}")
|
197 |
-
elif 'http' in url or 'magnet' in url:
|
198 |
-
parsed_link = '"{}"'.format(url)
|
199 |
-
os.system(f'aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -j5 -x16 -s16 -k1M -c -d {dst} -Z {parsed_link}')
|
200 |
-
|
201 |
-
|
202 |
-
def download_list(text_downloads):
|
203 |
-
try:
|
204 |
-
urls = [elem.strip() for elem in text_downloads.split(',')]
|
205 |
-
except:
|
206 |
-
return 'No valid link'
|
207 |
-
|
208 |
-
os.system('mkdir downloads')
|
209 |
-
os.system('mkdir logs')
|
210 |
-
os.system('mkdir weights')
|
211 |
-
path_download = "downloads/"
|
212 |
-
for url in urls:
|
213 |
-
manual_download(url, path_download)
|
214 |
-
|
215 |
-
# Tree
|
216 |
-
print('####################################')
|
217 |
-
print_tree_directory("downloads", indent='')
|
218 |
-
print('####################################')
|
219 |
-
|
220 |
-
# Place files
|
221 |
-
select_zip_and_rar_files("downloads/")
|
222 |
-
|
223 |
-
models, _ = upload_model_list()
|
224 |
-
os.system("rm -rf downloads/repo")
|
225 |
-
|
226 |
-
return f"Downloaded = {models}"
|
227 |
-
|
228 |
-
|
229 |
-
def select_zip_and_rar_files(directory_path="downloads/"):
|
230 |
-
#filter
|
231 |
-
zip_files = []
|
232 |
-
rar_files = []
|
233 |
-
|
234 |
-
for file_name in os.listdir(directory_path):
|
235 |
-
if file_name.endswith(".zip"):
|
236 |
-
zip_files.append(file_name)
|
237 |
-
elif file_name.endswith(".rar"):
|
238 |
-
rar_files.append(file_name)
|
239 |
-
|
240 |
-
# extract
|
241 |
-
for file_name in zip_files:
|
242 |
-
file_path = os.path.join(directory_path, file_name)
|
243 |
-
with zipfile.ZipFile(file_path, 'r') as zip_ref:
|
244 |
-
zip_ref.extractall(directory_path)
|
245 |
-
|
246 |
-
for file_name in rar_files:
|
247 |
-
file_path = os.path.join(directory_path, file_name)
|
248 |
-
with rarfile.RarFile(file_path, 'r') as rar_ref:
|
249 |
-
rar_ref.extractall(directory_path)
|
250 |
-
|
251 |
-
# set in path
|
252 |
-
def move_files_with_extension(src_dir, extension, destination_dir):
|
253 |
-
for root, _, files in os.walk(src_dir):
|
254 |
-
for file_name in files:
|
255 |
-
if file_name.endswith(extension):
|
256 |
-
source_file = os.path.join(root, file_name)
|
257 |
-
destination = os.path.join(destination_dir, file_name)
|
258 |
-
shutil.move(source_file, destination)
|
259 |
-
|
260 |
-
move_files_with_extension(directory_path, ".index", "logs/")
|
261 |
-
move_files_with_extension(directory_path, ".pth", "weights/")
|
262 |
-
|
263 |
-
return 'Download complete'
|
264 |
-
|
265 |
-
def custom_model_voice_enable(enable_custom_voice):
|
266 |
-
if enable_custom_voice:
|
267 |
-
os.environ["VOICES_MODELS"] = 'ENABLE'
|
268 |
-
else:
|
269 |
-
os.environ["VOICES_MODELS"] = 'DISABLE'
|
270 |
-
|
271 |
-
|
272 |
-
models, index_paths = upload_model_list()
|
273 |
-
|
274 |
-
f0_methods_voice = ["pm", "harvest", "crepe", "rmvpe"]
|
275 |
-
|
276 |
-
|
277 |
-
from voice_main import ClassVoices
|
278 |
-
voices = ClassVoices()
|
279 |
-
|
280 |
-
'''
|
281 |
-
def translate_from_video(video, WHISPER_MODEL_SIZE, batch_size, compute_type,
|
282 |
-
TRANSLATE_AUDIO_TO, min_speakers, max_speakers,
|
283 |
-
tts_voice00, tts_voice01,tts_voice02,tts_voice03,tts_voice04,tts_voice05):
|
284 |
-
|
285 |
-
YOUR_HF_TOKEN = os.getenv("My_hf_token")
|
286 |
-
|
287 |
-
create_translated_audio(result_diarize, audio_files, Output_name_file)
|
288 |
-
|
289 |
-
os.system("rm audio_dub_stereo.wav")
|
290 |
-
os.system("ffmpeg -i audio_dub_solo.wav -ac 1 audio_dub_stereo.wav")
|
291 |
-
|
292 |
-
os.system(f"rm {mix_audio}")
|
293 |
-
os.system(f'ffmpeg -y -i audio.wav -i audio_dub_stereo.wav -filter_complex "[0:0]volume=0.15[a];[1:0]volume=1.90[b];[a][b]amix=inputs=2:duration=longest" -c:a libmp3lame {mix_audio}')
|
294 |
-
|
295 |
-
os.system(f"rm {video_output}")
|
296 |
-
os.system(f"ffmpeg -i {OutputFile} -i {mix_audio} -c:v copy -c:a copy -map 0:v -map 1:a -shortest {video_output}")
|
297 |
-
|
298 |
-
return video_output
|
299 |
-
'''
|
300 |
-
|
301 |
-
def translate_from_video(
|
302 |
-
video,
|
303 |
-
YOUR_HF_TOKEN,
|
304 |
-
preview=False,
|
305 |
-
WHISPER_MODEL_SIZE="large-v1",
|
306 |
-
batch_size=16,
|
307 |
-
compute_type="float16",
|
308 |
-
SOURCE_LANGUAGE= "Automatic detection",
|
309 |
-
TRANSLATE_AUDIO_TO="English (en)",
|
310 |
-
min_speakers=1,
|
311 |
-
max_speakers=2,
|
312 |
-
tts_voice00="en-AU-WilliamNeural-Male",
|
313 |
-
tts_voice01="en-CA-ClaraNeural-Female",
|
314 |
-
tts_voice02="en-GB-ThomasNeural-Male",
|
315 |
-
tts_voice03="en-GB-SoniaNeural-Female",
|
316 |
-
tts_voice04="en-NZ-MitchellNeural-Male",
|
317 |
-
tts_voice05="en-GB-MaisieNeural-Female",
|
318 |
-
video_output="video_dub.mp4",
|
319 |
-
AUDIO_MIX_METHOD='Adjusting volumes and mixing audio',
|
320 |
-
progress=gr.Progress(),
|
321 |
-
):
|
322 |
-
|
323 |
-
if YOUR_HF_TOKEN == "" or YOUR_HF_TOKEN == None:
|
324 |
-
YOUR_HF_TOKEN = os.getenv("YOUR_HF_TOKEN")
|
325 |
-
if YOUR_HF_TOKEN == None:
|
326 |
-
print('No valid token')
|
327 |
-
return "No valid token"
|
328 |
-
else:
|
329 |
-
os.environ["YOUR_HF_TOKEN"] = YOUR_HF_TOKEN
|
330 |
-
|
331 |
-
video = video if isinstance(video, str) else video.name
|
332 |
-
print(video)
|
333 |
-
|
334 |
-
if "SET_LIMIT" == os.getenv("DEMO"):
|
335 |
-
preview=True
|
336 |
-
print("DEMO; set preview=True; The generation is **limited to 10 seconds** to prevent errors with the CPU. If you use a GPU, you won't have any of these limitations.")
|
337 |
-
AUDIO_MIX_METHOD='Adjusting volumes and mixing audio'
|
338 |
-
print("DEMO; set Adjusting volumes and mixing audio")
|
339 |
-
WHISPER_MODEL_SIZE="medium"
|
340 |
-
print("DEMO; set whisper model to medium")
|
341 |
-
|
342 |
-
LANGUAGES = {
|
343 |
-
'Automatic detection': 'Automatic detection',
|
344 |
-
'Arabic (ar)': 'ar',
|
345 |
-
'Chinese (zh)': 'zh',
|
346 |
-
'Czech (cs)': 'cs',
|
347 |
-
'Danish (da)': 'da',
|
348 |
-
'Dutch (nl)': 'nl',
|
349 |
-
'English (en)': 'en',
|
350 |
-
'Finnish (fi)': 'fi',
|
351 |
-
'French (fr)': 'fr',
|
352 |
-
'German (de)': 'de',
|
353 |
-
'Greek (el)': 'el',
|
354 |
-
'Hebrew (he)': 'he',
|
355 |
-
'Hungarian (hu)': 'hu',
|
356 |
-
'Italian (it)': 'it',
|
357 |
-
'Japanese (ja)': 'ja',
|
358 |
-
'Korean (ko)': 'ko',
|
359 |
-
'Persian (fa)': 'fa',
|
360 |
-
'Polish (pl)': 'pl',
|
361 |
-
'Portuguese (pt)': 'pt',
|
362 |
-
'Russian (ru)': 'ru',
|
363 |
-
'Spanish (es)': 'es',
|
364 |
-
'Turkish (tr)': 'tr',
|
365 |
-
'Ukrainian (uk)': 'uk',
|
366 |
-
'Urdu (ur)': 'ur',
|
367 |
-
'Vietnamese (vi)': 'vi',
|
368 |
-
'Hindi (hi)': 'hi',
|
369 |
-
}
|
370 |
-
|
371 |
-
TRANSLATE_AUDIO_TO = LANGUAGES[TRANSLATE_AUDIO_TO]
|
372 |
-
SOURCE_LANGUAGE = LANGUAGES[SOURCE_LANGUAGE]
|
373 |
-
|
374 |
-
|
375 |
-
if not os.path.exists('audio'):
|
376 |
-
os.makedirs('audio')
|
377 |
-
|
378 |
-
if not os.path.exists('audio2/audio'):
|
379 |
-
os.makedirs('audio2/audio')
|
380 |
-
|
381 |
-
# Check GPU
|
382 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
383 |
-
compute_type = "float32" if device == "cpu" else compute_type
|
384 |
-
|
385 |
-
OutputFile = 'Video.mp4'
|
386 |
-
audio_wav = "audio.wav"
|
387 |
-
Output_name_file = "audio_dub_solo.ogg"
|
388 |
-
mix_audio = "audio_mix.mp3"
|
389 |
-
|
390 |
-
os.system("rm Video.mp4")
|
391 |
-
os.system("rm audio.webm")
|
392 |
-
os.system("rm audio.wav")
|
393 |
-
|
394 |
-
progress(0.15, desc="Processing video...")
|
395 |
-
if os.path.exists(video):
|
396 |
-
if preview:
|
397 |
-
print('Creating a preview video of 10 seconds, to disable this option, go to advanced settings and turn off preview.')
|
398 |
-
os.system(f'ffmpeg -y -i "{video}" -ss 00:00:20 -t 00:00:10 -c:v libx264 -c:a aac -strict experimental Video.mp4')
|
399 |
-
else:
|
400 |
-
# Check if the file ends with ".mp4" extension
|
401 |
-
if video.endswith(".mp4"):
|
402 |
-
destination_path = os.path.join(os.getcwd(), "Video.mp4")
|
403 |
-
shutil.copy(video, destination_path)
|
404 |
-
else:
|
405 |
-
print("File does not have the '.mp4' extension. Converting video.")
|
406 |
-
os.system(f'ffmpeg -y -i "{video}" -c:v libx264 -c:a aac -strict experimental Video.mp4')
|
407 |
-
|
408 |
-
for i in range (120):
|
409 |
-
time.sleep(1)
|
410 |
-
print('process video...')
|
411 |
-
if os.path.exists(OutputFile):
|
412 |
-
time.sleep(1)
|
413 |
-
os.system("ffmpeg -y -i Video.mp4 -vn -acodec pcm_s16le -ar 44100 -ac 2 audio.wav")
|
414 |
-
time.sleep(1)
|
415 |
-
break
|
416 |
-
if i == 119:
|
417 |
-
print('Error processing video')
|
418 |
-
return
|
419 |
-
|
420 |
-
for i in range (120):
|
421 |
-
time.sleep(1)
|
422 |
-
print('process audio...')
|
423 |
-
if os.path.exists(audio_wav):
|
424 |
-
break
|
425 |
-
if i == 60 and round(os.path.getsize(f'{OutputFile}') / (1024 * 1024), 1) == 0.0:
|
426 |
-
os.system('rm intermediate.aac') # only for demo
|
427 |
-
os.system(f'ffmpeg -i {video} -ss 00:00:00 -t 00:00:10 -vn -acodec aac -strict -2 intermediate.aac')
|
428 |
-
time.sleep(5)
|
429 |
-
os.system('ffmpeg -i intermediate.aac -acodec pcm_s16le -ar 44100 -ac 2 audio.wav')
|
430 |
-
if i == 119:
|
431 |
-
print("Error can't create the audio")
|
432 |
-
return
|
433 |
-
os.system('rm intermediate.aac')
|
434 |
-
else:
|
435 |
-
if preview:
|
436 |
-
print('Creating a preview from the link, 10 seconds to disable this option, go to advanced settings and turn off preview.')
|
437 |
-
#https://github.com/yt-dlp/yt-dlp/issues/2220
|
438 |
-
mp4_ = f'yt-dlp -f "mp4" --downloader ffmpeg --downloader-args "ffmpeg_i: -ss 00:00:20 -t 00:00:10" --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --restrict-filenames -o {OutputFile} {video}'
|
439 |
-
wav_ = "ffmpeg -y -i Video.mp4 -vn -acodec pcm_s16le -ar 44100 -ac 2 audio.wav"
|
440 |
-
os.system(mp4_)
|
441 |
-
os.system(wav_)
|
442 |
-
else:
|
443 |
-
mp4_ = f'yt-dlp -f "mp4" --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --restrict-filenames -o {OutputFile} {video}'
|
444 |
-
wav_ = f'python -m yt_dlp --output {audio_wav} --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --extract-audio --audio-format wav {video}'
|
445 |
-
|
446 |
-
os.system(wav_)
|
447 |
-
|
448 |
-
for i in range (120):
|
449 |
-
time.sleep(1)
|
450 |
-
print('process audio...')
|
451 |
-
if os.path.exists(audio_wav) and not os.path.exists('audio.webm'):
|
452 |
-
time.sleep(1)
|
453 |
-
os.system(mp4_)
|
454 |
-
break
|
455 |
-
if i == 119:
|
456 |
-
print('Error donwloading the audio')
|
457 |
-
return
|
458 |
-
|
459 |
-
print("Set file complete.")
|
460 |
-
progress(0.30, desc="Transcribing...")
|
461 |
-
|
462 |
-
SOURCE_LANGUAGE = None if SOURCE_LANGUAGE == 'Automatic detection' else SOURCE_LANGUAGE
|
463 |
-
|
464 |
-
# 1. Transcribe with original whisper (batched)
|
465 |
-
with capture.capture_output() as cap:
|
466 |
-
model = whisperx.load_model(
|
467 |
-
WHISPER_MODEL_SIZE,
|
468 |
-
device,
|
469 |
-
compute_type=compute_type,
|
470 |
-
language= SOURCE_LANGUAGE,
|
471 |
-
)
|
472 |
-
del cap
|
473 |
-
audio = whisperx.load_audio(audio_wav)
|
474 |
-
result = model.transcribe(audio, batch_size=batch_size)
|
475 |
-
gc.collect(); torch.cuda.empty_cache(); del model
|
476 |
-
print("Transcript complete")
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
# 2. Align whisper output
|
481 |
-
progress(0.45, desc="Aligning...")
|
482 |
-
DAMHF.update(DAMT) #lang align
|
483 |
-
EXTRA_ALIGN = {
|
484 |
-
"hi": "theainerd/Wav2Vec2-large-xlsr-hindi"
|
485 |
-
} # add new align models here
|
486 |
-
#print(result['language'], DAM.keys(), EXTRA_ALIGN.keys())
|
487 |
-
if not result['language'] in DAMHF.keys() and not result['language'] in EXTRA_ALIGN.keys():
|
488 |
-
audio = result = None
|
489 |
-
print("Automatic detection: Source language not incompatible")
|
490 |
-
print(f"Detected language {LANG_TRANSCRIPT[result['language']]} incompatible, you can select the source language to avoid this error.")
|
491 |
-
return
|
492 |
-
|
493 |
-
model_a, metadata = whisperx.load_align_model(
|
494 |
-
language_code=result["language"],
|
495 |
-
device=device,
|
496 |
-
model_name = None if result["language"] in DAMHF.keys() else EXTRA_ALIGN[result["language"]]
|
497 |
-
)
|
498 |
-
result = whisperx.align(
|
499 |
-
result["segments"],
|
500 |
-
model_a,
|
501 |
-
metadata,
|
502 |
-
audio,
|
503 |
-
device,
|
504 |
-
return_char_alignments=True,
|
505 |
-
)
|
506 |
-
gc.collect(); torch.cuda.empty_cache(); del model_a
|
507 |
-
print("Align complete")
|
508 |
-
|
509 |
-
if result['segments'] == []:
|
510 |
-
print('No active speech found in audio')
|
511 |
-
return
|
512 |
-
|
513 |
-
# 3. Assign speaker labels
|
514 |
-
progress(0.60, desc="Diarizing...")
|
515 |
-
with capture.capture_output() as cap:
|
516 |
-
diarize_model = whisperx.DiarizationPipeline(use_auth_token=YOUR_HF_TOKEN, device=device)
|
517 |
-
del cap
|
518 |
-
diarize_segments = diarize_model(
|
519 |
-
audio_wav,
|
520 |
-
min_speakers=min_speakers,
|
521 |
-
max_speakers=max_speakers)
|
522 |
-
result_diarize = whisperx.assign_word_speakers(diarize_segments, result)
|
523 |
-
gc.collect(); torch.cuda.empty_cache(); del diarize_model
|
524 |
-
print("Diarize complete")
|
525 |
-
|
526 |
-
progress(0.75, desc="Translating...")
|
527 |
-
if TRANSLATE_AUDIO_TO == "zh":
|
528 |
-
TRANSLATE_AUDIO_TO = "zh-CN"
|
529 |
-
if TRANSLATE_AUDIO_TO == "he":
|
530 |
-
TRANSLATE_AUDIO_TO = "iw"
|
531 |
-
result_diarize['segments'] = translate_text(result_diarize['segments'], TRANSLATE_AUDIO_TO)
|
532 |
-
print("Translation complete")
|
533 |
-
|
534 |
-
progress(0.85, desc="Text_to_speech...")
|
535 |
-
audio_files = []
|
536 |
-
speakers_list = []
|
537 |
-
|
538 |
-
# Mapping speakers to voice variables
|
539 |
-
speaker_to_voice = {
|
540 |
-
'SPEAKER_00': tts_voice00,
|
541 |
-
'SPEAKER_01': tts_voice01,
|
542 |
-
'SPEAKER_02': tts_voice02,
|
543 |
-
'SPEAKER_03': tts_voice03,
|
544 |
-
'SPEAKER_04': tts_voice04,
|
545 |
-
'SPEAKER_05': tts_voice05
|
546 |
-
}
|
547 |
-
|
548 |
-
for segment in tqdm(result_diarize['segments']):
|
549 |
-
|
550 |
-
text = segment['text']
|
551 |
-
start = segment['start']
|
552 |
-
end = segment['end']
|
553 |
-
|
554 |
-
try:
|
555 |
-
speaker = segment['speaker']
|
556 |
-
except KeyError:
|
557 |
-
segment['speaker'] = "SPEAKER_99"
|
558 |
-
speaker = segment['speaker']
|
559 |
-
print(f"NO SPEAKER DETECT IN SEGMENT: TTS auxiliary will be used in the segment time {segment['start'], segment['text']}")
|
560 |
-
|
561 |
-
# make the tts audio
|
562 |
-
filename = f"audio/{start}.ogg"
|
563 |
-
|
564 |
-
if speaker in speaker_to_voice and speaker_to_voice[speaker] != 'None':
|
565 |
-
make_voice_gradio(text, speaker_to_voice[speaker], filename, TRANSLATE_AUDIO_TO)
|
566 |
-
elif speaker == "SPEAKER_99":
|
567 |
-
try:
|
568 |
-
tts = gTTS(text, lang=TRANSLATE_AUDIO_TO)
|
569 |
-
tts.save(filename)
|
570 |
-
print('Using GTTS')
|
571 |
-
except:
|
572 |
-
tts = gTTS('a', lang=TRANSLATE_AUDIO_TO)
|
573 |
-
tts.save(filename)
|
574 |
-
print('Error: Audio will be replaced.')
|
575 |
-
|
576 |
-
# duration
|
577 |
-
duration_true = end - start
|
578 |
-
duration_tts = librosa.get_duration(filename=filename)
|
579 |
-
|
580 |
-
# porcentaje
|
581 |
-
porcentaje = duration_tts / duration_true
|
582 |
-
|
583 |
-
if porcentaje > 2.1:
|
584 |
-
porcentaje = 2.1
|
585 |
-
elif porcentaje <= 1.2 and porcentaje >= 0.8:
|
586 |
-
porcentaje = 1.0
|
587 |
-
elif porcentaje <= 0.79:
|
588 |
-
porcentaje = 0.8
|
589 |
-
|
590 |
-
# Smoth and round
|
591 |
-
porcentaje = round(porcentaje+0.0, 1)
|
592 |
-
|
593 |
-
# apply aceleration or opposite to the audio file in audio2 folder
|
594 |
-
os.system(f"ffmpeg -y -loglevel panic -i {filename} -filter:a atempo={porcentaje} audio2/{filename}")
|
595 |
-
|
596 |
-
duration_create = librosa.get_duration(filename=f"audio2/{filename}")
|
597 |
-
audio_files.append(filename)
|
598 |
-
speakers_list.append(speaker)
|
599 |
-
|
600 |
-
# custom voice
|
601 |
-
if os.getenv('VOICES_MODELS') == 'ENABLE':
|
602 |
-
progress(0.90, desc="Applying customized voices...")
|
603 |
-
voices(speakers_list, audio_files)
|
604 |
-
|
605 |
-
# replace files with the accelerates
|
606 |
-
os.system("mv -f audio2/audio/*.ogg audio/")
|
607 |
-
|
608 |
-
os.system(f"rm {Output_name_file}")
|
609 |
-
|
610 |
-
progress(0.95, desc="Creating final translated video...")
|
611 |
-
|
612 |
-
create_translated_audio(result_diarize, audio_files, Output_name_file)
|
613 |
-
|
614 |
-
os.system(f"rm {mix_audio}")
|
615 |
-
|
616 |
-
# TYPE MIX AUDIO
|
617 |
-
if AUDIO_MIX_METHOD == 'Adjusting volumes and mixing audio':
|
618 |
-
# volume mix
|
619 |
-
os.system(f'ffmpeg -y -i {audio_wav} -i {Output_name_file} -filter_complex "[0:0]volume=0.15[a];[1:0]volume=1.90[b];[a][b]amix=inputs=2:duration=longest" -c:a libmp3lame {mix_audio}')
|
620 |
-
else:
|
621 |
-
try:
|
622 |
-
# background mix
|
623 |
-
os.system(f'ffmpeg -i {audio_wav} -i {Output_name_file} -filter_complex "[1:a]asplit=2[sc][mix];[0:a][sc]sidechaincompress=threshold=0.003:ratio=20[bg]; [bg][mix]amerge[final]" -map [final] {mix_audio}')
|
624 |
-
except:
|
625 |
-
# volume mix except
|
626 |
-
os.system(f'ffmpeg -y -i {audio_wav} -i {Output_name_file} -filter_complex "[0:0]volume=0.25[a];[1:0]volume=1.80[b];[a][b]amix=inputs=2:duration=longest" -c:a libmp3lame {mix_audio}')
|
627 |
-
|
628 |
-
os.system(f"rm {video_output}")
|
629 |
-
os.system(f"ffmpeg -i {OutputFile} -i {mix_audio} -c:v copy -c:a copy -map 0:v -map 1:a -shortest {video_output}")
|
630 |
-
|
631 |
-
return video_output
|
632 |
-
|
633 |
-
import sys
|
634 |
-
|
635 |
-
class Logger:
|
636 |
-
def __init__(self, filename):
|
637 |
-
self.terminal = sys.stdout
|
638 |
-
self.log = open(filename, "w")
|
639 |
-
|
640 |
-
def write(self, message):
|
641 |
-
self.terminal.write(message)
|
642 |
-
self.log.write(message)
|
643 |
-
|
644 |
-
def flush(self):
|
645 |
-
self.terminal.flush()
|
646 |
-
self.log.flush()
|
647 |
-
|
648 |
-
def isatty(self):
|
649 |
-
return False
|
650 |
-
|
651 |
-
sys.stdout = Logger("output.log")
|
652 |
-
|
653 |
-
def read_logs():
|
654 |
-
sys.stdout.flush()
|
655 |
-
with open("output.log", "r") as f:
|
656 |
-
return f.read()
|
657 |
-
|
658 |
-
def submit_file_func(file):
|
659 |
-
print(file.name)
|
660 |
-
return file.name, file.name
|
661 |
-
|
662 |
-
# max tts
|
663 |
-
MAX_TTS = 6
|
664 |
-
|
665 |
-
theme='Taithrah/Minimal'
|
666 |
-
|
667 |
-
with gr.Blocks(theme=theme) as demo:
|
668 |
-
gr.Markdown(title)
|
669 |
-
gr.Markdown(description)
|
670 |
-
|
671 |
-
|
672 |
-
### link
|
673 |
-
|
674 |
-
with gr.Tab("Audio Translation via Video Link"):
|
675 |
-
with gr.Row():
|
676 |
-
with gr.Column():
|
677 |
-
|
678 |
-
blink_input = gr.Textbox(label="Media link.", info="Example: www.youtube.com/watch?v=g_9rPvbENUw", placeholder="URL goes here...")
|
679 |
-
|
680 |
-
bSOURCE_LANGUAGE = gr.Dropdown(['Automatic detection', 'Arabic (ar)', 'Chinese (zh)', 'Czech (cs)', 'Danish (da)', 'Dutch (nl)', 'English (en)', 'Finnish (fi)', 'French (fr)', 'German (de)', 'Greek (el)', 'Hebrew (he)', 'Hindi (hi)', 'Hungarian (hu)', 'Italian (it)', 'Japanese (ja)', 'Korean (ko)', 'Persian (fa)', 'Polish (pl)', 'Portuguese (pt)', 'Russian (ru)', 'Spanish (es)', 'Turkish (tr)', 'Ukrainian (uk)', 'Urdu (ur)', 'Vietnamese (vi)'], value='Automatic detection',label = 'Source language', info="This is the original language of the video")
|
681 |
-
bTRANSLATE_AUDIO_TO = gr.Dropdown(['Arabic (ar)', 'Chinese (zh)', 'Czech (cs)', 'Danish (da)', 'Dutch (nl)', 'English (en)', 'Finnish (fi)', 'French (fr)', 'German (de)', 'Greek (el)', 'Hebrew (he)', 'Hindi (hi)', 'Hungarian (hu)', 'Italian (it)', 'Japanese (ja)', 'Korean (ko)', 'Persian (fa)', 'Polish (pl)', 'Portuguese (pt)', 'Russian (ru)', 'Spanish (es)', 'Turkish (tr)', 'Ukrainian (uk)', 'Urdu (ur)', 'Vietnamese (vi)'], value='English (en)',label = 'Translate audio to', info="Select the target language, and make sure to select the language corresponding to the speakers of the target language to avoid errors in the process.")
|
682 |
-
|
683 |
-
bline_ = gr.HTML("<hr></h2>")
|
684 |
-
gr.Markdown("Select how many people are speaking in the video.")
|
685 |
-
bmin_speakers = gr.Slider(1, MAX_TTS, default=1, label="min_speakers", step=1, visible=False)
|
686 |
-
bmax_speakers = gr.Slider(1, MAX_TTS, value=2, step=1, label="Max speakers", interative=True)
|
687 |
-
gr.Markdown("Select the voice you want for each speaker.")
|
688 |
-
def bsubmit(value):
|
689 |
-
visibility_dict = {
|
690 |
-
f'btts_voice{i:02d}': gr.update(visible=i < value) for i in range(6)
|
691 |
-
}
|
692 |
-
return [value for value in visibility_dict.values()]
|
693 |
-
btts_voice00 = gr.Dropdown(list_tts, value='en-AU-WilliamNeural-Male', label = 'TTS Speaker 1', visible=True, interactive= True)
|
694 |
-
btts_voice01 = gr.Dropdown(list_tts, value='en-CA-ClaraNeural-Female', label = 'TTS Speaker 2', visible=True, interactive= True)
|
695 |
-
btts_voice02 = gr.Dropdown(list_tts, value='en-GB-ThomasNeural-Male', label = 'TTS Speaker 3', visible=False, interactive= True)
|
696 |
-
btts_voice03 = gr.Dropdown(list_tts, value='en-GB-SoniaNeural-Female', label = 'TTS Speaker 4', visible=False, interactive= True)
|
697 |
-
btts_voice04 = gr.Dropdown(list_tts, value='en-NZ-MitchellNeural-Male', label = 'TTS Speaker 5', visible=False, interactive= True)
|
698 |
-
btts_voice05 = gr.Dropdown(list_tts, value='en-GB-MaisieNeural-Female', label = 'TTS Speaker 6', visible=False, interactive= True)
|
699 |
-
bmax_speakers.change(bsubmit, bmax_speakers, [btts_voice00, btts_voice01, btts_voice02, btts_voice03, btts_voice04, btts_voice05])
|
700 |
-
|
701 |
-
|
702 |
-
with gr.Column():
|
703 |
-
with gr.Accordion("Advanced Settings", open=False):
|
704 |
-
|
705 |
-
bAUDIO_MIX = gr.Dropdown(['Mixing audio with sidechain compression', 'Adjusting volumes and mixing audio'], value='Adjusting volumes and mixing audio', label = 'Audio Mixing Method', info="Mix original and translated audio files to create a customized, balanced output with two available mixing modes.")
|
706 |
-
|
707 |
-
gr.HTML("<hr></h2>")
|
708 |
-
gr.Markdown("Default configuration of Whisper.")
|
709 |
-
bWHISPER_MODEL_SIZE = gr.inputs.Dropdown(['tiny', 'base', 'small', 'medium', 'large-v1', 'large-v2'], default=whisper_model_default, label="Whisper model")
|
710 |
-
bbatch_size = gr.inputs.Slider(1, 32, default=16, label="Batch size", step=1)
|
711 |
-
bcompute_type = gr.inputs.Dropdown(list_compute_type, default=compute_type_default, label="Compute type")
|
712 |
-
|
713 |
-
gr.HTML("<hr></h2>")
|
714 |
-
bVIDEO_OUTPUT_NAME = gr.Textbox(label="Translated file name" ,value="video_output.mp4", info="The name of the output file")
|
715 |
-
bPREVIEW = gr.Checkbox(label="Preview", info="Preview cuts the video to only 10 seconds for testing purposes. Please deactivate it to retrieve the full video duration.")
|
716 |
-
|
717 |
-
with gr.Column(variant='compact'):
|
718 |
-
with gr.Row():
|
719 |
-
text_button = gr.Button("TRANSLATE")
|
720 |
-
with gr.Row():
|
721 |
-
blink_output = gr.Video() #gr.outputs.File(label="DOWNLOAD TRANSLATED VIDEO") # gr.Video()
|
722 |
-
|
723 |
-
|
724 |
-
bline_ = gr.HTML("<hr></h2>")
|
725 |
-
if os.getenv("YOUR_HF_TOKEN") == None or os.getenv("YOUR_HF_TOKEN") == "":
|
726 |
-
bHFKEY = gr.Textbox(visible= True, label="HF Token", info="One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and accept the license to use the models: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation. Get your KEY TOKEN here: https://hf.co/settings/tokens", placeholder="Token goes here...")
|
727 |
-
else:
|
728 |
-
bHFKEY = gr.Textbox(visible= False, label="HF Token", info="One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and accept the license to use the models: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation. Get your KEY TOKEN here: https://hf.co/settings/tokens", placeholder="Token goes here...")
|
729 |
-
|
730 |
-
gr.Examples(
|
731 |
-
examples=[
|
732 |
-
[
|
733 |
-
"https://www.youtube.com/watch?v=5ZeHtRKHl7Y",
|
734 |
-
"",
|
735 |
-
False,
|
736 |
-
"large-v2",
|
737 |
-
16,
|
738 |
-
"float16",
|
739 |
-
"Japanese (ja)",
|
740 |
-
"English (en)",
|
741 |
-
1,
|
742 |
-
2,
|
743 |
-
'en-CA-ClaraNeural-Female',
|
744 |
-
'en-AU-WilliamNeural-Male',
|
745 |
-
'en-GB-ThomasNeural-Male',
|
746 |
-
'en-GB-SoniaNeural-Female',
|
747 |
-
'en-NZ-MitchellNeural-Male',
|
748 |
-
'en-GB-MaisieNeural-Female',
|
749 |
-
"video_output.mp4",
|
750 |
-
'Adjusting volumes and mixing audio',
|
751 |
-
],
|
752 |
-
],
|
753 |
-
fn=translate_from_video,
|
754 |
-
inputs=[
|
755 |
-
blink_input,
|
756 |
-
bHFKEY,
|
757 |
-
bPREVIEW,
|
758 |
-
bWHISPER_MODEL_SIZE,
|
759 |
-
bbatch_size,
|
760 |
-
bcompute_type,
|
761 |
-
bSOURCE_LANGUAGE,
|
762 |
-
bTRANSLATE_AUDIO_TO,
|
763 |
-
bmin_speakers,
|
764 |
-
bmax_speakers,
|
765 |
-
btts_voice00,
|
766 |
-
btts_voice01,
|
767 |
-
btts_voice02,
|
768 |
-
btts_voice03,
|
769 |
-
btts_voice04,
|
770 |
-
btts_voice05,
|
771 |
-
bVIDEO_OUTPUT_NAME,
|
772 |
-
bAUDIO_MIX
|
773 |
-
],
|
774 |
-
outputs=[blink_output],
|
775 |
-
cache_examples=False,
|
776 |
-
)
|
777 |
-
|
778 |
-
|
779 |
-
#### video
|
780 |
-
with gr.Tab("Audio Translation for a Video"):
|
781 |
-
with gr.Row():
|
782 |
-
with gr.Column():
|
783 |
-
#video_input = gr.UploadButton("Click to Upload a video", file_types=["video"], file_count="single") #gr.Video() # height=300,width=300
|
784 |
-
video_input = gr.File(label="Submit a short Video")
|
785 |
-
#link = gr.HTML()
|
786 |
-
#video_input.change(submit_file_func, video_input, [video_input, link], show_progress='full')
|
787 |
-
|
788 |
-
SOURCE_LANGUAGE = gr.Dropdown(['Automatic detection', 'Arabic (ar)', 'Chinese (zh)', 'Czech (cs)', 'Danish (da)', 'Dutch (nl)', 'English (en)', 'Finnish (fi)', 'French (fr)', 'German (de)', 'Greek (el)', 'Hebrew (he)', 'Hindi (hi)', 'Hungarian (hu)', 'Italian (it)', 'Japanese (ja)', 'Korean (ko)', 'Persian (fa)', 'Polish (pl)', 'Portuguese (pt)', 'Russian (ru)', 'Spanish (es)', 'Turkish (tr)', 'Ukrainian (uk)', 'Urdu (ur)', 'Vietnamese (vi)'], value='Automatic detection',label = 'Source language', info="This is the original language of the video")
|
789 |
-
TRANSLATE_AUDIO_TO = gr.Dropdown(['Arabic (ar)', 'Chinese (zh)', 'Czech (cs)', 'Danish (da)', 'Dutch (nl)', 'English (en)', 'Finnish (fi)', 'French (fr)', 'German (de)', 'Greek (el)', 'Hebrew (he)', 'Hindi (hi)', 'Hungarian (hu)', 'Italian (it)', 'Japanese (ja)', 'Korean (ko)', 'Persian (fa)', 'Polish (pl)', 'Portuguese (pt)', 'Russian (ru)', 'Spanish (es)', 'Turkish (tr)', 'Ukrainian (uk)', 'Urdu (ur)', 'Vietnamese (vi)'], value='English (en)',label = 'Translate audio to', info="Select the target language, and make sure to select the language corresponding to the speakers of the target language to avoid errors in the process.")
|
790 |
-
|
791 |
-
line_ = gr.HTML("<hr></h2>")
|
792 |
-
gr.Markdown("Select how many people are speaking in the video.")
|
793 |
-
min_speakers = gr.Slider(1, MAX_TTS, default=1, label="min_speakers", step=1, visible=False)
|
794 |
-
max_speakers = gr.Slider(1, MAX_TTS, value=2, step=1, label="Max speakers", interative=True)
|
795 |
-
gr.Markdown("Select the voice you want for each speaker.")
|
796 |
-
def submit(value):
|
797 |
-
visibility_dict = {
|
798 |
-
f'tts_voice{i:02d}': gr.update(visible=i < value) for i in range(6)
|
799 |
-
}
|
800 |
-
return [value for value in visibility_dict.values()]
|
801 |
-
tts_voice00 = gr.Dropdown(list_tts, value='en-AU-WilliamNeural-Male', label = 'TTS Speaker 1', visible=True, interactive= True)
|
802 |
-
tts_voice01 = gr.Dropdown(list_tts, value='en-CA-ClaraNeural-Female', label = 'TTS Speaker 2', visible=True, interactive= True)
|
803 |
-
tts_voice02 = gr.Dropdown(list_tts, value='en-GB-ThomasNeural-Male', label = 'TTS Speaker 3', visible=False, interactive= True)
|
804 |
-
tts_voice03 = gr.Dropdown(list_tts, value='en-GB-SoniaNeural-Female', label = 'TTS Speaker 4', visible=False, interactive= True)
|
805 |
-
tts_voice04 = gr.Dropdown(list_tts, value='en-NZ-MitchellNeural-Male', label = 'TTS Speaker 5', visible=False, interactive= True)
|
806 |
-
tts_voice05 = gr.Dropdown(list_tts, value='en-GB-MaisieNeural-Female', label = 'TTS Speaker 6', visible=False, interactive= True)
|
807 |
-
max_speakers.change(submit, max_speakers, [tts_voice00, tts_voice01, tts_voice02, tts_voice03, tts_voice04, tts_voice05])
|
808 |
-
|
809 |
-
with gr.Column():
|
810 |
-
with gr.Accordion("Advanced Settings", open=False):
|
811 |
-
|
812 |
-
AUDIO_MIX = gr.Dropdown(['Mixing audio with sidechain compression', 'Adjusting volumes and mixing audio'], value='Adjusting volumes and mixing audio', label = 'Audio Mixing Method', info="Mix original and translated audio files to create a customized, balanced output with two available mixing modes.")
|
813 |
-
|
814 |
-
gr.HTML("<hr></h2>")
|
815 |
-
gr.Markdown("Default configuration of Whisper.")
|
816 |
-
WHISPER_MODEL_SIZE = gr.inputs.Dropdown(['tiny', 'base', 'small', 'medium', 'large-v1', 'large-v2'], default=whisper_model_default, label="Whisper model")
|
817 |
-
batch_size = gr.inputs.Slider(1, 32, default=16, label="Batch size", step=1)
|
818 |
-
compute_type = gr.inputs.Dropdown(list_compute_type, default=compute_type_default, label="Compute type")
|
819 |
-
|
820 |
-
gr.HTML("<hr></h2>")
|
821 |
-
VIDEO_OUTPUT_NAME = gr.Textbox(label="Translated file name" ,value="video_output.mp4", info="The name of the output file")
|
822 |
-
PREVIEW = gr.Checkbox(label="Preview", info="Preview cuts the video to only 10 seconds for testing purposes. Please deactivate it to retrieve the full video duration.")
|
823 |
-
|
824 |
-
with gr.Column(variant='compact'):
|
825 |
-
with gr.Row():
|
826 |
-
video_button = gr.Button("TRANSLATE", )
|
827 |
-
with gr.Row():
|
828 |
-
video_output = gr.Video() #gr.outputs.File(label="DOWNLOAD TRANSLATED VIDEO")
|
829 |
-
|
830 |
-
line_ = gr.HTML("<hr></h2>")
|
831 |
-
if os.getenv("YOUR_HF_TOKEN") == None or os.getenv("YOUR_HF_TOKEN") == "":
|
832 |
-
HFKEY = gr.Textbox(visible= True, label="HF Token", info="One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and accept the license to use the models: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation. Get your KEY TOKEN here: https://hf.co/settings/tokens", placeholder="Token goes here...")
|
833 |
-
else:
|
834 |
-
HFKEY = gr.Textbox(visible= False, label="HF Token", info="One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and accept the license to use the models: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation. Get your KEY TOKEN here: https://hf.co/settings/tokens", placeholder="Token goes here...")
|
835 |
-
|
836 |
-
gr.Examples(
|
837 |
-
examples=[
|
838 |
-
[
|
839 |
-
"./assets/Video_main.mp4",
|
840 |
-
"",
|
841 |
-
False,
|
842 |
-
"large-v2",
|
843 |
-
16,
|
844 |
-
"float16",
|
845 |
-
"Spanish (es)",
|
846 |
-
"English (en)",
|
847 |
-
1,
|
848 |
-
2,
|
849 |
-
'en-AU-WilliamNeural-Male',
|
850 |
-
'en-CA-ClaraNeural-Female',
|
851 |
-
'en-GB-ThomasNeural-Male',
|
852 |
-
'en-GB-SoniaNeural-Female',
|
853 |
-
'en-NZ-MitchellNeural-Male',
|
854 |
-
'en-GB-MaisieNeural-Female',
|
855 |
-
"video_output.mp4",
|
856 |
-
'Adjusting volumes and mixing audio',
|
857 |
-
],
|
858 |
-
],
|
859 |
-
fn=translate_from_video,
|
860 |
-
inputs=[
|
861 |
-
video_input,
|
862 |
-
HFKEY,
|
863 |
-
PREVIEW,
|
864 |
-
WHISPER_MODEL_SIZE,
|
865 |
-
batch_size,
|
866 |
-
compute_type,
|
867 |
-
SOURCE_LANGUAGE,
|
868 |
-
TRANSLATE_AUDIO_TO,
|
869 |
-
min_speakers,
|
870 |
-
max_speakers,
|
871 |
-
tts_voice00,
|
872 |
-
tts_voice01,
|
873 |
-
tts_voice02,
|
874 |
-
tts_voice03,
|
875 |
-
tts_voice04,
|
876 |
-
tts_voice05,
|
877 |
-
VIDEO_OUTPUT_NAME,
|
878 |
-
AUDIO_MIX,
|
879 |
-
],
|
880 |
-
outputs=[video_output],
|
881 |
-
cache_examples=False,
|
882 |
-
)
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
with gr.Tab("Custom voice RVC"):
|
888 |
-
with gr.Column():
|
889 |
-
with gr.Accordion("Download RVC Models", open=True):
|
890 |
-
url_links = gr.Textbox(label="URLs", value="",info="Automatically download the RVC models from the URL. You can use links from HuggingFace or Drive, and you can include several links, each one separated by a comma.", placeholder="urls here...", lines=1)
|
891 |
-
download_finish = gr.HTML()
|
892 |
-
download_button = gr.Button("DOWNLOAD MODELS")
|
893 |
-
|
894 |
-
def update_models():
|
895 |
-
models, index_paths = upload_model_list()
|
896 |
-
for i in range(8):
|
897 |
-
dict_models = {
|
898 |
-
f'model_voice_path{i:02d}': gr.update(choices=models) for i in range(8)
|
899 |
-
}
|
900 |
-
dict_index = {
|
901 |
-
f'file_index2_{i:02d}': gr.update(choices=index_paths) for i in range(8)
|
902 |
-
}
|
903 |
-
dict_changes = {**dict_models, **dict_index}
|
904 |
-
return [value for value in dict_changes.values()]
|
905 |
-
|
906 |
-
with gr.Column():
|
907 |
-
with gr.Accordion("Replace voice: TTS to RVC", open=False):
|
908 |
-
with gr.Column(variant='compact'):
|
909 |
-
with gr.Column():
|
910 |
-
gr.Markdown("### 1. To enable its use, mark it as enable.")
|
911 |
-
enable_custom_voice = gr.Checkbox(label="ENABLE", info="Check this to enable the use of the models.")
|
912 |
-
enable_custom_voice.change(custom_model_voice_enable, [enable_custom_voice], [])
|
913 |
-
|
914 |
-
gr.Markdown("### 2. Select a voice that will be applied to each TTS of each corresponding speaker and apply the configurations.")
|
915 |
-
|
916 |
-
gr.Markdown("Voice to apply to the first speaker.")
|
917 |
-
with gr.Row():
|
918 |
-
model_voice_path00 = gr.Dropdown(models, label = 'Model-1', visible=True, interactive= True)
|
919 |
-
file_index2_00 = gr.Dropdown(index_paths, label = 'Index-1', visible=True, interactive= True)
|
920 |
-
name_transpose00 = gr.Number(label = 'Transpose-1', value=0, visible=True, interactive= True)
|
921 |
-
gr.HTML("<hr></h2>")
|
922 |
-
gr.Markdown("Voice to apply to the second speaker.")
|
923 |
-
with gr.Row():
|
924 |
-
model_voice_path01 = gr.Dropdown(models, label='Model-2', visible=True, interactive=True)
|
925 |
-
file_index2_01 = gr.Dropdown(index_paths, label='Index-2', visible=True, interactive=True)
|
926 |
-
name_transpose01 = gr.Number(label='Transpose-2', value=0, visible=True, interactive=True)
|
927 |
-
gr.HTML("<hr></h2>")
|
928 |
-
gr.Markdown("Voice to apply to the third speaker.")
|
929 |
-
with gr.Row():
|
930 |
-
model_voice_path02 = gr.Dropdown(models, label='Model-3', visible=True, interactive=True)
|
931 |
-
file_index2_02 = gr.Dropdown(index_paths, label='Index-3', visible=True, interactive=True)
|
932 |
-
name_transpose02 = gr.Number(label='Transpose-3', value=0, visible=True, interactive=True)
|
933 |
-
gr.HTML("<hr></h2>")
|
934 |
-
gr.Markdown("Voice to apply to the fourth speaker.")
|
935 |
-
with gr.Row():
|
936 |
-
model_voice_path03 = gr.Dropdown(models, label='Model-4', visible=True, interactive=True)
|
937 |
-
file_index2_03 = gr.Dropdown(index_paths, label='Index-4', visible=True, interactive=True)
|
938 |
-
name_transpose03 = gr.Number(label='Transpose-4', value=0, visible=True, interactive=True)
|
939 |
-
gr.HTML("<hr></h2>")
|
940 |
-
gr.Markdown("Voice to apply to the fifth speaker.")
|
941 |
-
with gr.Row():
|
942 |
-
model_voice_path04 = gr.Dropdown(models, label='Model-5', visible=True, interactive=True)
|
943 |
-
file_index2_04 = gr.Dropdown(index_paths, label='Index-5', visible=True, interactive=True)
|
944 |
-
name_transpose04 = gr.Number(label='Transpose-5', value=0, visible=True, interactive=True)
|
945 |
-
gr.HTML("<hr></h2>")
|
946 |
-
gr.Markdown("Voice to apply to the sixth speaker.")
|
947 |
-
with gr.Row():
|
948 |
-
model_voice_path05 = gr.Dropdown(models, label='Model-6', visible=True, interactive=True)
|
949 |
-
file_index2_05 = gr.Dropdown(index_paths, label='Index-6', visible=True, interactive=True)
|
950 |
-
name_transpose05 = gr.Number(label='Transpose-6', value=0, visible=True, interactive=True)
|
951 |
-
gr.HTML("<hr></h2>")
|
952 |
-
gr.Markdown("- Voice to apply in case a speaker is not detected successfully.")
|
953 |
-
with gr.Row():
|
954 |
-
model_voice_path06 = gr.Dropdown(models, label='Model-Aux', visible=True, interactive=True)
|
955 |
-
file_index2_06 = gr.Dropdown(index_paths, label='Index-Aux', visible=True, interactive=True)
|
956 |
-
name_transpose06 = gr.Number(label='Transpose-Aux', value=0, visible=True, interactive=True)
|
957 |
-
gr.HTML("<hr></h2>")
|
958 |
-
with gr.Row():
|
959 |
-
f0_method_global = gr.Dropdown(f0_methods_voice, value='pm', label = 'Global F0 method', visible=True, interactive= True)
|
960 |
-
|
961 |
-
with gr.Row(variant='compact'):
|
962 |
-
button_config = gr.Button("APPLY CONFIGURATION")
|
963 |
-
|
964 |
-
confirm_conf = gr.HTML()
|
965 |
-
|
966 |
-
button_config.click(voices.apply_conf, inputs=[
|
967 |
-
f0_method_global,
|
968 |
-
model_voice_path00, name_transpose00, file_index2_00,
|
969 |
-
model_voice_path01, name_transpose01, file_index2_01,
|
970 |
-
model_voice_path02, name_transpose02, file_index2_02,
|
971 |
-
model_voice_path03, name_transpose03, file_index2_03,
|
972 |
-
model_voice_path04, name_transpose04, file_index2_04,
|
973 |
-
model_voice_path05, name_transpose05, file_index2_05,
|
974 |
-
model_voice_path06, name_transpose06, file_index2_06,
|
975 |
-
], outputs=[confirm_conf])
|
976 |
-
|
977 |
-
|
978 |
-
with gr.Column():
|
979 |
-
with gr.Accordion("Test RVC", open=False):
|
980 |
-
|
981 |
-
with gr.Row(variant='compact'):
|
982 |
-
text_test = gr.Textbox(label="Text", value="This is an example",info="write a text", placeholder="...", lines=5)
|
983 |
-
with gr.Column():
|
984 |
-
tts_test = gr.Dropdown(list_tts, value='en-GB-ThomasNeural-Male', label = 'TTS', visible=True, interactive= True)
|
985 |
-
model_voice_path07 = gr.Dropdown(models, label = 'Model', visible=True, interactive= True) #value=''
|
986 |
-
file_index2_07 = gr.Dropdown(index_paths, label = 'Index', visible=True, interactive= True) #value=''
|
987 |
-
transpose_test = gr.Number(label = 'Transpose', value=0, visible=True, interactive= True, info="integer, number of semitones, raise by an octave: 12, lower by an octave: -12")
|
988 |
-
f0method_test = gr.Dropdown(f0_methods_voice, value='pm', label = 'F0 method', visible=True, interactive= True)
|
989 |
-
with gr.Row(variant='compact'):
|
990 |
-
button_test = gr.Button("Test audio")
|
991 |
-
|
992 |
-
with gr.Column():
|
993 |
-
with gr.Row():
|
994 |
-
original_ttsvoice = gr.Audio()
|
995 |
-
ttsvoice = gr.Audio()
|
996 |
-
|
997 |
-
button_test.click(voices.make_test, inputs=[
|
998 |
-
text_test,
|
999 |
-
tts_test,
|
1000 |
-
model_voice_path07,
|
1001 |
-
file_index2_07,
|
1002 |
-
transpose_test,
|
1003 |
-
f0method_test,
|
1004 |
-
], outputs=[ttsvoice, original_ttsvoice])
|
1005 |
-
|
1006 |
-
download_button.click(download_list, [url_links], [download_finish]).then(update_models, [],
|
1007 |
-
[
|
1008 |
-
model_voice_path00, model_voice_path01, model_voice_path02, model_voice_path03, model_voice_path04, model_voice_path05, model_voice_path06, model_voice_path07,
|
1009 |
-
file_index2_00, file_index2_01, file_index2_02, file_index2_03, file_index2_04, file_index2_05, file_index2_06, file_index2_07
|
1010 |
-
])
|
1011 |
-
|
1012 |
-
|
1013 |
-
with gr.Tab("Help"):
|
1014 |
-
gr.Markdown(tutorial)
|
1015 |
-
gr.Markdown(news)
|
1016 |
-
|
1017 |
-
with gr.Accordion("Logs", open = False):
|
1018 |
-
logs = gr.Textbox()
|
1019 |
-
demo.load(read_logs, None, logs, every=1)
|
1020 |
-
|
1021 |
-
# run
|
1022 |
-
video_button.click(translate_from_video, inputs=[
|
1023 |
-
video_input,
|
1024 |
-
HFKEY,
|
1025 |
-
PREVIEW,
|
1026 |
-
WHISPER_MODEL_SIZE,
|
1027 |
-
batch_size,
|
1028 |
-
compute_type,
|
1029 |
-
SOURCE_LANGUAGE,
|
1030 |
-
TRANSLATE_AUDIO_TO,
|
1031 |
-
min_speakers,
|
1032 |
-
max_speakers,
|
1033 |
-
tts_voice00,
|
1034 |
-
tts_voice01,
|
1035 |
-
tts_voice02,
|
1036 |
-
tts_voice03,
|
1037 |
-
tts_voice04,
|
1038 |
-
tts_voice05,
|
1039 |
-
VIDEO_OUTPUT_NAME,
|
1040 |
-
AUDIO_MIX,
|
1041 |
-
], outputs=video_output)
|
1042 |
-
text_button.click(translate_from_video, inputs=[
|
1043 |
-
blink_input,
|
1044 |
-
bHFKEY,
|
1045 |
-
bPREVIEW,
|
1046 |
-
bWHISPER_MODEL_SIZE,
|
1047 |
-
bbatch_size,
|
1048 |
-
bcompute_type,
|
1049 |
-
bSOURCE_LANGUAGE,
|
1050 |
-
bTRANSLATE_AUDIO_TO,
|
1051 |
-
bmin_speakers,
|
1052 |
-
bmax_speakers,
|
1053 |
-
btts_voice00,
|
1054 |
-
btts_voice01,
|
1055 |
-
btts_voice02,
|
1056 |
-
btts_voice03,
|
1057 |
-
btts_voice04,
|
1058 |
-
btts_voice05,
|
1059 |
-
bVIDEO_OUTPUT_NAME,
|
1060 |
-
bAUDIO_MIX,
|
1061 |
-
], outputs=blink_output)
|
1062 |
-
|
1063 |
-
demo.launch(debug=False, enable_queue=True)
|
1064 |
-
#demo.launch(share=True, enable_queue=True, quiet=True, debug=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assets/Video_main.mp4
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:51ca9b5aac32a1b95b15420fc3cd339843d893d1d5e774e5b24b65127784e74f
|
3 |
-
size 9106809
|
|
|
|
|
|
|
|
assets/Video_subtitled.mp4
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:98cb285e72372f3a141029571b8b5398c28196081f1f30e4590e1fc37faa0536
|
3 |
-
size 3490389
|
|
|
|
|
|
|
|
configs/32k.json
DELETED
@@ -1,46 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"train": {
|
3 |
-
"log_interval": 200,
|
4 |
-
"seed": 1234,
|
5 |
-
"epochs": 20000,
|
6 |
-
"learning_rate": 1e-4,
|
7 |
-
"betas": [0.8, 0.99],
|
8 |
-
"eps": 1e-9,
|
9 |
-
"batch_size": 4,
|
10 |
-
"fp16_run": false,
|
11 |
-
"lr_decay": 0.999875,
|
12 |
-
"segment_size": 12800,
|
13 |
-
"init_lr_ratio": 1,
|
14 |
-
"warmup_epochs": 0,
|
15 |
-
"c_mel": 45,
|
16 |
-
"c_kl": 1.0
|
17 |
-
},
|
18 |
-
"data": {
|
19 |
-
"max_wav_value": 32768.0,
|
20 |
-
"sampling_rate": 32000,
|
21 |
-
"filter_length": 1024,
|
22 |
-
"hop_length": 320,
|
23 |
-
"win_length": 1024,
|
24 |
-
"n_mel_channels": 80,
|
25 |
-
"mel_fmin": 0.0,
|
26 |
-
"mel_fmax": null
|
27 |
-
},
|
28 |
-
"model": {
|
29 |
-
"inter_channels": 192,
|
30 |
-
"hidden_channels": 192,
|
31 |
-
"filter_channels": 768,
|
32 |
-
"n_heads": 2,
|
33 |
-
"n_layers": 6,
|
34 |
-
"kernel_size": 3,
|
35 |
-
"p_dropout": 0,
|
36 |
-
"resblock": "1",
|
37 |
-
"resblock_kernel_sizes": [3,7,11],
|
38 |
-
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
-
"upsample_rates": [10,4,2,2,2],
|
40 |
-
"upsample_initial_channel": 512,
|
41 |
-
"upsample_kernel_sizes": [16,16,4,4,4],
|
42 |
-
"use_spectral_norm": false,
|
43 |
-
"gin_channels": 256,
|
44 |
-
"spk_embed_dim": 109
|
45 |
-
}
|
46 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/32k_v2.json
DELETED
@@ -1,46 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"train": {
|
3 |
-
"log_interval": 200,
|
4 |
-
"seed": 1234,
|
5 |
-
"epochs": 20000,
|
6 |
-
"learning_rate": 1e-4,
|
7 |
-
"betas": [0.8, 0.99],
|
8 |
-
"eps": 1e-9,
|
9 |
-
"batch_size": 4,
|
10 |
-
"fp16_run": false,
|
11 |
-
"lr_decay": 0.999875,
|
12 |
-
"segment_size": 12800,
|
13 |
-
"init_lr_ratio": 1,
|
14 |
-
"warmup_epochs": 0,
|
15 |
-
"c_mel": 45,
|
16 |
-
"c_kl": 1.0
|
17 |
-
},
|
18 |
-
"data": {
|
19 |
-
"max_wav_value": 32768.0,
|
20 |
-
"sampling_rate": 32000,
|
21 |
-
"filter_length": 1024,
|
22 |
-
"hop_length": 320,
|
23 |
-
"win_length": 1024,
|
24 |
-
"n_mel_channels": 80,
|
25 |
-
"mel_fmin": 0.0,
|
26 |
-
"mel_fmax": null
|
27 |
-
},
|
28 |
-
"model": {
|
29 |
-
"inter_channels": 192,
|
30 |
-
"hidden_channels": 192,
|
31 |
-
"filter_channels": 768,
|
32 |
-
"n_heads": 2,
|
33 |
-
"n_layers": 6,
|
34 |
-
"kernel_size": 3,
|
35 |
-
"p_dropout": 0,
|
36 |
-
"resblock": "1",
|
37 |
-
"resblock_kernel_sizes": [3,7,11],
|
38 |
-
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
-
"upsample_rates": [10,8,2,2],
|
40 |
-
"upsample_initial_channel": 512,
|
41 |
-
"upsample_kernel_sizes": [20,16,4,4],
|
42 |
-
"use_spectral_norm": false,
|
43 |
-
"gin_channels": 256,
|
44 |
-
"spk_embed_dim": 109
|
45 |
-
}
|
46 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/40k.json
DELETED
@@ -1,46 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"train": {
|
3 |
-
"log_interval": 200,
|
4 |
-
"seed": 1234,
|
5 |
-
"epochs": 20000,
|
6 |
-
"learning_rate": 1e-4,
|
7 |
-
"betas": [0.8, 0.99],
|
8 |
-
"eps": 1e-9,
|
9 |
-
"batch_size": 4,
|
10 |
-
"fp16_run": false,
|
11 |
-
"lr_decay": 0.999875,
|
12 |
-
"segment_size": 12800,
|
13 |
-
"init_lr_ratio": 1,
|
14 |
-
"warmup_epochs": 0,
|
15 |
-
"c_mel": 45,
|
16 |
-
"c_kl": 1.0
|
17 |
-
},
|
18 |
-
"data": {
|
19 |
-
"max_wav_value": 32768.0,
|
20 |
-
"sampling_rate": 40000,
|
21 |
-
"filter_length": 2048,
|
22 |
-
"hop_length": 400,
|
23 |
-
"win_length": 2048,
|
24 |
-
"n_mel_channels": 125,
|
25 |
-
"mel_fmin": 0.0,
|
26 |
-
"mel_fmax": null
|
27 |
-
},
|
28 |
-
"model": {
|
29 |
-
"inter_channels": 192,
|
30 |
-
"hidden_channels": 192,
|
31 |
-
"filter_channels": 768,
|
32 |
-
"n_heads": 2,
|
33 |
-
"n_layers": 6,
|
34 |
-
"kernel_size": 3,
|
35 |
-
"p_dropout": 0,
|
36 |
-
"resblock": "1",
|
37 |
-
"resblock_kernel_sizes": [3,7,11],
|
38 |
-
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
-
"upsample_rates": [10,10,2,2],
|
40 |
-
"upsample_initial_channel": 512,
|
41 |
-
"upsample_kernel_sizes": [16,16,4,4],
|
42 |
-
"use_spectral_norm": false,
|
43 |
-
"gin_channels": 256,
|
44 |
-
"spk_embed_dim": 109
|
45 |
-
}
|
46 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/48k.json
DELETED
@@ -1,46 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"train": {
|
3 |
-
"log_interval": 200,
|
4 |
-
"seed": 1234,
|
5 |
-
"epochs": 20000,
|
6 |
-
"learning_rate": 1e-4,
|
7 |
-
"betas": [0.8, 0.99],
|
8 |
-
"eps": 1e-9,
|
9 |
-
"batch_size": 4,
|
10 |
-
"fp16_run": false,
|
11 |
-
"lr_decay": 0.999875,
|
12 |
-
"segment_size": 11520,
|
13 |
-
"init_lr_ratio": 1,
|
14 |
-
"warmup_epochs": 0,
|
15 |
-
"c_mel": 45,
|
16 |
-
"c_kl": 1.0
|
17 |
-
},
|
18 |
-
"data": {
|
19 |
-
"max_wav_value": 32768.0,
|
20 |
-
"sampling_rate": 48000,
|
21 |
-
"filter_length": 2048,
|
22 |
-
"hop_length": 480,
|
23 |
-
"win_length": 2048,
|
24 |
-
"n_mel_channels": 128,
|
25 |
-
"mel_fmin": 0.0,
|
26 |
-
"mel_fmax": null
|
27 |
-
},
|
28 |
-
"model": {
|
29 |
-
"inter_channels": 192,
|
30 |
-
"hidden_channels": 192,
|
31 |
-
"filter_channels": 768,
|
32 |
-
"n_heads": 2,
|
33 |
-
"n_layers": 6,
|
34 |
-
"kernel_size": 3,
|
35 |
-
"p_dropout": 0,
|
36 |
-
"resblock": "1",
|
37 |
-
"resblock_kernel_sizes": [3,7,11],
|
38 |
-
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
-
"upsample_rates": [10,6,2,2,2],
|
40 |
-
"upsample_initial_channel": 512,
|
41 |
-
"upsample_kernel_sizes": [16,16,4,4,4],
|
42 |
-
"use_spectral_norm": false,
|
43 |
-
"gin_channels": 256,
|
44 |
-
"spk_embed_dim": 109
|
45 |
-
}
|
46 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/48k_v2.json
DELETED
@@ -1,46 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"train": {
|
3 |
-
"log_interval": 200,
|
4 |
-
"seed": 1234,
|
5 |
-
"epochs": 20000,
|
6 |
-
"learning_rate": 1e-4,
|
7 |
-
"betas": [0.8, 0.99],
|
8 |
-
"eps": 1e-9,
|
9 |
-
"batch_size": 4,
|
10 |
-
"fp16_run": false,
|
11 |
-
"lr_decay": 0.999875,
|
12 |
-
"segment_size": 17280,
|
13 |
-
"init_lr_ratio": 1,
|
14 |
-
"warmup_epochs": 0,
|
15 |
-
"c_mel": 45,
|
16 |
-
"c_kl": 1.0
|
17 |
-
},
|
18 |
-
"data": {
|
19 |
-
"max_wav_value": 32768.0,
|
20 |
-
"sampling_rate": 48000,
|
21 |
-
"filter_length": 2048,
|
22 |
-
"hop_length": 480,
|
23 |
-
"win_length": 2048,
|
24 |
-
"n_mel_channels": 128,
|
25 |
-
"mel_fmin": 0.0,
|
26 |
-
"mel_fmax": null
|
27 |
-
},
|
28 |
-
"model": {
|
29 |
-
"inter_channels": 192,
|
30 |
-
"hidden_channels": 192,
|
31 |
-
"filter_channels": 768,
|
32 |
-
"n_heads": 2,
|
33 |
-
"n_layers": 6,
|
34 |
-
"kernel_size": 3,
|
35 |
-
"p_dropout": 0,
|
36 |
-
"resblock": "1",
|
37 |
-
"resblock_kernel_sizes": [3,7,11],
|
38 |
-
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
-
"upsample_rates": [12,10,2,2],
|
40 |
-
"upsample_initial_channel": 512,
|
41 |
-
"upsample_kernel_sizes": [24,20,4,4],
|
42 |
-
"use_spectral_norm": false,
|
43 |
-
"gin_channels": 256,
|
44 |
-
"spk_embed_dim": 109
|
45 |
-
}
|
46 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/audio.py
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
import ffmpeg
|
2 |
-
import numpy as np
|
3 |
-
|
4 |
-
|
5 |
-
def load_audio(file, sr):
|
6 |
-
try:
|
7 |
-
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
|
8 |
-
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
9 |
-
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
10 |
-
file = (
|
11 |
-
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
12 |
-
) # To prevent beginners from copying paths with leading or trailing spaces, quotation marks, and line breaks.
|
13 |
-
out, _ = (
|
14 |
-
ffmpeg.input(file, threads=0)
|
15 |
-
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
|
16 |
-
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
17 |
-
)
|
18 |
-
except Exception as e:
|
19 |
-
raise RuntimeError(f"Failed to load audio: {e}")
|
20 |
-
|
21 |
-
return np.frombuffer(out, np.float32).flatten()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/infer_pack/attentions.py
DELETED
@@ -1,417 +0,0 @@
|
|
1 |
-
import copy
|
2 |
-
import math
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
from torch import nn
|
6 |
-
from torch.nn import functional as F
|
7 |
-
|
8 |
-
from lib.infer_pack import commons
|
9 |
-
from lib.infer_pack import modules
|
10 |
-
from lib.infer_pack.modules import LayerNorm
|
11 |
-
|
12 |
-
|
13 |
-
class Encoder(nn.Module):
|
14 |
-
def __init__(
|
15 |
-
self,
|
16 |
-
hidden_channels,
|
17 |
-
filter_channels,
|
18 |
-
n_heads,
|
19 |
-
n_layers,
|
20 |
-
kernel_size=1,
|
21 |
-
p_dropout=0.0,
|
22 |
-
window_size=10,
|
23 |
-
**kwargs
|
24 |
-
):
|
25 |
-
super().__init__()
|
26 |
-
self.hidden_channels = hidden_channels
|
27 |
-
self.filter_channels = filter_channels
|
28 |
-
self.n_heads = n_heads
|
29 |
-
self.n_layers = n_layers
|
30 |
-
self.kernel_size = kernel_size
|
31 |
-
self.p_dropout = p_dropout
|
32 |
-
self.window_size = window_size
|
33 |
-
|
34 |
-
self.drop = nn.Dropout(p_dropout)
|
35 |
-
self.attn_layers = nn.ModuleList()
|
36 |
-
self.norm_layers_1 = nn.ModuleList()
|
37 |
-
self.ffn_layers = nn.ModuleList()
|
38 |
-
self.norm_layers_2 = nn.ModuleList()
|
39 |
-
for i in range(self.n_layers):
|
40 |
-
self.attn_layers.append(
|
41 |
-
MultiHeadAttention(
|
42 |
-
hidden_channels,
|
43 |
-
hidden_channels,
|
44 |
-
n_heads,
|
45 |
-
p_dropout=p_dropout,
|
46 |
-
window_size=window_size,
|
47 |
-
)
|
48 |
-
)
|
49 |
-
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
50 |
-
self.ffn_layers.append(
|
51 |
-
FFN(
|
52 |
-
hidden_channels,
|
53 |
-
hidden_channels,
|
54 |
-
filter_channels,
|
55 |
-
kernel_size,
|
56 |
-
p_dropout=p_dropout,
|
57 |
-
)
|
58 |
-
)
|
59 |
-
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
60 |
-
|
61 |
-
def forward(self, x, x_mask):
|
62 |
-
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
63 |
-
x = x * x_mask
|
64 |
-
for i in range(self.n_layers):
|
65 |
-
y = self.attn_layers[i](x, x, attn_mask)
|
66 |
-
y = self.drop(y)
|
67 |
-
x = self.norm_layers_1[i](x + y)
|
68 |
-
|
69 |
-
y = self.ffn_layers[i](x, x_mask)
|
70 |
-
y = self.drop(y)
|
71 |
-
x = self.norm_layers_2[i](x + y)
|
72 |
-
x = x * x_mask
|
73 |
-
return x
|
74 |
-
|
75 |
-
|
76 |
-
class Decoder(nn.Module):
|
77 |
-
def __init__(
|
78 |
-
self,
|
79 |
-
hidden_channels,
|
80 |
-
filter_channels,
|
81 |
-
n_heads,
|
82 |
-
n_layers,
|
83 |
-
kernel_size=1,
|
84 |
-
p_dropout=0.0,
|
85 |
-
proximal_bias=False,
|
86 |
-
proximal_init=True,
|
87 |
-
**kwargs
|
88 |
-
):
|
89 |
-
super().__init__()
|
90 |
-
self.hidden_channels = hidden_channels
|
91 |
-
self.filter_channels = filter_channels
|
92 |
-
self.n_heads = n_heads
|
93 |
-
self.n_layers = n_layers
|
94 |
-
self.kernel_size = kernel_size
|
95 |
-
self.p_dropout = p_dropout
|
96 |
-
self.proximal_bias = proximal_bias
|
97 |
-
self.proximal_init = proximal_init
|
98 |
-
|
99 |
-
self.drop = nn.Dropout(p_dropout)
|
100 |
-
self.self_attn_layers = nn.ModuleList()
|
101 |
-
self.norm_layers_0 = nn.ModuleList()
|
102 |
-
self.encdec_attn_layers = nn.ModuleList()
|
103 |
-
self.norm_layers_1 = nn.ModuleList()
|
104 |
-
self.ffn_layers = nn.ModuleList()
|
105 |
-
self.norm_layers_2 = nn.ModuleList()
|
106 |
-
for i in range(self.n_layers):
|
107 |
-
self.self_attn_layers.append(
|
108 |
-
MultiHeadAttention(
|
109 |
-
hidden_channels,
|
110 |
-
hidden_channels,
|
111 |
-
n_heads,
|
112 |
-
p_dropout=p_dropout,
|
113 |
-
proximal_bias=proximal_bias,
|
114 |
-
proximal_init=proximal_init,
|
115 |
-
)
|
116 |
-
)
|
117 |
-
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
118 |
-
self.encdec_attn_layers.append(
|
119 |
-
MultiHeadAttention(
|
120 |
-
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
121 |
-
)
|
122 |
-
)
|
123 |
-
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
124 |
-
self.ffn_layers.append(
|
125 |
-
FFN(
|
126 |
-
hidden_channels,
|
127 |
-
hidden_channels,
|
128 |
-
filter_channels,
|
129 |
-
kernel_size,
|
130 |
-
p_dropout=p_dropout,
|
131 |
-
causal=True,
|
132 |
-
)
|
133 |
-
)
|
134 |
-
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
135 |
-
|
136 |
-
def forward(self, x, x_mask, h, h_mask):
|
137 |
-
"""
|
138 |
-
x: decoder input
|
139 |
-
h: encoder output
|
140 |
-
"""
|
141 |
-
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
142 |
-
device=x.device, dtype=x.dtype
|
143 |
-
)
|
144 |
-
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
145 |
-
x = x * x_mask
|
146 |
-
for i in range(self.n_layers):
|
147 |
-
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
148 |
-
y = self.drop(y)
|
149 |
-
x = self.norm_layers_0[i](x + y)
|
150 |
-
|
151 |
-
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
152 |
-
y = self.drop(y)
|
153 |
-
x = self.norm_layers_1[i](x + y)
|
154 |
-
|
155 |
-
y = self.ffn_layers[i](x, x_mask)
|
156 |
-
y = self.drop(y)
|
157 |
-
x = self.norm_layers_2[i](x + y)
|
158 |
-
x = x * x_mask
|
159 |
-
return x
|
160 |
-
|
161 |
-
|
162 |
-
class MultiHeadAttention(nn.Module):
|
163 |
-
def __init__(
|
164 |
-
self,
|
165 |
-
channels,
|
166 |
-
out_channels,
|
167 |
-
n_heads,
|
168 |
-
p_dropout=0.0,
|
169 |
-
window_size=None,
|
170 |
-
heads_share=True,
|
171 |
-
block_length=None,
|
172 |
-
proximal_bias=False,
|
173 |
-
proximal_init=False,
|
174 |
-
):
|
175 |
-
super().__init__()
|
176 |
-
assert channels % n_heads == 0
|
177 |
-
|
178 |
-
self.channels = channels
|
179 |
-
self.out_channels = out_channels
|
180 |
-
self.n_heads = n_heads
|
181 |
-
self.p_dropout = p_dropout
|
182 |
-
self.window_size = window_size
|
183 |
-
self.heads_share = heads_share
|
184 |
-
self.block_length = block_length
|
185 |
-
self.proximal_bias = proximal_bias
|
186 |
-
self.proximal_init = proximal_init
|
187 |
-
self.attn = None
|
188 |
-
|
189 |
-
self.k_channels = channels // n_heads
|
190 |
-
self.conv_q = nn.Conv1d(channels, channels, 1)
|
191 |
-
self.conv_k = nn.Conv1d(channels, channels, 1)
|
192 |
-
self.conv_v = nn.Conv1d(channels, channels, 1)
|
193 |
-
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
194 |
-
self.drop = nn.Dropout(p_dropout)
|
195 |
-
|
196 |
-
if window_size is not None:
|
197 |
-
n_heads_rel = 1 if heads_share else n_heads
|
198 |
-
rel_stddev = self.k_channels**-0.5
|
199 |
-
self.emb_rel_k = nn.Parameter(
|
200 |
-
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
201 |
-
* rel_stddev
|
202 |
-
)
|
203 |
-
self.emb_rel_v = nn.Parameter(
|
204 |
-
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
205 |
-
* rel_stddev
|
206 |
-
)
|
207 |
-
|
208 |
-
nn.init.xavier_uniform_(self.conv_q.weight)
|
209 |
-
nn.init.xavier_uniform_(self.conv_k.weight)
|
210 |
-
nn.init.xavier_uniform_(self.conv_v.weight)
|
211 |
-
if proximal_init:
|
212 |
-
with torch.no_grad():
|
213 |
-
self.conv_k.weight.copy_(self.conv_q.weight)
|
214 |
-
self.conv_k.bias.copy_(self.conv_q.bias)
|
215 |
-
|
216 |
-
def forward(self, x, c, attn_mask=None):
|
217 |
-
q = self.conv_q(x)
|
218 |
-
k = self.conv_k(c)
|
219 |
-
v = self.conv_v(c)
|
220 |
-
|
221 |
-
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
222 |
-
|
223 |
-
x = self.conv_o(x)
|
224 |
-
return x
|
225 |
-
|
226 |
-
def attention(self, query, key, value, mask=None):
|
227 |
-
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
228 |
-
b, d, t_s, t_t = (*key.size(), query.size(2))
|
229 |
-
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
230 |
-
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
231 |
-
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
232 |
-
|
233 |
-
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
234 |
-
if self.window_size is not None:
|
235 |
-
assert (
|
236 |
-
t_s == t_t
|
237 |
-
), "Relative attention is only available for self-attention."
|
238 |
-
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
239 |
-
rel_logits = self._matmul_with_relative_keys(
|
240 |
-
query / math.sqrt(self.k_channels), key_relative_embeddings
|
241 |
-
)
|
242 |
-
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
243 |
-
scores = scores + scores_local
|
244 |
-
if self.proximal_bias:
|
245 |
-
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
246 |
-
scores = scores + self._attention_bias_proximal(t_s).to(
|
247 |
-
device=scores.device, dtype=scores.dtype
|
248 |
-
)
|
249 |
-
if mask is not None:
|
250 |
-
scores = scores.masked_fill(mask == 0, -1e4)
|
251 |
-
if self.block_length is not None:
|
252 |
-
assert (
|
253 |
-
t_s == t_t
|
254 |
-
), "Local attention is only available for self-attention."
|
255 |
-
block_mask = (
|
256 |
-
torch.ones_like(scores)
|
257 |
-
.triu(-self.block_length)
|
258 |
-
.tril(self.block_length)
|
259 |
-
)
|
260 |
-
scores = scores.masked_fill(block_mask == 0, -1e4)
|
261 |
-
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
262 |
-
p_attn = self.drop(p_attn)
|
263 |
-
output = torch.matmul(p_attn, value)
|
264 |
-
if self.window_size is not None:
|
265 |
-
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
266 |
-
value_relative_embeddings = self._get_relative_embeddings(
|
267 |
-
self.emb_rel_v, t_s
|
268 |
-
)
|
269 |
-
output = output + self._matmul_with_relative_values(
|
270 |
-
relative_weights, value_relative_embeddings
|
271 |
-
)
|
272 |
-
output = (
|
273 |
-
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
274 |
-
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
275 |
-
return output, p_attn
|
276 |
-
|
277 |
-
def _matmul_with_relative_values(self, x, y):
|
278 |
-
"""
|
279 |
-
x: [b, h, l, m]
|
280 |
-
y: [h or 1, m, d]
|
281 |
-
ret: [b, h, l, d]
|
282 |
-
"""
|
283 |
-
ret = torch.matmul(x, y.unsqueeze(0))
|
284 |
-
return ret
|
285 |
-
|
286 |
-
def _matmul_with_relative_keys(self, x, y):
|
287 |
-
"""
|
288 |
-
x: [b, h, l, d]
|
289 |
-
y: [h or 1, m, d]
|
290 |
-
ret: [b, h, l, m]
|
291 |
-
"""
|
292 |
-
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
293 |
-
return ret
|
294 |
-
|
295 |
-
def _get_relative_embeddings(self, relative_embeddings, length):
|
296 |
-
max_relative_position = 2 * self.window_size + 1
|
297 |
-
# Pad first before slice to avoid using cond ops.
|
298 |
-
pad_length = max(length - (self.window_size + 1), 0)
|
299 |
-
slice_start_position = max((self.window_size + 1) - length, 0)
|
300 |
-
slice_end_position = slice_start_position + 2 * length - 1
|
301 |
-
if pad_length > 0:
|
302 |
-
padded_relative_embeddings = F.pad(
|
303 |
-
relative_embeddings,
|
304 |
-
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
305 |
-
)
|
306 |
-
else:
|
307 |
-
padded_relative_embeddings = relative_embeddings
|
308 |
-
used_relative_embeddings = padded_relative_embeddings[
|
309 |
-
:, slice_start_position:slice_end_position
|
310 |
-
]
|
311 |
-
return used_relative_embeddings
|
312 |
-
|
313 |
-
def _relative_position_to_absolute_position(self, x):
|
314 |
-
"""
|
315 |
-
x: [b, h, l, 2*l-1]
|
316 |
-
ret: [b, h, l, l]
|
317 |
-
"""
|
318 |
-
batch, heads, length, _ = x.size()
|
319 |
-
# Concat columns of pad to shift from relative to absolute indexing.
|
320 |
-
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
321 |
-
|
322 |
-
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
323 |
-
x_flat = x.view([batch, heads, length * 2 * length])
|
324 |
-
x_flat = F.pad(
|
325 |
-
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
326 |
-
)
|
327 |
-
|
328 |
-
# Reshape and slice out the padded elements.
|
329 |
-
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
330 |
-
:, :, :length, length - 1 :
|
331 |
-
]
|
332 |
-
return x_final
|
333 |
-
|
334 |
-
def _absolute_position_to_relative_position(self, x):
|
335 |
-
"""
|
336 |
-
x: [b, h, l, l]
|
337 |
-
ret: [b, h, l, 2*l-1]
|
338 |
-
"""
|
339 |
-
batch, heads, length, _ = x.size()
|
340 |
-
# padd along column
|
341 |
-
x = F.pad(
|
342 |
-
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
343 |
-
)
|
344 |
-
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
345 |
-
# add 0's in the beginning that will skew the elements after reshape
|
346 |
-
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
347 |
-
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
348 |
-
return x_final
|
349 |
-
|
350 |
-
def _attention_bias_proximal(self, length):
|
351 |
-
"""Bias for self-attention to encourage attention to close positions.
|
352 |
-
Args:
|
353 |
-
length: an integer scalar.
|
354 |
-
Returns:
|
355 |
-
a Tensor with shape [1, 1, length, length]
|
356 |
-
"""
|
357 |
-
r = torch.arange(length, dtype=torch.float32)
|
358 |
-
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
359 |
-
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
360 |
-
|
361 |
-
|
362 |
-
class FFN(nn.Module):
|
363 |
-
def __init__(
|
364 |
-
self,
|
365 |
-
in_channels,
|
366 |
-
out_channels,
|
367 |
-
filter_channels,
|
368 |
-
kernel_size,
|
369 |
-
p_dropout=0.0,
|
370 |
-
activation=None,
|
371 |
-
causal=False,
|
372 |
-
):
|
373 |
-
super().__init__()
|
374 |
-
self.in_channels = in_channels
|
375 |
-
self.out_channels = out_channels
|
376 |
-
self.filter_channels = filter_channels
|
377 |
-
self.kernel_size = kernel_size
|
378 |
-
self.p_dropout = p_dropout
|
379 |
-
self.activation = activation
|
380 |
-
self.causal = causal
|
381 |
-
|
382 |
-
if causal:
|
383 |
-
self.padding = self._causal_padding
|
384 |
-
else:
|
385 |
-
self.padding = self._same_padding
|
386 |
-
|
387 |
-
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
388 |
-
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
389 |
-
self.drop = nn.Dropout(p_dropout)
|
390 |
-
|
391 |
-
def forward(self, x, x_mask):
|
392 |
-
x = self.conv_1(self.padding(x * x_mask))
|
393 |
-
if self.activation == "gelu":
|
394 |
-
x = x * torch.sigmoid(1.702 * x)
|
395 |
-
else:
|
396 |
-
x = torch.relu(x)
|
397 |
-
x = self.drop(x)
|
398 |
-
x = self.conv_2(self.padding(x * x_mask))
|
399 |
-
return x * x_mask
|
400 |
-
|
401 |
-
def _causal_padding(self, x):
|
402 |
-
if self.kernel_size == 1:
|
403 |
-
return x
|
404 |
-
pad_l = self.kernel_size - 1
|
405 |
-
pad_r = 0
|
406 |
-
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
407 |
-
x = F.pad(x, commons.convert_pad_shape(padding))
|
408 |
-
return x
|
409 |
-
|
410 |
-
def _same_padding(self, x):
|
411 |
-
if self.kernel_size == 1:
|
412 |
-
return x
|
413 |
-
pad_l = (self.kernel_size - 1) // 2
|
414 |
-
pad_r = self.kernel_size // 2
|
415 |
-
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
416 |
-
x = F.pad(x, commons.convert_pad_shape(padding))
|
417 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/infer_pack/commons.py
DELETED
@@ -1,166 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
from torch.nn import functional as F
|
6 |
-
|
7 |
-
|
8 |
-
def init_weights(m, mean=0.0, std=0.01):
|
9 |
-
classname = m.__class__.__name__
|
10 |
-
if classname.find("Conv") != -1:
|
11 |
-
m.weight.data.normal_(mean, std)
|
12 |
-
|
13 |
-
|
14 |
-
def get_padding(kernel_size, dilation=1):
|
15 |
-
return int((kernel_size * dilation - dilation) / 2)
|
16 |
-
|
17 |
-
|
18 |
-
def convert_pad_shape(pad_shape):
|
19 |
-
l = pad_shape[::-1]
|
20 |
-
pad_shape = [item for sublist in l for item in sublist]
|
21 |
-
return pad_shape
|
22 |
-
|
23 |
-
|
24 |
-
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
25 |
-
"""KL(P||Q)"""
|
26 |
-
kl = (logs_q - logs_p) - 0.5
|
27 |
-
kl += (
|
28 |
-
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
29 |
-
)
|
30 |
-
return kl
|
31 |
-
|
32 |
-
|
33 |
-
def rand_gumbel(shape):
|
34 |
-
"""Sample from the Gumbel distribution, protect from overflows."""
|
35 |
-
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
36 |
-
return -torch.log(-torch.log(uniform_samples))
|
37 |
-
|
38 |
-
|
39 |
-
def rand_gumbel_like(x):
|
40 |
-
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
41 |
-
return g
|
42 |
-
|
43 |
-
|
44 |
-
def slice_segments(x, ids_str, segment_size=4):
|
45 |
-
ret = torch.zeros_like(x[:, :, :segment_size])
|
46 |
-
for i in range(x.size(0)):
|
47 |
-
idx_str = ids_str[i]
|
48 |
-
idx_end = idx_str + segment_size
|
49 |
-
ret[i] = x[i, :, idx_str:idx_end]
|
50 |
-
return ret
|
51 |
-
|
52 |
-
|
53 |
-
def slice_segments2(x, ids_str, segment_size=4):
|
54 |
-
ret = torch.zeros_like(x[:, :segment_size])
|
55 |
-
for i in range(x.size(0)):
|
56 |
-
idx_str = ids_str[i]
|
57 |
-
idx_end = idx_str + segment_size
|
58 |
-
ret[i] = x[i, idx_str:idx_end]
|
59 |
-
return ret
|
60 |
-
|
61 |
-
|
62 |
-
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
63 |
-
b, d, t = x.size()
|
64 |
-
if x_lengths is None:
|
65 |
-
x_lengths = t
|
66 |
-
ids_str_max = x_lengths - segment_size + 1
|
67 |
-
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
68 |
-
ret = slice_segments(x, ids_str, segment_size)
|
69 |
-
return ret, ids_str
|
70 |
-
|
71 |
-
|
72 |
-
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
73 |
-
position = torch.arange(length, dtype=torch.float)
|
74 |
-
num_timescales = channels // 2
|
75 |
-
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
76 |
-
num_timescales - 1
|
77 |
-
)
|
78 |
-
inv_timescales = min_timescale * torch.exp(
|
79 |
-
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
80 |
-
)
|
81 |
-
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
82 |
-
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
83 |
-
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
84 |
-
signal = signal.view(1, channels, length)
|
85 |
-
return signal
|
86 |
-
|
87 |
-
|
88 |
-
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
89 |
-
b, channels, length = x.size()
|
90 |
-
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
91 |
-
return x + signal.to(dtype=x.dtype, device=x.device)
|
92 |
-
|
93 |
-
|
94 |
-
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
95 |
-
b, channels, length = x.size()
|
96 |
-
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
97 |
-
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
98 |
-
|
99 |
-
|
100 |
-
def subsequent_mask(length):
|
101 |
-
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
102 |
-
return mask
|
103 |
-
|
104 |
-
|
105 |
-
@torch.jit.script
|
106 |
-
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
107 |
-
n_channels_int = n_channels[0]
|
108 |
-
in_act = input_a + input_b
|
109 |
-
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
110 |
-
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
111 |
-
acts = t_act * s_act
|
112 |
-
return acts
|
113 |
-
|
114 |
-
|
115 |
-
def convert_pad_shape(pad_shape):
|
116 |
-
l = pad_shape[::-1]
|
117 |
-
pad_shape = [item for sublist in l for item in sublist]
|
118 |
-
return pad_shape
|
119 |
-
|
120 |
-
|
121 |
-
def shift_1d(x):
|
122 |
-
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
123 |
-
return x
|
124 |
-
|
125 |
-
|
126 |
-
def sequence_mask(length, max_length=None):
|
127 |
-
if max_length is None:
|
128 |
-
max_length = length.max()
|
129 |
-
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
130 |
-
return x.unsqueeze(0) < length.unsqueeze(1)
|
131 |
-
|
132 |
-
|
133 |
-
def generate_path(duration, mask):
|
134 |
-
"""
|
135 |
-
duration: [b, 1, t_x]
|
136 |
-
mask: [b, 1, t_y, t_x]
|
137 |
-
"""
|
138 |
-
device = duration.device
|
139 |
-
|
140 |
-
b, _, t_y, t_x = mask.shape
|
141 |
-
cum_duration = torch.cumsum(duration, -1)
|
142 |
-
|
143 |
-
cum_duration_flat = cum_duration.view(b * t_x)
|
144 |
-
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
145 |
-
path = path.view(b, t_x, t_y)
|
146 |
-
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
147 |
-
path = path.unsqueeze(1).transpose(2, 3) * mask
|
148 |
-
return path
|
149 |
-
|
150 |
-
|
151 |
-
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
152 |
-
if isinstance(parameters, torch.Tensor):
|
153 |
-
parameters = [parameters]
|
154 |
-
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
155 |
-
norm_type = float(norm_type)
|
156 |
-
if clip_value is not None:
|
157 |
-
clip_value = float(clip_value)
|
158 |
-
|
159 |
-
total_norm = 0
|
160 |
-
for p in parameters:
|
161 |
-
param_norm = p.grad.data.norm(norm_type)
|
162 |
-
total_norm += param_norm.item() ** norm_type
|
163 |
-
if clip_value is not None:
|
164 |
-
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
165 |
-
total_norm = total_norm ** (1.0 / norm_type)
|
166 |
-
return total_norm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/infer_pack/models.py
DELETED
@@ -1,1142 +0,0 @@
|
|
1 |
-
import math, pdb, os
|
2 |
-
from time import time as ttime
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
from torch.nn import functional as F
|
6 |
-
from lib.infer_pack import modules
|
7 |
-
from lib.infer_pack import attentions
|
8 |
-
from lib.infer_pack import commons
|
9 |
-
from lib.infer_pack.commons import init_weights, get_padding
|
10 |
-
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
11 |
-
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
12 |
-
from lib.infer_pack.commons import init_weights
|
13 |
-
import numpy as np
|
14 |
-
from lib.infer_pack import commons
|
15 |
-
|
16 |
-
|
17 |
-
class TextEncoder256(nn.Module):
|
18 |
-
def __init__(
|
19 |
-
self,
|
20 |
-
out_channels,
|
21 |
-
hidden_channels,
|
22 |
-
filter_channels,
|
23 |
-
n_heads,
|
24 |
-
n_layers,
|
25 |
-
kernel_size,
|
26 |
-
p_dropout,
|
27 |
-
f0=True,
|
28 |
-
):
|
29 |
-
super().__init__()
|
30 |
-
self.out_channels = out_channels
|
31 |
-
self.hidden_channels = hidden_channels
|
32 |
-
self.filter_channels = filter_channels
|
33 |
-
self.n_heads = n_heads
|
34 |
-
self.n_layers = n_layers
|
35 |
-
self.kernel_size = kernel_size
|
36 |
-
self.p_dropout = p_dropout
|
37 |
-
self.emb_phone = nn.Linear(256, hidden_channels)
|
38 |
-
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
39 |
-
if f0 == True:
|
40 |
-
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
41 |
-
self.encoder = attentions.Encoder(
|
42 |
-
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
43 |
-
)
|
44 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
45 |
-
|
46 |
-
def forward(self, phone, pitch, lengths):
|
47 |
-
if pitch == None:
|
48 |
-
x = self.emb_phone(phone)
|
49 |
-
else:
|
50 |
-
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
51 |
-
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
52 |
-
x = self.lrelu(x)
|
53 |
-
x = torch.transpose(x, 1, -1) # [b, h, t]
|
54 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
55 |
-
x.dtype
|
56 |
-
)
|
57 |
-
x = self.encoder(x * x_mask, x_mask)
|
58 |
-
stats = self.proj(x) * x_mask
|
59 |
-
|
60 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
61 |
-
return m, logs, x_mask
|
62 |
-
|
63 |
-
|
64 |
-
class TextEncoder768(nn.Module):
|
65 |
-
def __init__(
|
66 |
-
self,
|
67 |
-
out_channels,
|
68 |
-
hidden_channels,
|
69 |
-
filter_channels,
|
70 |
-
n_heads,
|
71 |
-
n_layers,
|
72 |
-
kernel_size,
|
73 |
-
p_dropout,
|
74 |
-
f0=True,
|
75 |
-
):
|
76 |
-
super().__init__()
|
77 |
-
self.out_channels = out_channels
|
78 |
-
self.hidden_channels = hidden_channels
|
79 |
-
self.filter_channels = filter_channels
|
80 |
-
self.n_heads = n_heads
|
81 |
-
self.n_layers = n_layers
|
82 |
-
self.kernel_size = kernel_size
|
83 |
-
self.p_dropout = p_dropout
|
84 |
-
self.emb_phone = nn.Linear(768, hidden_channels)
|
85 |
-
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
86 |
-
if f0 == True:
|
87 |
-
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
88 |
-
self.encoder = attentions.Encoder(
|
89 |
-
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
90 |
-
)
|
91 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
92 |
-
|
93 |
-
def forward(self, phone, pitch, lengths):
|
94 |
-
if pitch == None:
|
95 |
-
x = self.emb_phone(phone)
|
96 |
-
else:
|
97 |
-
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
98 |
-
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
99 |
-
x = self.lrelu(x)
|
100 |
-
x = torch.transpose(x, 1, -1) # [b, h, t]
|
101 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
102 |
-
x.dtype
|
103 |
-
)
|
104 |
-
x = self.encoder(x * x_mask, x_mask)
|
105 |
-
stats = self.proj(x) * x_mask
|
106 |
-
|
107 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
108 |
-
return m, logs, x_mask
|
109 |
-
|
110 |
-
|
111 |
-
class ResidualCouplingBlock(nn.Module):
|
112 |
-
def __init__(
|
113 |
-
self,
|
114 |
-
channels,
|
115 |
-
hidden_channels,
|
116 |
-
kernel_size,
|
117 |
-
dilation_rate,
|
118 |
-
n_layers,
|
119 |
-
n_flows=4,
|
120 |
-
gin_channels=0,
|
121 |
-
):
|
122 |
-
super().__init__()
|
123 |
-
self.channels = channels
|
124 |
-
self.hidden_channels = hidden_channels
|
125 |
-
self.kernel_size = kernel_size
|
126 |
-
self.dilation_rate = dilation_rate
|
127 |
-
self.n_layers = n_layers
|
128 |
-
self.n_flows = n_flows
|
129 |
-
self.gin_channels = gin_channels
|
130 |
-
|
131 |
-
self.flows = nn.ModuleList()
|
132 |
-
for i in range(n_flows):
|
133 |
-
self.flows.append(
|
134 |
-
modules.ResidualCouplingLayer(
|
135 |
-
channels,
|
136 |
-
hidden_channels,
|
137 |
-
kernel_size,
|
138 |
-
dilation_rate,
|
139 |
-
n_layers,
|
140 |
-
gin_channels=gin_channels,
|
141 |
-
mean_only=True,
|
142 |
-
)
|
143 |
-
)
|
144 |
-
self.flows.append(modules.Flip())
|
145 |
-
|
146 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
147 |
-
if not reverse:
|
148 |
-
for flow in self.flows:
|
149 |
-
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
150 |
-
else:
|
151 |
-
for flow in reversed(self.flows):
|
152 |
-
x = flow(x, x_mask, g=g, reverse=reverse)
|
153 |
-
return x
|
154 |
-
|
155 |
-
def remove_weight_norm(self):
|
156 |
-
for i in range(self.n_flows):
|
157 |
-
self.flows[i * 2].remove_weight_norm()
|
158 |
-
|
159 |
-
|
160 |
-
class PosteriorEncoder(nn.Module):
|
161 |
-
def __init__(
|
162 |
-
self,
|
163 |
-
in_channels,
|
164 |
-
out_channels,
|
165 |
-
hidden_channels,
|
166 |
-
kernel_size,
|
167 |
-
dilation_rate,
|
168 |
-
n_layers,
|
169 |
-
gin_channels=0,
|
170 |
-
):
|
171 |
-
super().__init__()
|
172 |
-
self.in_channels = in_channels
|
173 |
-
self.out_channels = out_channels
|
174 |
-
self.hidden_channels = hidden_channels
|
175 |
-
self.kernel_size = kernel_size
|
176 |
-
self.dilation_rate = dilation_rate
|
177 |
-
self.n_layers = n_layers
|
178 |
-
self.gin_channels = gin_channels
|
179 |
-
|
180 |
-
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
181 |
-
self.enc = modules.WN(
|
182 |
-
hidden_channels,
|
183 |
-
kernel_size,
|
184 |
-
dilation_rate,
|
185 |
-
n_layers,
|
186 |
-
gin_channels=gin_channels,
|
187 |
-
)
|
188 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
189 |
-
|
190 |
-
def forward(self, x, x_lengths, g=None):
|
191 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
192 |
-
x.dtype
|
193 |
-
)
|
194 |
-
x = self.pre(x) * x_mask
|
195 |
-
x = self.enc(x, x_mask, g=g)
|
196 |
-
stats = self.proj(x) * x_mask
|
197 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
198 |
-
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
199 |
-
return z, m, logs, x_mask
|
200 |
-
|
201 |
-
def remove_weight_norm(self):
|
202 |
-
self.enc.remove_weight_norm()
|
203 |
-
|
204 |
-
|
205 |
-
class Generator(torch.nn.Module):
|
206 |
-
def __init__(
|
207 |
-
self,
|
208 |
-
initial_channel,
|
209 |
-
resblock,
|
210 |
-
resblock_kernel_sizes,
|
211 |
-
resblock_dilation_sizes,
|
212 |
-
upsample_rates,
|
213 |
-
upsample_initial_channel,
|
214 |
-
upsample_kernel_sizes,
|
215 |
-
gin_channels=0,
|
216 |
-
):
|
217 |
-
super(Generator, self).__init__()
|
218 |
-
self.num_kernels = len(resblock_kernel_sizes)
|
219 |
-
self.num_upsamples = len(upsample_rates)
|
220 |
-
self.conv_pre = Conv1d(
|
221 |
-
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
222 |
-
)
|
223 |
-
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
224 |
-
|
225 |
-
self.ups = nn.ModuleList()
|
226 |
-
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
227 |
-
self.ups.append(
|
228 |
-
weight_norm(
|
229 |
-
ConvTranspose1d(
|
230 |
-
upsample_initial_channel // (2**i),
|
231 |
-
upsample_initial_channel // (2 ** (i + 1)),
|
232 |
-
k,
|
233 |
-
u,
|
234 |
-
padding=(k - u) // 2,
|
235 |
-
)
|
236 |
-
)
|
237 |
-
)
|
238 |
-
|
239 |
-
self.resblocks = nn.ModuleList()
|
240 |
-
for i in range(len(self.ups)):
|
241 |
-
ch = upsample_initial_channel // (2 ** (i + 1))
|
242 |
-
for j, (k, d) in enumerate(
|
243 |
-
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
244 |
-
):
|
245 |
-
self.resblocks.append(resblock(ch, k, d))
|
246 |
-
|
247 |
-
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
248 |
-
self.ups.apply(init_weights)
|
249 |
-
|
250 |
-
if gin_channels != 0:
|
251 |
-
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
252 |
-
|
253 |
-
def forward(self, x, g=None):
|
254 |
-
x = self.conv_pre(x)
|
255 |
-
if g is not None:
|
256 |
-
x = x + self.cond(g)
|
257 |
-
|
258 |
-
for i in range(self.num_upsamples):
|
259 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
260 |
-
x = self.ups[i](x)
|
261 |
-
xs = None
|
262 |
-
for j in range(self.num_kernels):
|
263 |
-
if xs is None:
|
264 |
-
xs = self.resblocks[i * self.num_kernels + j](x)
|
265 |
-
else:
|
266 |
-
xs += self.resblocks[i * self.num_kernels + j](x)
|
267 |
-
x = xs / self.num_kernels
|
268 |
-
x = F.leaky_relu(x)
|
269 |
-
x = self.conv_post(x)
|
270 |
-
x = torch.tanh(x)
|
271 |
-
|
272 |
-
return x
|
273 |
-
|
274 |
-
def remove_weight_norm(self):
|
275 |
-
for l in self.ups:
|
276 |
-
remove_weight_norm(l)
|
277 |
-
for l in self.resblocks:
|
278 |
-
l.remove_weight_norm()
|
279 |
-
|
280 |
-
|
281 |
-
class SineGen(torch.nn.Module):
|
282 |
-
"""Definition of sine generator
|
283 |
-
SineGen(samp_rate, harmonic_num = 0,
|
284 |
-
sine_amp = 0.1, noise_std = 0.003,
|
285 |
-
voiced_threshold = 0,
|
286 |
-
flag_for_pulse=False)
|
287 |
-
samp_rate: sampling rate in Hz
|
288 |
-
harmonic_num: number of harmonic overtones (default 0)
|
289 |
-
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
290 |
-
noise_std: std of Gaussian noise (default 0.003)
|
291 |
-
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
292 |
-
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
293 |
-
Note: when flag_for_pulse is True, the first time step of a voiced
|
294 |
-
segment is always sin(np.pi) or cos(0)
|
295 |
-
"""
|
296 |
-
|
297 |
-
def __init__(
|
298 |
-
self,
|
299 |
-
samp_rate,
|
300 |
-
harmonic_num=0,
|
301 |
-
sine_amp=0.1,
|
302 |
-
noise_std=0.003,
|
303 |
-
voiced_threshold=0,
|
304 |
-
flag_for_pulse=False,
|
305 |
-
):
|
306 |
-
super(SineGen, self).__init__()
|
307 |
-
self.sine_amp = sine_amp
|
308 |
-
self.noise_std = noise_std
|
309 |
-
self.harmonic_num = harmonic_num
|
310 |
-
self.dim = self.harmonic_num + 1
|
311 |
-
self.sampling_rate = samp_rate
|
312 |
-
self.voiced_threshold = voiced_threshold
|
313 |
-
|
314 |
-
def _f02uv(self, f0):
|
315 |
-
# generate uv signal
|
316 |
-
uv = torch.ones_like(f0)
|
317 |
-
uv = uv * (f0 > self.voiced_threshold)
|
318 |
-
return uv
|
319 |
-
|
320 |
-
def forward(self, f0, upp):
|
321 |
-
"""sine_tensor, uv = forward(f0)
|
322 |
-
input F0: tensor(batchsize=1, length, dim=1)
|
323 |
-
f0 for unvoiced steps should be 0
|
324 |
-
output sine_tensor: tensor(batchsize=1, length, dim)
|
325 |
-
output uv: tensor(batchsize=1, length, 1)
|
326 |
-
"""
|
327 |
-
with torch.no_grad():
|
328 |
-
f0 = f0[:, None].transpose(1, 2)
|
329 |
-
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
330 |
-
# fundamental component
|
331 |
-
f0_buf[:, :, 0] = f0[:, :, 0]
|
332 |
-
for idx in np.arange(self.harmonic_num):
|
333 |
-
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
334 |
-
idx + 2
|
335 |
-
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
336 |
-
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1 means that the product of n_har cannot be post-processed and optimized
|
337 |
-
rand_ini = torch.rand(
|
338 |
-
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
339 |
-
)
|
340 |
-
rand_ini[:, 0] = 0
|
341 |
-
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
342 |
-
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1 means that the following cumsum can no longer be optimized
|
343 |
-
tmp_over_one *= upp
|
344 |
-
tmp_over_one = F.interpolate(
|
345 |
-
tmp_over_one.transpose(2, 1),
|
346 |
-
scale_factor=upp,
|
347 |
-
mode="linear",
|
348 |
-
align_corners=True,
|
349 |
-
).transpose(2, 1)
|
350 |
-
rad_values = F.interpolate(
|
351 |
-
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
352 |
-
).transpose(
|
353 |
-
2, 1
|
354 |
-
) #######
|
355 |
-
tmp_over_one %= 1
|
356 |
-
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
357 |
-
cumsum_shift = torch.zeros_like(rad_values)
|
358 |
-
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
359 |
-
sine_waves = torch.sin(
|
360 |
-
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
361 |
-
)
|
362 |
-
sine_waves = sine_waves * self.sine_amp
|
363 |
-
uv = self._f02uv(f0)
|
364 |
-
uv = F.interpolate(
|
365 |
-
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
366 |
-
).transpose(2, 1)
|
367 |
-
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
368 |
-
noise = noise_amp * torch.randn_like(sine_waves)
|
369 |
-
sine_waves = sine_waves * uv + noise
|
370 |
-
return sine_waves, uv, noise
|
371 |
-
|
372 |
-
|
373 |
-
class SourceModuleHnNSF(torch.nn.Module):
|
374 |
-
"""SourceModule for hn-nsf
|
375 |
-
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
376 |
-
add_noise_std=0.003, voiced_threshod=0)
|
377 |
-
sampling_rate: sampling_rate in Hz
|
378 |
-
harmonic_num: number of harmonic above F0 (default: 0)
|
379 |
-
sine_amp: amplitude of sine source signal (default: 0.1)
|
380 |
-
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
381 |
-
note that amplitude of noise in unvoiced is decided
|
382 |
-
by sine_amp
|
383 |
-
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
384 |
-
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
385 |
-
F0_sampled (batchsize, length, 1)
|
386 |
-
Sine_source (batchsize, length, 1)
|
387 |
-
noise_source (batchsize, length 1)
|
388 |
-
uv (batchsize, length, 1)
|
389 |
-
"""
|
390 |
-
|
391 |
-
def __init__(
|
392 |
-
self,
|
393 |
-
sampling_rate,
|
394 |
-
harmonic_num=0,
|
395 |
-
sine_amp=0.1,
|
396 |
-
add_noise_std=0.003,
|
397 |
-
voiced_threshod=0,
|
398 |
-
is_half=True,
|
399 |
-
):
|
400 |
-
super(SourceModuleHnNSF, self).__init__()
|
401 |
-
|
402 |
-
self.sine_amp = sine_amp
|
403 |
-
self.noise_std = add_noise_std
|
404 |
-
self.is_half = is_half
|
405 |
-
# to produce sine waveforms
|
406 |
-
self.l_sin_gen = SineGen(
|
407 |
-
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
408 |
-
)
|
409 |
-
|
410 |
-
# to merge source harmonics into a single excitation
|
411 |
-
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
412 |
-
self.l_tanh = torch.nn.Tanh()
|
413 |
-
|
414 |
-
def forward(self, x, upp=None):
|
415 |
-
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
416 |
-
if self.is_half:
|
417 |
-
sine_wavs = sine_wavs.half()
|
418 |
-
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
419 |
-
return sine_merge, None, None # noise, uv
|
420 |
-
|
421 |
-
|
422 |
-
class GeneratorNSF(torch.nn.Module):
|
423 |
-
def __init__(
|
424 |
-
self,
|
425 |
-
initial_channel,
|
426 |
-
resblock,
|
427 |
-
resblock_kernel_sizes,
|
428 |
-
resblock_dilation_sizes,
|
429 |
-
upsample_rates,
|
430 |
-
upsample_initial_channel,
|
431 |
-
upsample_kernel_sizes,
|
432 |
-
gin_channels,
|
433 |
-
sr,
|
434 |
-
is_half=False,
|
435 |
-
):
|
436 |
-
super(GeneratorNSF, self).__init__()
|
437 |
-
self.num_kernels = len(resblock_kernel_sizes)
|
438 |
-
self.num_upsamples = len(upsample_rates)
|
439 |
-
|
440 |
-
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
441 |
-
self.m_source = SourceModuleHnNSF(
|
442 |
-
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
443 |
-
)
|
444 |
-
self.noise_convs = nn.ModuleList()
|
445 |
-
self.conv_pre = Conv1d(
|
446 |
-
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
447 |
-
)
|
448 |
-
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
449 |
-
|
450 |
-
self.ups = nn.ModuleList()
|
451 |
-
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
452 |
-
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
453 |
-
self.ups.append(
|
454 |
-
weight_norm(
|
455 |
-
ConvTranspose1d(
|
456 |
-
upsample_initial_channel // (2**i),
|
457 |
-
upsample_initial_channel // (2 ** (i + 1)),
|
458 |
-
k,
|
459 |
-
u,
|
460 |
-
padding=(k - u) // 2,
|
461 |
-
)
|
462 |
-
)
|
463 |
-
)
|
464 |
-
if i + 1 < len(upsample_rates):
|
465 |
-
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
466 |
-
self.noise_convs.append(
|
467 |
-
Conv1d(
|
468 |
-
1,
|
469 |
-
c_cur,
|
470 |
-
kernel_size=stride_f0 * 2,
|
471 |
-
stride=stride_f0,
|
472 |
-
padding=stride_f0 // 2,
|
473 |
-
)
|
474 |
-
)
|
475 |
-
else:
|
476 |
-
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
477 |
-
|
478 |
-
self.resblocks = nn.ModuleList()
|
479 |
-
for i in range(len(self.ups)):
|
480 |
-
ch = upsample_initial_channel // (2 ** (i + 1))
|
481 |
-
for j, (k, d) in enumerate(
|
482 |
-
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
483 |
-
):
|
484 |
-
self.resblocks.append(resblock(ch, k, d))
|
485 |
-
|
486 |
-
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
487 |
-
self.ups.apply(init_weights)
|
488 |
-
|
489 |
-
if gin_channels != 0:
|
490 |
-
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
491 |
-
|
492 |
-
self.upp = np.prod(upsample_rates)
|
493 |
-
|
494 |
-
def forward(self, x, f0, g=None):
|
495 |
-
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
496 |
-
har_source = har_source.transpose(1, 2)
|
497 |
-
x = self.conv_pre(x)
|
498 |
-
if g is not None:
|
499 |
-
x = x + self.cond(g)
|
500 |
-
|
501 |
-
for i in range(self.num_upsamples):
|
502 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
503 |
-
x = self.ups[i](x)
|
504 |
-
x_source = self.noise_convs[i](har_source)
|
505 |
-
x = x + x_source
|
506 |
-
xs = None
|
507 |
-
for j in range(self.num_kernels):
|
508 |
-
if xs is None:
|
509 |
-
xs = self.resblocks[i * self.num_kernels + j](x)
|
510 |
-
else:
|
511 |
-
xs += self.resblocks[i * self.num_kernels + j](x)
|
512 |
-
x = xs / self.num_kernels
|
513 |
-
x = F.leaky_relu(x)
|
514 |
-
x = self.conv_post(x)
|
515 |
-
x = torch.tanh(x)
|
516 |
-
return x
|
517 |
-
|
518 |
-
def remove_weight_norm(self):
|
519 |
-
for l in self.ups:
|
520 |
-
remove_weight_norm(l)
|
521 |
-
for l in self.resblocks:
|
522 |
-
l.remove_weight_norm()
|
523 |
-
|
524 |
-
|
525 |
-
sr2sr = {
|
526 |
-
"32k": 32000,
|
527 |
-
"40k": 40000,
|
528 |
-
"48k": 48000,
|
529 |
-
}
|
530 |
-
|
531 |
-
|
532 |
-
class SynthesizerTrnMs256NSFsid(nn.Module):
|
533 |
-
def __init__(
|
534 |
-
self,
|
535 |
-
spec_channels,
|
536 |
-
segment_size,
|
537 |
-
inter_channels,
|
538 |
-
hidden_channels,
|
539 |
-
filter_channels,
|
540 |
-
n_heads,
|
541 |
-
n_layers,
|
542 |
-
kernel_size,
|
543 |
-
p_dropout,
|
544 |
-
resblock,
|
545 |
-
resblock_kernel_sizes,
|
546 |
-
resblock_dilation_sizes,
|
547 |
-
upsample_rates,
|
548 |
-
upsample_initial_channel,
|
549 |
-
upsample_kernel_sizes,
|
550 |
-
spk_embed_dim,
|
551 |
-
gin_channels,
|
552 |
-
sr,
|
553 |
-
**kwargs
|
554 |
-
):
|
555 |
-
super().__init__()
|
556 |
-
if type(sr) == type("strr"):
|
557 |
-
sr = sr2sr[sr]
|
558 |
-
self.spec_channels = spec_channels
|
559 |
-
self.inter_channels = inter_channels
|
560 |
-
self.hidden_channels = hidden_channels
|
561 |
-
self.filter_channels = filter_channels
|
562 |
-
self.n_heads = n_heads
|
563 |
-
self.n_layers = n_layers
|
564 |
-
self.kernel_size = kernel_size
|
565 |
-
self.p_dropout = p_dropout
|
566 |
-
self.resblock = resblock
|
567 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
568 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
569 |
-
self.upsample_rates = upsample_rates
|
570 |
-
self.upsample_initial_channel = upsample_initial_channel
|
571 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
572 |
-
self.segment_size = segment_size
|
573 |
-
self.gin_channels = gin_channels
|
574 |
-
# self.hop_length = hop_length#
|
575 |
-
self.spk_embed_dim = spk_embed_dim
|
576 |
-
self.enc_p = TextEncoder256(
|
577 |
-
inter_channels,
|
578 |
-
hidden_channels,
|
579 |
-
filter_channels,
|
580 |
-
n_heads,
|
581 |
-
n_layers,
|
582 |
-
kernel_size,
|
583 |
-
p_dropout,
|
584 |
-
)
|
585 |
-
self.dec = GeneratorNSF(
|
586 |
-
inter_channels,
|
587 |
-
resblock,
|
588 |
-
resblock_kernel_sizes,
|
589 |
-
resblock_dilation_sizes,
|
590 |
-
upsample_rates,
|
591 |
-
upsample_initial_channel,
|
592 |
-
upsample_kernel_sizes,
|
593 |
-
gin_channels=gin_channels,
|
594 |
-
sr=sr,
|
595 |
-
is_half=kwargs["is_half"],
|
596 |
-
)
|
597 |
-
self.enc_q = PosteriorEncoder(
|
598 |
-
spec_channels,
|
599 |
-
inter_channels,
|
600 |
-
hidden_channels,
|
601 |
-
5,
|
602 |
-
1,
|
603 |
-
16,
|
604 |
-
gin_channels=gin_channels,
|
605 |
-
)
|
606 |
-
self.flow = ResidualCouplingBlock(
|
607 |
-
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
608 |
-
)
|
609 |
-
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
610 |
-
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
611 |
-
|
612 |
-
def remove_weight_norm(self):
|
613 |
-
self.dec.remove_weight_norm()
|
614 |
-
self.flow.remove_weight_norm()
|
615 |
-
self.enc_q.remove_weight_norm()
|
616 |
-
|
617 |
-
def forward(
|
618 |
-
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
619 |
-
): # Here ds is id, [bs,1]
|
620 |
-
# print(1,pitch.shape)#[bs,t]
|
621 |
-
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1 is t, broadcast
|
622 |
-
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
623 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
624 |
-
z_p = self.flow(z, y_mask, g=g)
|
625 |
-
z_slice, ids_slice = commons.rand_slice_segments(
|
626 |
-
z, y_lengths, self.segment_size
|
627 |
-
)
|
628 |
-
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
629 |
-
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
630 |
-
# print(-2,pitchf.shape,z_slice.shape)
|
631 |
-
o = self.dec(z_slice, pitchf, g=g)
|
632 |
-
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
633 |
-
|
634 |
-
def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
|
635 |
-
g = self.emb_g(sid).unsqueeze(-1)
|
636 |
-
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
637 |
-
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
638 |
-
if rate:
|
639 |
-
head = int(z_p.shape[2] * rate)
|
640 |
-
z_p = z_p[:, :, -head:]
|
641 |
-
x_mask = x_mask[:, :, -head:]
|
642 |
-
nsff0 = nsff0[:, -head:]
|
643 |
-
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
644 |
-
o = self.dec(z * x_mask, nsff0, g=g)
|
645 |
-
return o, x_mask, (z, z_p, m_p, logs_p)
|
646 |
-
|
647 |
-
|
648 |
-
class SynthesizerTrnMs768NSFsid(nn.Module):
|
649 |
-
def __init__(
|
650 |
-
self,
|
651 |
-
spec_channels,
|
652 |
-
segment_size,
|
653 |
-
inter_channels,
|
654 |
-
hidden_channels,
|
655 |
-
filter_channels,
|
656 |
-
n_heads,
|
657 |
-
n_layers,
|
658 |
-
kernel_size,
|
659 |
-
p_dropout,
|
660 |
-
resblock,
|
661 |
-
resblock_kernel_sizes,
|
662 |
-
resblock_dilation_sizes,
|
663 |
-
upsample_rates,
|
664 |
-
upsample_initial_channel,
|
665 |
-
upsample_kernel_sizes,
|
666 |
-
spk_embed_dim,
|
667 |
-
gin_channels,
|
668 |
-
sr,
|
669 |
-
**kwargs
|
670 |
-
):
|
671 |
-
super().__init__()
|
672 |
-
if type(sr) == type("strr"):
|
673 |
-
sr = sr2sr[sr]
|
674 |
-
self.spec_channels = spec_channels
|
675 |
-
self.inter_channels = inter_channels
|
676 |
-
self.hidden_channels = hidden_channels
|
677 |
-
self.filter_channels = filter_channels
|
678 |
-
self.n_heads = n_heads
|
679 |
-
self.n_layers = n_layers
|
680 |
-
self.kernel_size = kernel_size
|
681 |
-
self.p_dropout = p_dropout
|
682 |
-
self.resblock = resblock
|
683 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
684 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
685 |
-
self.upsample_rates = upsample_rates
|
686 |
-
self.upsample_initial_channel = upsample_initial_channel
|
687 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
688 |
-
self.segment_size = segment_size
|
689 |
-
self.gin_channels = gin_channels
|
690 |
-
# self.hop_length = hop_length#
|
691 |
-
self.spk_embed_dim = spk_embed_dim
|
692 |
-
self.enc_p = TextEncoder768(
|
693 |
-
inter_channels,
|
694 |
-
hidden_channels,
|
695 |
-
filter_channels,
|
696 |
-
n_heads,
|
697 |
-
n_layers,
|
698 |
-
kernel_size,
|
699 |
-
p_dropout,
|
700 |
-
)
|
701 |
-
self.dec = GeneratorNSF(
|
702 |
-
inter_channels,
|
703 |
-
resblock,
|
704 |
-
resblock_kernel_sizes,
|
705 |
-
resblock_dilation_sizes,
|
706 |
-
upsample_rates,
|
707 |
-
upsample_initial_channel,
|
708 |
-
upsample_kernel_sizes,
|
709 |
-
gin_channels=gin_channels,
|
710 |
-
sr=sr,
|
711 |
-
is_half=kwargs["is_half"],
|
712 |
-
)
|
713 |
-
self.enc_q = PosteriorEncoder(
|
714 |
-
spec_channels,
|
715 |
-
inter_channels,
|
716 |
-
hidden_channels,
|
717 |
-
5,
|
718 |
-
1,
|
719 |
-
16,
|
720 |
-
gin_channels=gin_channels,
|
721 |
-
)
|
722 |
-
self.flow = ResidualCouplingBlock(
|
723 |
-
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
724 |
-
)
|
725 |
-
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
726 |
-
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
727 |
-
|
728 |
-
def remove_weight_norm(self):
|
729 |
-
self.dec.remove_weight_norm()
|
730 |
-
self.flow.remove_weight_norm()
|
731 |
-
self.enc_q.remove_weight_norm()
|
732 |
-
|
733 |
-
def forward(
|
734 |
-
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
735 |
-
): # Here ds is id,[bs,1]
|
736 |
-
# print(1,pitch.shape)#[bs,t]
|
737 |
-
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1 is t, broadcast
|
738 |
-
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
739 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
740 |
-
z_p = self.flow(z, y_mask, g=g)
|
741 |
-
z_slice, ids_slice = commons.rand_slice_segments(
|
742 |
-
z, y_lengths, self.segment_size
|
743 |
-
)
|
744 |
-
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
745 |
-
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
746 |
-
# print(-2,pitchf.shape,z_slice.shape)
|
747 |
-
o = self.dec(z_slice, pitchf, g=g)
|
748 |
-
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
749 |
-
|
750 |
-
def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
|
751 |
-
g = self.emb_g(sid).unsqueeze(-1)
|
752 |
-
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
753 |
-
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
754 |
-
if rate:
|
755 |
-
head = int(z_p.shape[2] * rate)
|
756 |
-
z_p = z_p[:, :, -head:]
|
757 |
-
x_mask = x_mask[:, :, -head:]
|
758 |
-
nsff0 = nsff0[:, -head:]
|
759 |
-
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
760 |
-
o = self.dec(z * x_mask, nsff0, g=g)
|
761 |
-
return o, x_mask, (z, z_p, m_p, logs_p)
|
762 |
-
|
763 |
-
|
764 |
-
class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
765 |
-
def __init__(
|
766 |
-
self,
|
767 |
-
spec_channels,
|
768 |
-
segment_size,
|
769 |
-
inter_channels,
|
770 |
-
hidden_channels,
|
771 |
-
filter_channels,
|
772 |
-
n_heads,
|
773 |
-
n_layers,
|
774 |
-
kernel_size,
|
775 |
-
p_dropout,
|
776 |
-
resblock,
|
777 |
-
resblock_kernel_sizes,
|
778 |
-
resblock_dilation_sizes,
|
779 |
-
upsample_rates,
|
780 |
-
upsample_initial_channel,
|
781 |
-
upsample_kernel_sizes,
|
782 |
-
spk_embed_dim,
|
783 |
-
gin_channels,
|
784 |
-
sr=None,
|
785 |
-
**kwargs
|
786 |
-
):
|
787 |
-
super().__init__()
|
788 |
-
self.spec_channels = spec_channels
|
789 |
-
self.inter_channels = inter_channels
|
790 |
-
self.hidden_channels = hidden_channels
|
791 |
-
self.filter_channels = filter_channels
|
792 |
-
self.n_heads = n_heads
|
793 |
-
self.n_layers = n_layers
|
794 |
-
self.kernel_size = kernel_size
|
795 |
-
self.p_dropout = p_dropout
|
796 |
-
self.resblock = resblock
|
797 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
798 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
799 |
-
self.upsample_rates = upsample_rates
|
800 |
-
self.upsample_initial_channel = upsample_initial_channel
|
801 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
802 |
-
self.segment_size = segment_size
|
803 |
-
self.gin_channels = gin_channels
|
804 |
-
# self.hop_length = hop_length#
|
805 |
-
self.spk_embed_dim = spk_embed_dim
|
806 |
-
self.enc_p = TextEncoder256(
|
807 |
-
inter_channels,
|
808 |
-
hidden_channels,
|
809 |
-
filter_channels,
|
810 |
-
n_heads,
|
811 |
-
n_layers,
|
812 |
-
kernel_size,
|
813 |
-
p_dropout,
|
814 |
-
f0=False,
|
815 |
-
)
|
816 |
-
self.dec = Generator(
|
817 |
-
inter_channels,
|
818 |
-
resblock,
|
819 |
-
resblock_kernel_sizes,
|
820 |
-
resblock_dilation_sizes,
|
821 |
-
upsample_rates,
|
822 |
-
upsample_initial_channel,
|
823 |
-
upsample_kernel_sizes,
|
824 |
-
gin_channels=gin_channels,
|
825 |
-
)
|
826 |
-
self.enc_q = PosteriorEncoder(
|
827 |
-
spec_channels,
|
828 |
-
inter_channels,
|
829 |
-
hidden_channels,
|
830 |
-
5,
|
831 |
-
1,
|
832 |
-
16,
|
833 |
-
gin_channels=gin_channels,
|
834 |
-
)
|
835 |
-
self.flow = ResidualCouplingBlock(
|
836 |
-
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
837 |
-
)
|
838 |
-
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
839 |
-
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
840 |
-
|
841 |
-
def remove_weight_norm(self):
|
842 |
-
self.dec.remove_weight_norm()
|
843 |
-
self.flow.remove_weight_norm()
|
844 |
-
self.enc_q.remove_weight_norm()
|
845 |
-
|
846 |
-
def forward(self, phone, phone_lengths, y, y_lengths, ds): # Here ds is id,[bs,1]
|
847 |
-
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1 is t, broadcast
|
848 |
-
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
849 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
850 |
-
z_p = self.flow(z, y_mask, g=g)
|
851 |
-
z_slice, ids_slice = commons.rand_slice_segments(
|
852 |
-
z, y_lengths, self.segment_size
|
853 |
-
)
|
854 |
-
o = self.dec(z_slice, g=g)
|
855 |
-
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
856 |
-
|
857 |
-
def infer(self, phone, phone_lengths, sid, rate=None):
|
858 |
-
g = self.emb_g(sid).unsqueeze(-1)
|
859 |
-
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
860 |
-
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
861 |
-
if rate:
|
862 |
-
head = int(z_p.shape[2] * rate)
|
863 |
-
z_p = z_p[:, :, -head:]
|
864 |
-
x_mask = x_mask[:, :, -head:]
|
865 |
-
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
866 |
-
o = self.dec(z * x_mask, g=g)
|
867 |
-
return o, x_mask, (z, z_p, m_p, logs_p)
|
868 |
-
|
869 |
-
|
870 |
-
class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
871 |
-
def __init__(
|
872 |
-
self,
|
873 |
-
spec_channels,
|
874 |
-
segment_size,
|
875 |
-
inter_channels,
|
876 |
-
hidden_channels,
|
877 |
-
filter_channels,
|
878 |
-
n_heads,
|
879 |
-
n_layers,
|
880 |
-
kernel_size,
|
881 |
-
p_dropout,
|
882 |
-
resblock,
|
883 |
-
resblock_kernel_sizes,
|
884 |
-
resblock_dilation_sizes,
|
885 |
-
upsample_rates,
|
886 |
-
upsample_initial_channel,
|
887 |
-
upsample_kernel_sizes,
|
888 |
-
spk_embed_dim,
|
889 |
-
gin_channels,
|
890 |
-
sr=None,
|
891 |
-
**kwargs
|
892 |
-
):
|
893 |
-
super().__init__()
|
894 |
-
self.spec_channels = spec_channels
|
895 |
-
self.inter_channels = inter_channels
|
896 |
-
self.hidden_channels = hidden_channels
|
897 |
-
self.filter_channels = filter_channels
|
898 |
-
self.n_heads = n_heads
|
899 |
-
self.n_layers = n_layers
|
900 |
-
self.kernel_size = kernel_size
|
901 |
-
self.p_dropout = p_dropout
|
902 |
-
self.resblock = resblock
|
903 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
904 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
905 |
-
self.upsample_rates = upsample_rates
|
906 |
-
self.upsample_initial_channel = upsample_initial_channel
|
907 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
908 |
-
self.segment_size = segment_size
|
909 |
-
self.gin_channels = gin_channels
|
910 |
-
# self.hop_length = hop_length#
|
911 |
-
self.spk_embed_dim = spk_embed_dim
|
912 |
-
self.enc_p = TextEncoder768(
|
913 |
-
inter_channels,
|
914 |
-
hidden_channels,
|
915 |
-
filter_channels,
|
916 |
-
n_heads,
|
917 |
-
n_layers,
|
918 |
-
kernel_size,
|
919 |
-
p_dropout,
|
920 |
-
f0=False,
|
921 |
-
)
|
922 |
-
self.dec = Generator(
|
923 |
-
inter_channels,
|
924 |
-
resblock,
|
925 |
-
resblock_kernel_sizes,
|
926 |
-
resblock_dilation_sizes,
|
927 |
-
upsample_rates,
|
928 |
-
upsample_initial_channel,
|
929 |
-
upsample_kernel_sizes,
|
930 |
-
gin_channels=gin_channels,
|
931 |
-
)
|
932 |
-
self.enc_q = PosteriorEncoder(
|
933 |
-
spec_channels,
|
934 |
-
inter_channels,
|
935 |
-
hidden_channels,
|
936 |
-
5,
|
937 |
-
1,
|
938 |
-
16,
|
939 |
-
gin_channels=gin_channels,
|
940 |
-
)
|
941 |
-
self.flow = ResidualCouplingBlock(
|
942 |
-
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
943 |
-
)
|
944 |
-
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
945 |
-
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
946 |
-
|
947 |
-
def remove_weight_norm(self):
|
948 |
-
self.dec.remove_weight_norm()
|
949 |
-
self.flow.remove_weight_norm()
|
950 |
-
self.enc_q.remove_weight_norm()
|
951 |
-
|
952 |
-
def forward(self, phone, phone_lengths, y, y_lengths, ds): # Here ds is id,[bs,1]
|
953 |
-
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1 is t, broadcast
|
954 |
-
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
955 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
956 |
-
z_p = self.flow(z, y_mask, g=g)
|
957 |
-
z_slice, ids_slice = commons.rand_slice_segments(
|
958 |
-
z, y_lengths, self.segment_size
|
959 |
-
)
|
960 |
-
o = self.dec(z_slice, g=g)
|
961 |
-
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
962 |
-
|
963 |
-
def infer(self, phone, phone_lengths, sid, rate=None):
|
964 |
-
g = self.emb_g(sid).unsqueeze(-1)
|
965 |
-
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
966 |
-
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
967 |
-
if rate:
|
968 |
-
head = int(z_p.shape[2] * rate)
|
969 |
-
z_p = z_p[:, :, -head:]
|
970 |
-
x_mask = x_mask[:, :, -head:]
|
971 |
-
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
972 |
-
o = self.dec(z * x_mask, g=g)
|
973 |
-
return o, x_mask, (z, z_p, m_p, logs_p)
|
974 |
-
|
975 |
-
|
976 |
-
class MultiPeriodDiscriminator(torch.nn.Module):
|
977 |
-
def __init__(self, use_spectral_norm=False):
|
978 |
-
super(MultiPeriodDiscriminator, self).__init__()
|
979 |
-
periods = [2, 3, 5, 7, 11, 17]
|
980 |
-
# periods = [3, 5, 7, 11, 17, 23, 37]
|
981 |
-
|
982 |
-
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
983 |
-
discs = discs + [
|
984 |
-
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
985 |
-
]
|
986 |
-
self.discriminators = nn.ModuleList(discs)
|
987 |
-
|
988 |
-
def forward(self, y, y_hat):
|
989 |
-
y_d_rs = [] #
|
990 |
-
y_d_gs = []
|
991 |
-
fmap_rs = []
|
992 |
-
fmap_gs = []
|
993 |
-
for i, d in enumerate(self.discriminators):
|
994 |
-
y_d_r, fmap_r = d(y)
|
995 |
-
y_d_g, fmap_g = d(y_hat)
|
996 |
-
# for j in range(len(fmap_r)):
|
997 |
-
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
998 |
-
y_d_rs.append(y_d_r)
|
999 |
-
y_d_gs.append(y_d_g)
|
1000 |
-
fmap_rs.append(fmap_r)
|
1001 |
-
fmap_gs.append(fmap_g)
|
1002 |
-
|
1003 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
1004 |
-
|
1005 |
-
|
1006 |
-
class MultiPeriodDiscriminatorV2(torch.nn.Module):
|
1007 |
-
def __init__(self, use_spectral_norm=False):
|
1008 |
-
super(MultiPeriodDiscriminatorV2, self).__init__()
|
1009 |
-
# periods = [2, 3, 5, 7, 11, 17]
|
1010 |
-
periods = [2, 3, 5, 7, 11, 17, 23, 37]
|
1011 |
-
|
1012 |
-
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
1013 |
-
discs = discs + [
|
1014 |
-
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
1015 |
-
]
|
1016 |
-
self.discriminators = nn.ModuleList(discs)
|
1017 |
-
|
1018 |
-
def forward(self, y, y_hat):
|
1019 |
-
y_d_rs = [] #
|
1020 |
-
y_d_gs = []
|
1021 |
-
fmap_rs = []
|
1022 |
-
fmap_gs = []
|
1023 |
-
for i, d in enumerate(self.discriminators):
|
1024 |
-
y_d_r, fmap_r = d(y)
|
1025 |
-
y_d_g, fmap_g = d(y_hat)
|
1026 |
-
# for j in range(len(fmap_r)):
|
1027 |
-
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
1028 |
-
y_d_rs.append(y_d_r)
|
1029 |
-
y_d_gs.append(y_d_g)
|
1030 |
-
fmap_rs.append(fmap_r)
|
1031 |
-
fmap_gs.append(fmap_g)
|
1032 |
-
|
1033 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
1034 |
-
|
1035 |
-
|
1036 |
-
class DiscriminatorS(torch.nn.Module):
|
1037 |
-
def __init__(self, use_spectral_norm=False):
|
1038 |
-
super(DiscriminatorS, self).__init__()
|
1039 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
1040 |
-
self.convs = nn.ModuleList(
|
1041 |
-
[
|
1042 |
-
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
1043 |
-
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
1044 |
-
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
1045 |
-
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
1046 |
-
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
1047 |
-
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
1048 |
-
]
|
1049 |
-
)
|
1050 |
-
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
1051 |
-
|
1052 |
-
def forward(self, x):
|
1053 |
-
fmap = []
|
1054 |
-
|
1055 |
-
for l in self.convs:
|
1056 |
-
x = l(x)
|
1057 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1058 |
-
fmap.append(x)
|
1059 |
-
x = self.conv_post(x)
|
1060 |
-
fmap.append(x)
|
1061 |
-
x = torch.flatten(x, 1, -1)
|
1062 |
-
|
1063 |
-
return x, fmap
|
1064 |
-
|
1065 |
-
|
1066 |
-
class DiscriminatorP(torch.nn.Module):
|
1067 |
-
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
1068 |
-
super(DiscriminatorP, self).__init__()
|
1069 |
-
self.period = period
|
1070 |
-
self.use_spectral_norm = use_spectral_norm
|
1071 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
1072 |
-
self.convs = nn.ModuleList(
|
1073 |
-
[
|
1074 |
-
norm_f(
|
1075 |
-
Conv2d(
|
1076 |
-
1,
|
1077 |
-
32,
|
1078 |
-
(kernel_size, 1),
|
1079 |
-
(stride, 1),
|
1080 |
-
padding=(get_padding(kernel_size, 1), 0),
|
1081 |
-
)
|
1082 |
-
),
|
1083 |
-
norm_f(
|
1084 |
-
Conv2d(
|
1085 |
-
32,
|
1086 |
-
128,
|
1087 |
-
(kernel_size, 1),
|
1088 |
-
(stride, 1),
|
1089 |
-
padding=(get_padding(kernel_size, 1), 0),
|
1090 |
-
)
|
1091 |
-
),
|
1092 |
-
norm_f(
|
1093 |
-
Conv2d(
|
1094 |
-
128,
|
1095 |
-
512,
|
1096 |
-
(kernel_size, 1),
|
1097 |
-
(stride, 1),
|
1098 |
-
padding=(get_padding(kernel_size, 1), 0),
|
1099 |
-
)
|
1100 |
-
),
|
1101 |
-
norm_f(
|
1102 |
-
Conv2d(
|
1103 |
-
512,
|
1104 |
-
1024,
|
1105 |
-
(kernel_size, 1),
|
1106 |
-
(stride, 1),
|
1107 |
-
padding=(get_padding(kernel_size, 1), 0),
|
1108 |
-
)
|
1109 |
-
),
|
1110 |
-
norm_f(
|
1111 |
-
Conv2d(
|
1112 |
-
1024,
|
1113 |
-
1024,
|
1114 |
-
(kernel_size, 1),
|
1115 |
-
1,
|
1116 |
-
padding=(get_padding(kernel_size, 1), 0),
|
1117 |
-
)
|
1118 |
-
),
|
1119 |
-
]
|
1120 |
-
)
|
1121 |
-
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
1122 |
-
|
1123 |
-
def forward(self, x):
|
1124 |
-
fmap = []
|
1125 |
-
|
1126 |
-
# 1d to 2d
|
1127 |
-
b, c, t = x.shape
|
1128 |
-
if t % self.period != 0: # pad first
|
1129 |
-
n_pad = self.period - (t % self.period)
|
1130 |
-
x = F.pad(x, (0, n_pad), "reflect")
|
1131 |
-
t = t + n_pad
|
1132 |
-
x = x.view(b, c, t // self.period, self.period)
|
1133 |
-
|
1134 |
-
for l in self.convs:
|
1135 |
-
x = l(x)
|
1136 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1137 |
-
fmap.append(x)
|
1138 |
-
x = self.conv_post(x)
|
1139 |
-
fmap.append(x)
|
1140 |
-
x = torch.flatten(x, 1, -1)
|
1141 |
-
|
1142 |
-
return x, fmap
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/infer_pack/models_dml.py
DELETED
@@ -1,1124 +0,0 @@
|
|
1 |
-
import math, pdb, os
|
2 |
-
from time import time as ttime
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
from torch.nn import functional as F
|
6 |
-
from lib.infer_pack import modules
|
7 |
-
from lib.infer_pack import attentions
|
8 |
-
from lib.infer_pack import commons
|
9 |
-
from lib.infer_pack.commons import init_weights, get_padding
|
10 |
-
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
11 |
-
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
12 |
-
from lib.infer_pack.commons import init_weights
|
13 |
-
import numpy as np
|
14 |
-
from lib.infer_pack import commons
|
15 |
-
|
16 |
-
|
17 |
-
class TextEncoder256(nn.Module):
|
18 |
-
def __init__(
|
19 |
-
self,
|
20 |
-
out_channels,
|
21 |
-
hidden_channels,
|
22 |
-
filter_channels,
|
23 |
-
n_heads,
|
24 |
-
n_layers,
|
25 |
-
kernel_size,
|
26 |
-
p_dropout,
|
27 |
-
f0=True,
|
28 |
-
):
|
29 |
-
super().__init__()
|
30 |
-
self.out_channels = out_channels
|
31 |
-
self.hidden_channels = hidden_channels
|
32 |
-
self.filter_channels = filter_channels
|
33 |
-
self.n_heads = n_heads
|
34 |
-
self.n_layers = n_layers
|
35 |
-
self.kernel_size = kernel_size
|
36 |
-
self.p_dropout = p_dropout
|
37 |
-
self.emb_phone = nn.Linear(256, hidden_channels)
|
38 |
-
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
39 |
-
if f0 == True:
|
40 |
-
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
41 |
-
self.encoder = attentions.Encoder(
|
42 |
-
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
43 |
-
)
|
44 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
45 |
-
|
46 |
-
def forward(self, phone, pitch, lengths):
|
47 |
-
if pitch == None:
|
48 |
-
x = self.emb_phone(phone)
|
49 |
-
else:
|
50 |
-
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
51 |
-
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
52 |
-
x = self.lrelu(x)
|
53 |
-
x = torch.transpose(x, 1, -1) # [b, h, t]
|
54 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
55 |
-
x.dtype
|
56 |
-
)
|
57 |
-
x = self.encoder(x * x_mask, x_mask)
|
58 |
-
stats = self.proj(x) * x_mask
|
59 |
-
|
60 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
61 |
-
return m, logs, x_mask
|
62 |
-
|
63 |
-
|
64 |
-
class TextEncoder768(nn.Module):
|
65 |
-
def __init__(
|
66 |
-
self,
|
67 |
-
out_channels,
|
68 |
-
hidden_channels,
|
69 |
-
filter_channels,
|
70 |
-
n_heads,
|
71 |
-
n_layers,
|
72 |
-
kernel_size,
|
73 |
-
p_dropout,
|
74 |
-
f0=True,
|
75 |
-
):
|
76 |
-
super().__init__()
|
77 |
-
self.out_channels = out_channels
|
78 |
-
self.hidden_channels = hidden_channels
|
79 |
-
self.filter_channels = filter_channels
|
80 |
-
self.n_heads = n_heads
|
81 |
-
self.n_layers = n_layers
|
82 |
-
self.kernel_size = kernel_size
|
83 |
-
self.p_dropout = p_dropout
|
84 |
-
self.emb_phone = nn.Linear(768, hidden_channels)
|
85 |
-
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
86 |
-
if f0 == True:
|
87 |
-
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
88 |
-
self.encoder = attentions.Encoder(
|
89 |
-
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
90 |
-
)
|
91 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
92 |
-
|
93 |
-
def forward(self, phone, pitch, lengths):
|
94 |
-
if pitch == None:
|
95 |
-
x = self.emb_phone(phone)
|
96 |
-
else:
|
97 |
-
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
98 |
-
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
99 |
-
x = self.lrelu(x)
|
100 |
-
x = torch.transpose(x, 1, -1) # [b, h, t]
|
101 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
102 |
-
x.dtype
|
103 |
-
)
|
104 |
-
x = self.encoder(x * x_mask, x_mask)
|
105 |
-
stats = self.proj(x) * x_mask
|
106 |
-
|
107 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
108 |
-
return m, logs, x_mask
|
109 |
-
|
110 |
-
|
111 |
-
class ResidualCouplingBlock(nn.Module):
|
112 |
-
def __init__(
|
113 |
-
self,
|
114 |
-
channels,
|
115 |
-
hidden_channels,
|
116 |
-
kernel_size,
|
117 |
-
dilation_rate,
|
118 |
-
n_layers,
|
119 |
-
n_flows=4,
|
120 |
-
gin_channels=0,
|
121 |
-
):
|
122 |
-
super().__init__()
|
123 |
-
self.channels = channels
|
124 |
-
self.hidden_channels = hidden_channels
|
125 |
-
self.kernel_size = kernel_size
|
126 |
-
self.dilation_rate = dilation_rate
|
127 |
-
self.n_layers = n_layers
|
128 |
-
self.n_flows = n_flows
|
129 |
-
self.gin_channels = gin_channels
|
130 |
-
|
131 |
-
self.flows = nn.ModuleList()
|
132 |
-
for i in range(n_flows):
|
133 |
-
self.flows.append(
|
134 |
-
modules.ResidualCouplingLayer(
|
135 |
-
channels,
|
136 |
-
hidden_channels,
|
137 |
-
kernel_size,
|
138 |
-
dilation_rate,
|
139 |
-
n_layers,
|
140 |
-
gin_channels=gin_channels,
|
141 |
-
mean_only=True,
|
142 |
-
)
|
143 |
-
)
|
144 |
-
self.flows.append(modules.Flip())
|
145 |
-
|
146 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
147 |
-
if not reverse:
|
148 |
-
for flow in self.flows:
|
149 |
-
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
150 |
-
else:
|
151 |
-
for flow in reversed(self.flows):
|
152 |
-
x = flow(x, x_mask, g=g, reverse=reverse)
|
153 |
-
return x
|
154 |
-
|
155 |
-
def remove_weight_norm(self):
|
156 |
-
for i in range(self.n_flows):
|
157 |
-
self.flows[i * 2].remove_weight_norm()
|
158 |
-
|
159 |
-
|
160 |
-
class PosteriorEncoder(nn.Module):
|
161 |
-
def __init__(
|
162 |
-
self,
|
163 |
-
in_channels,
|
164 |
-
out_channels,
|
165 |
-
hidden_channels,
|
166 |
-
kernel_size,
|
167 |
-
dilation_rate,
|
168 |
-
n_layers,
|
169 |
-
gin_channels=0,
|
170 |
-
):
|
171 |
-
super().__init__()
|
172 |
-
self.in_channels = in_channels
|
173 |
-
self.out_channels = out_channels
|
174 |
-
self.hidden_channels = hidden_channels
|
175 |
-
self.kernel_size = kernel_size
|
176 |
-
self.dilation_rate = dilation_rate
|
177 |
-
self.n_layers = n_layers
|
178 |
-
self.gin_channels = gin_channels
|
179 |
-
|
180 |
-
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
181 |
-
self.enc = modules.WN(
|
182 |
-
hidden_channels,
|
183 |
-
kernel_size,
|
184 |
-
dilation_rate,
|
185 |
-
n_layers,
|
186 |
-
gin_channels=gin_channels,
|
187 |
-
)
|
188 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
189 |
-
|
190 |
-
def forward(self, x, x_lengths, g=None):
|
191 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
192 |
-
x.dtype
|
193 |
-
)
|
194 |
-
x = self.pre(x) * x_mask
|
195 |
-
x = self.enc(x, x_mask, g=g)
|
196 |
-
stats = self.proj(x) * x_mask
|
197 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
198 |
-
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
199 |
-
return z, m, logs, x_mask
|
200 |
-
|
201 |
-
def remove_weight_norm(self):
|
202 |
-
self.enc.remove_weight_norm()
|
203 |
-
|
204 |
-
|
205 |
-
class Generator(torch.nn.Module):
|
206 |
-
def __init__(
|
207 |
-
self,
|
208 |
-
initial_channel,
|
209 |
-
resblock,
|
210 |
-
resblock_kernel_sizes,
|
211 |
-
resblock_dilation_sizes,
|
212 |
-
upsample_rates,
|
213 |
-
upsample_initial_channel,
|
214 |
-
upsample_kernel_sizes,
|
215 |
-
gin_channels=0,
|
216 |
-
):
|
217 |
-
super(Generator, self).__init__()
|
218 |
-
self.num_kernels = len(resblock_kernel_sizes)
|
219 |
-
self.num_upsamples = len(upsample_rates)
|
220 |
-
self.conv_pre = Conv1d(
|
221 |
-
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
222 |
-
)
|
223 |
-
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
224 |
-
|
225 |
-
self.ups = nn.ModuleList()
|
226 |
-
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
227 |
-
self.ups.append(
|
228 |
-
weight_norm(
|
229 |
-
ConvTranspose1d(
|
230 |
-
upsample_initial_channel // (2**i),
|
231 |
-
upsample_initial_channel // (2 ** (i + 1)),
|
232 |
-
k,
|
233 |
-
u,
|
234 |
-
padding=(k - u) // 2,
|
235 |
-
)
|
236 |
-
)
|
237 |
-
)
|
238 |
-
|
239 |
-
self.resblocks = nn.ModuleList()
|
240 |
-
for i in range(len(self.ups)):
|
241 |
-
ch = upsample_initial_channel // (2 ** (i + 1))
|
242 |
-
for j, (k, d) in enumerate(
|
243 |
-
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
244 |
-
):
|
245 |
-
self.resblocks.append(resblock(ch, k, d))
|
246 |
-
|
247 |
-
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
248 |
-
self.ups.apply(init_weights)
|
249 |
-
|
250 |
-
if gin_channels != 0:
|
251 |
-
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
252 |
-
|
253 |
-
def forward(self, x, g=None):
|
254 |
-
x = self.conv_pre(x)
|
255 |
-
if g is not None:
|
256 |
-
x = x + self.cond(g)
|
257 |
-
|
258 |
-
for i in range(self.num_upsamples):
|
259 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
260 |
-
x = self.ups[i](x)
|
261 |
-
xs = None
|
262 |
-
for j in range(self.num_kernels):
|
263 |
-
if xs is None:
|
264 |
-
xs = self.resblocks[i * self.num_kernels + j](x)
|
265 |
-
else:
|
266 |
-
xs += self.resblocks[i * self.num_kernels + j](x)
|
267 |
-
x = xs / self.num_kernels
|
268 |
-
x = F.leaky_relu(x)
|
269 |
-
x = self.conv_post(x)
|
270 |
-
x = torch.tanh(x)
|
271 |
-
|
272 |
-
return x
|
273 |
-
|
274 |
-
def remove_weight_norm(self):
|
275 |
-
for l in self.ups:
|
276 |
-
remove_weight_norm(l)
|
277 |
-
for l in self.resblocks:
|
278 |
-
l.remove_weight_norm()
|
279 |
-
|
280 |
-
|
281 |
-
class SineGen(torch.nn.Module):
|
282 |
-
"""Definition of sine generator
|
283 |
-
SineGen(samp_rate, harmonic_num = 0,
|
284 |
-
sine_amp = 0.1, noise_std = 0.003,
|
285 |
-
voiced_threshold = 0,
|
286 |
-
flag_for_pulse=False)
|
287 |
-
samp_rate: sampling rate in Hz
|
288 |
-
harmonic_num: number of harmonic overtones (default 0)
|
289 |
-
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
290 |
-
noise_std: std of Gaussian noise (default 0.003)
|
291 |
-
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
292 |
-
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
293 |
-
Note: when flag_for_pulse is True, the first time step of a voiced
|
294 |
-
segment is always sin(np.pi) or cos(0)
|
295 |
-
"""
|
296 |
-
|
297 |
-
def __init__(
|
298 |
-
self,
|
299 |
-
samp_rate,
|
300 |
-
harmonic_num=0,
|
301 |
-
sine_amp=0.1,
|
302 |
-
noise_std=0.003,
|
303 |
-
voiced_threshold=0,
|
304 |
-
flag_for_pulse=False,
|
305 |
-
):
|
306 |
-
super(SineGen, self).__init__()
|
307 |
-
self.sine_amp = sine_amp
|
308 |
-
self.noise_std = noise_std
|
309 |
-
self.harmonic_num = harmonic_num
|
310 |
-
self.dim = self.harmonic_num + 1
|
311 |
-
self.sampling_rate = samp_rate
|
312 |
-
self.voiced_threshold = voiced_threshold
|
313 |
-
|
314 |
-
def _f02uv(self, f0):
|
315 |
-
# generate uv signal
|
316 |
-
uv = torch.ones_like(f0)
|
317 |
-
uv = uv * (f0 > self.voiced_threshold)
|
318 |
-
return uv.float()
|
319 |
-
|
320 |
-
def forward(self, f0, upp):
|
321 |
-
"""sine_tensor, uv = forward(f0)
|
322 |
-
input F0: tensor(batchsize=1, length, dim=1)
|
323 |
-
f0 for unvoiced steps should be 0
|
324 |
-
output sine_tensor: tensor(batchsize=1, length, dim)
|
325 |
-
output uv: tensor(batchsize=1, length, 1)
|
326 |
-
"""
|
327 |
-
with torch.no_grad():
|
328 |
-
f0 = f0[:, None].transpose(1, 2)
|
329 |
-
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
330 |
-
# fundamental component
|
331 |
-
f0_buf[:, :, 0] = f0[:, :, 0]
|
332 |
-
for idx in np.arange(self.harmonic_num):
|
333 |
-
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
334 |
-
idx + 2
|
335 |
-
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
336 |
-
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
337 |
-
rand_ini = torch.rand(
|
338 |
-
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
339 |
-
)
|
340 |
-
rand_ini[:, 0] = 0
|
341 |
-
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
342 |
-
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
343 |
-
tmp_over_one *= upp
|
344 |
-
tmp_over_one = F.interpolate(
|
345 |
-
tmp_over_one.transpose(2, 1),
|
346 |
-
scale_factor=upp,
|
347 |
-
mode="linear",
|
348 |
-
align_corners=True,
|
349 |
-
).transpose(2, 1)
|
350 |
-
rad_values = F.interpolate(
|
351 |
-
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
352 |
-
).transpose(
|
353 |
-
2, 1
|
354 |
-
) #######
|
355 |
-
tmp_over_one %= 1
|
356 |
-
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
357 |
-
cumsum_shift = torch.zeros_like(rad_values)
|
358 |
-
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
359 |
-
sine_waves = torch.sin(
|
360 |
-
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
361 |
-
)
|
362 |
-
sine_waves = sine_waves * self.sine_amp
|
363 |
-
uv = self._f02uv(f0)
|
364 |
-
uv = F.interpolate(
|
365 |
-
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
366 |
-
).transpose(2, 1)
|
367 |
-
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
368 |
-
noise = noise_amp * torch.randn_like(sine_waves)
|
369 |
-
sine_waves = sine_waves * uv + noise
|
370 |
-
return sine_waves, uv, noise
|
371 |
-
|
372 |
-
|
373 |
-
class SourceModuleHnNSF(torch.nn.Module):
|
374 |
-
"""SourceModule for hn-nsf
|
375 |
-
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
376 |
-
add_noise_std=0.003, voiced_threshod=0)
|
377 |
-
sampling_rate: sampling_rate in Hz
|
378 |
-
harmonic_num: number of harmonic above F0 (default: 0)
|
379 |
-
sine_amp: amplitude of sine source signal (default: 0.1)
|
380 |
-
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
381 |
-
note that amplitude of noise in unvoiced is decided
|
382 |
-
by sine_amp
|
383 |
-
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
384 |
-
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
385 |
-
F0_sampled (batchsize, length, 1)
|
386 |
-
Sine_source (batchsize, length, 1)
|
387 |
-
noise_source (batchsize, length 1)
|
388 |
-
uv (batchsize, length, 1)
|
389 |
-
"""
|
390 |
-
|
391 |
-
def __init__(
|
392 |
-
self,
|
393 |
-
sampling_rate,
|
394 |
-
harmonic_num=0,
|
395 |
-
sine_amp=0.1,
|
396 |
-
add_noise_std=0.003,
|
397 |
-
voiced_threshod=0,
|
398 |
-
is_half=True,
|
399 |
-
):
|
400 |
-
super(SourceModuleHnNSF, self).__init__()
|
401 |
-
|
402 |
-
self.sine_amp = sine_amp
|
403 |
-
self.noise_std = add_noise_std
|
404 |
-
self.is_half = is_half
|
405 |
-
# to produce sine waveforms
|
406 |
-
self.l_sin_gen = SineGen(
|
407 |
-
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
408 |
-
)
|
409 |
-
|
410 |
-
# to merge source harmonics into a single excitation
|
411 |
-
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
412 |
-
self.l_tanh = torch.nn.Tanh()
|
413 |
-
|
414 |
-
def forward(self, x, upp=None):
|
415 |
-
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
416 |
-
if self.is_half:
|
417 |
-
sine_wavs = sine_wavs.half()
|
418 |
-
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
419 |
-
return sine_merge, None, None # noise, uv
|
420 |
-
|
421 |
-
|
422 |
-
class GeneratorNSF(torch.nn.Module):
|
423 |
-
def __init__(
|
424 |
-
self,
|
425 |
-
initial_channel,
|
426 |
-
resblock,
|
427 |
-
resblock_kernel_sizes,
|
428 |
-
resblock_dilation_sizes,
|
429 |
-
upsample_rates,
|
430 |
-
upsample_initial_channel,
|
431 |
-
upsample_kernel_sizes,
|
432 |
-
gin_channels,
|
433 |
-
sr,
|
434 |
-
is_half=False,
|
435 |
-
):
|
436 |
-
super(GeneratorNSF, self).__init__()
|
437 |
-
self.num_kernels = len(resblock_kernel_sizes)
|
438 |
-
self.num_upsamples = len(upsample_rates)
|
439 |
-
|
440 |
-
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
441 |
-
self.m_source = SourceModuleHnNSF(
|
442 |
-
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
443 |
-
)
|
444 |
-
self.noise_convs = nn.ModuleList()
|
445 |
-
self.conv_pre = Conv1d(
|
446 |
-
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
447 |
-
)
|
448 |
-
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
449 |
-
|
450 |
-
self.ups = nn.ModuleList()
|
451 |
-
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
452 |
-
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
453 |
-
self.ups.append(
|
454 |
-
weight_norm(
|
455 |
-
ConvTranspose1d(
|
456 |
-
upsample_initial_channel // (2**i),
|
457 |
-
upsample_initial_channel // (2 ** (i + 1)),
|
458 |
-
k,
|
459 |
-
u,
|
460 |
-
padding=(k - u) // 2,
|
461 |
-
)
|
462 |
-
)
|
463 |
-
)
|
464 |
-
if i + 1 < len(upsample_rates):
|
465 |
-
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
466 |
-
self.noise_convs.append(
|
467 |
-
Conv1d(
|
468 |
-
1,
|
469 |
-
c_cur,
|
470 |
-
kernel_size=stride_f0 * 2,
|
471 |
-
stride=stride_f0,
|
472 |
-
padding=stride_f0 // 2,
|
473 |
-
)
|
474 |
-
)
|
475 |
-
else:
|
476 |
-
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
477 |
-
|
478 |
-
self.resblocks = nn.ModuleList()
|
479 |
-
for i in range(len(self.ups)):
|
480 |
-
ch = upsample_initial_channel // (2 ** (i + 1))
|
481 |
-
for j, (k, d) in enumerate(
|
482 |
-
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
483 |
-
):
|
484 |
-
self.resblocks.append(resblock(ch, k, d))
|
485 |
-
|
486 |
-
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
487 |
-
self.ups.apply(init_weights)
|
488 |
-
|
489 |
-
if gin_channels != 0:
|
490 |
-
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
491 |
-
|
492 |
-
self.upp = np.prod(upsample_rates)
|
493 |
-
|
494 |
-
def forward(self, x, f0, g=None):
|
495 |
-
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
496 |
-
har_source = har_source.transpose(1, 2)
|
497 |
-
x = self.conv_pre(x)
|
498 |
-
if g is not None:
|
499 |
-
x = x + self.cond(g)
|
500 |
-
|
501 |
-
for i in range(self.num_upsamples):
|
502 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
503 |
-
x = self.ups[i](x)
|
504 |
-
x_source = self.noise_convs[i](har_source)
|
505 |
-
x = x + x_source
|
506 |
-
xs = None
|
507 |
-
for j in range(self.num_kernels):
|
508 |
-
if xs is None:
|
509 |
-
xs = self.resblocks[i * self.num_kernels + j](x)
|
510 |
-
else:
|
511 |
-
xs += self.resblocks[i * self.num_kernels + j](x)
|
512 |
-
x = xs / self.num_kernels
|
513 |
-
x = F.leaky_relu(x)
|
514 |
-
x = self.conv_post(x)
|
515 |
-
x = torch.tanh(x)
|
516 |
-
return x
|
517 |
-
|
518 |
-
def remove_weight_norm(self):
|
519 |
-
for l in self.ups:
|
520 |
-
remove_weight_norm(l)
|
521 |
-
for l in self.resblocks:
|
522 |
-
l.remove_weight_norm()
|
523 |
-
|
524 |
-
|
525 |
-
sr2sr = {
|
526 |
-
"32k": 32000,
|
527 |
-
"40k": 40000,
|
528 |
-
"48k": 48000,
|
529 |
-
}
|
530 |
-
|
531 |
-
|
532 |
-
class SynthesizerTrnMs256NSFsid(nn.Module):
|
533 |
-
def __init__(
|
534 |
-
self,
|
535 |
-
spec_channels,
|
536 |
-
segment_size,
|
537 |
-
inter_channels,
|
538 |
-
hidden_channels,
|
539 |
-
filter_channels,
|
540 |
-
n_heads,
|
541 |
-
n_layers,
|
542 |
-
kernel_size,
|
543 |
-
p_dropout,
|
544 |
-
resblock,
|
545 |
-
resblock_kernel_sizes,
|
546 |
-
resblock_dilation_sizes,
|
547 |
-
upsample_rates,
|
548 |
-
upsample_initial_channel,
|
549 |
-
upsample_kernel_sizes,
|
550 |
-
spk_embed_dim,
|
551 |
-
gin_channels,
|
552 |
-
sr,
|
553 |
-
**kwargs
|
554 |
-
):
|
555 |
-
super().__init__()
|
556 |
-
if type(sr) == type("strr"):
|
557 |
-
sr = sr2sr[sr]
|
558 |
-
self.spec_channels = spec_channels
|
559 |
-
self.inter_channels = inter_channels
|
560 |
-
self.hidden_channels = hidden_channels
|
561 |
-
self.filter_channels = filter_channels
|
562 |
-
self.n_heads = n_heads
|
563 |
-
self.n_layers = n_layers
|
564 |
-
self.kernel_size = kernel_size
|
565 |
-
self.p_dropout = p_dropout
|
566 |
-
self.resblock = resblock
|
567 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
568 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
569 |
-
self.upsample_rates = upsample_rates
|
570 |
-
self.upsample_initial_channel = upsample_initial_channel
|
571 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
572 |
-
self.segment_size = segment_size
|
573 |
-
self.gin_channels = gin_channels
|
574 |
-
# self.hop_length = hop_length#
|
575 |
-
self.spk_embed_dim = spk_embed_dim
|
576 |
-
self.enc_p = TextEncoder256(
|
577 |
-
inter_channels,
|
578 |
-
hidden_channels,
|
579 |
-
filter_channels,
|
580 |
-
n_heads,
|
581 |
-
n_layers,
|
582 |
-
kernel_size,
|
583 |
-
p_dropout,
|
584 |
-
)
|
585 |
-
self.dec = GeneratorNSF(
|
586 |
-
inter_channels,
|
587 |
-
resblock,
|
588 |
-
resblock_kernel_sizes,
|
589 |
-
resblock_dilation_sizes,
|
590 |
-
upsample_rates,
|
591 |
-
upsample_initial_channel,
|
592 |
-
upsample_kernel_sizes,
|
593 |
-
gin_channels=gin_channels,
|
594 |
-
sr=sr,
|
595 |
-
is_half=kwargs["is_half"],
|
596 |
-
)
|
597 |
-
self.enc_q = PosteriorEncoder(
|
598 |
-
spec_channels,
|
599 |
-
inter_channels,
|
600 |
-
hidden_channels,
|
601 |
-
5,
|
602 |
-
1,
|
603 |
-
16,
|
604 |
-
gin_channels=gin_channels,
|
605 |
-
)
|
606 |
-
self.flow = ResidualCouplingBlock(
|
607 |
-
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
608 |
-
)
|
609 |
-
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
610 |
-
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
611 |
-
|
612 |
-
def remove_weight_norm(self):
|
613 |
-
self.dec.remove_weight_norm()
|
614 |
-
self.flow.remove_weight_norm()
|
615 |
-
self.enc_q.remove_weight_norm()
|
616 |
-
|
617 |
-
def forward(
|
618 |
-
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
619 |
-
): # 这里ds是id,[bs,1]
|
620 |
-
# print(1,pitch.shape)#[bs,t]
|
621 |
-
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
622 |
-
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
623 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
624 |
-
z_p = self.flow(z, y_mask, g=g)
|
625 |
-
z_slice, ids_slice = commons.rand_slice_segments(
|
626 |
-
z, y_lengths, self.segment_size
|
627 |
-
)
|
628 |
-
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
629 |
-
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
630 |
-
# print(-2,pitchf.shape,z_slice.shape)
|
631 |
-
o = self.dec(z_slice, pitchf, g=g)
|
632 |
-
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
633 |
-
|
634 |
-
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
635 |
-
g = self.emb_g(sid).unsqueeze(-1)
|
636 |
-
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
637 |
-
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
638 |
-
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
639 |
-
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
640 |
-
return o, x_mask, (z, z_p, m_p, logs_p)
|
641 |
-
|
642 |
-
|
643 |
-
class SynthesizerTrnMs768NSFsid(nn.Module):
|
644 |
-
def __init__(
|
645 |
-
self,
|
646 |
-
spec_channels,
|
647 |
-
segment_size,
|
648 |
-
inter_channels,
|
649 |
-
hidden_channels,
|
650 |
-
filter_channels,
|
651 |
-
n_heads,
|
652 |
-
n_layers,
|
653 |
-
kernel_size,
|
654 |
-
p_dropout,
|
655 |
-
resblock,
|
656 |
-
resblock_kernel_sizes,
|
657 |
-
resblock_dilation_sizes,
|
658 |
-
upsample_rates,
|
659 |
-
upsample_initial_channel,
|
660 |
-
upsample_kernel_sizes,
|
661 |
-
spk_embed_dim,
|
662 |
-
gin_channels,
|
663 |
-
sr,
|
664 |
-
**kwargs
|
665 |
-
):
|
666 |
-
super().__init__()
|
667 |
-
if type(sr) == type("strr"):
|
668 |
-
sr = sr2sr[sr]
|
669 |
-
self.spec_channels = spec_channels
|
670 |
-
self.inter_channels = inter_channels
|
671 |
-
self.hidden_channels = hidden_channels
|
672 |
-
self.filter_channels = filter_channels
|
673 |
-
self.n_heads = n_heads
|
674 |
-
self.n_layers = n_layers
|
675 |
-
self.kernel_size = kernel_size
|
676 |
-
self.p_dropout = p_dropout
|
677 |
-
self.resblock = resblock
|
678 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
679 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
680 |
-
self.upsample_rates = upsample_rates
|
681 |
-
self.upsample_initial_channel = upsample_initial_channel
|
682 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
683 |
-
self.segment_size = segment_size
|
684 |
-
self.gin_channels = gin_channels
|
685 |
-
# self.hop_length = hop_length#
|
686 |
-
self.spk_embed_dim = spk_embed_dim
|
687 |
-
self.enc_p = TextEncoder768(
|
688 |
-
inter_channels,
|
689 |
-
hidden_channels,
|
690 |
-
filter_channels,
|
691 |
-
n_heads,
|
692 |
-
n_layers,
|
693 |
-
kernel_size,
|
694 |
-
p_dropout,
|
695 |
-
)
|
696 |
-
self.dec = GeneratorNSF(
|
697 |
-
inter_channels,
|
698 |
-
resblock,
|
699 |
-
resblock_kernel_sizes,
|
700 |
-
resblock_dilation_sizes,
|
701 |
-
upsample_rates,
|
702 |
-
upsample_initial_channel,
|
703 |
-
upsample_kernel_sizes,
|
704 |
-
gin_channels=gin_channels,
|
705 |
-
sr=sr,
|
706 |
-
is_half=kwargs["is_half"],
|
707 |
-
)
|
708 |
-
self.enc_q = PosteriorEncoder(
|
709 |
-
spec_channels,
|
710 |
-
inter_channels,
|
711 |
-
hidden_channels,
|
712 |
-
5,
|
713 |
-
1,
|
714 |
-
16,
|
715 |
-
gin_channels=gin_channels,
|
716 |
-
)
|
717 |
-
self.flow = ResidualCouplingBlock(
|
718 |
-
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
719 |
-
)
|
720 |
-
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
721 |
-
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
722 |
-
|
723 |
-
def remove_weight_norm(self):
|
724 |
-
self.dec.remove_weight_norm()
|
725 |
-
self.flow.remove_weight_norm()
|
726 |
-
self.enc_q.remove_weight_norm()
|
727 |
-
|
728 |
-
def forward(
|
729 |
-
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
730 |
-
): # 这里ds是id,[bs,1]
|
731 |
-
# print(1,pitch.shape)#[bs,t]
|
732 |
-
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
733 |
-
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
734 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
735 |
-
z_p = self.flow(z, y_mask, g=g)
|
736 |
-
z_slice, ids_slice = commons.rand_slice_segments(
|
737 |
-
z, y_lengths, self.segment_size
|
738 |
-
)
|
739 |
-
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
740 |
-
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
741 |
-
# print(-2,pitchf.shape,z_slice.shape)
|
742 |
-
o = self.dec(z_slice, pitchf, g=g)
|
743 |
-
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
744 |
-
|
745 |
-
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
746 |
-
g = self.emb_g(sid).unsqueeze(-1)
|
747 |
-
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
748 |
-
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
749 |
-
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
750 |
-
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
751 |
-
return o, x_mask, (z, z_p, m_p, logs_p)
|
752 |
-
|
753 |
-
|
754 |
-
class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
755 |
-
def __init__(
|
756 |
-
self,
|
757 |
-
spec_channels,
|
758 |
-
segment_size,
|
759 |
-
inter_channels,
|
760 |
-
hidden_channels,
|
761 |
-
filter_channels,
|
762 |
-
n_heads,
|
763 |
-
n_layers,
|
764 |
-
kernel_size,
|
765 |
-
p_dropout,
|
766 |
-
resblock,
|
767 |
-
resblock_kernel_sizes,
|
768 |
-
resblock_dilation_sizes,
|
769 |
-
upsample_rates,
|
770 |
-
upsample_initial_channel,
|
771 |
-
upsample_kernel_sizes,
|
772 |
-
spk_embed_dim,
|
773 |
-
gin_channels,
|
774 |
-
sr=None,
|
775 |
-
**kwargs
|
776 |
-
):
|
777 |
-
super().__init__()
|
778 |
-
self.spec_channels = spec_channels
|
779 |
-
self.inter_channels = inter_channels
|
780 |
-
self.hidden_channels = hidden_channels
|
781 |
-
self.filter_channels = filter_channels
|
782 |
-
self.n_heads = n_heads
|
783 |
-
self.n_layers = n_layers
|
784 |
-
self.kernel_size = kernel_size
|
785 |
-
self.p_dropout = p_dropout
|
786 |
-
self.resblock = resblock
|
787 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
788 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
789 |
-
self.upsample_rates = upsample_rates
|
790 |
-
self.upsample_initial_channel = upsample_initial_channel
|
791 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
792 |
-
self.segment_size = segment_size
|
793 |
-
self.gin_channels = gin_channels
|
794 |
-
# self.hop_length = hop_length#
|
795 |
-
self.spk_embed_dim = spk_embed_dim
|
796 |
-
self.enc_p = TextEncoder256(
|
797 |
-
inter_channels,
|
798 |
-
hidden_channels,
|
799 |
-
filter_channels,
|
800 |
-
n_heads,
|
801 |
-
n_layers,
|
802 |
-
kernel_size,
|
803 |
-
p_dropout,
|
804 |
-
f0=False,
|
805 |
-
)
|
806 |
-
self.dec = Generator(
|
807 |
-
inter_channels,
|
808 |
-
resblock,
|
809 |
-
resblock_kernel_sizes,
|
810 |
-
resblock_dilation_sizes,
|
811 |
-
upsample_rates,
|
812 |
-
upsample_initial_channel,
|
813 |
-
upsample_kernel_sizes,
|
814 |
-
gin_channels=gin_channels,
|
815 |
-
)
|
816 |
-
self.enc_q = PosteriorEncoder(
|
817 |
-
spec_channels,
|
818 |
-
inter_channels,
|
819 |
-
hidden_channels,
|
820 |
-
5,
|
821 |
-
1,
|
822 |
-
16,
|
823 |
-
gin_channels=gin_channels,
|
824 |
-
)
|
825 |
-
self.flow = ResidualCouplingBlock(
|
826 |
-
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
827 |
-
)
|
828 |
-
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
829 |
-
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
830 |
-
|
831 |
-
def remove_weight_norm(self):
|
832 |
-
self.dec.remove_weight_norm()
|
833 |
-
self.flow.remove_weight_norm()
|
834 |
-
self.enc_q.remove_weight_norm()
|
835 |
-
|
836 |
-
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
837 |
-
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
838 |
-
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
839 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
840 |
-
z_p = self.flow(z, y_mask, g=g)
|
841 |
-
z_slice, ids_slice = commons.rand_slice_segments(
|
842 |
-
z, y_lengths, self.segment_size
|
843 |
-
)
|
844 |
-
o = self.dec(z_slice, g=g)
|
845 |
-
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
846 |
-
|
847 |
-
def infer(self, phone, phone_lengths, sid, max_len=None):
|
848 |
-
g = self.emb_g(sid).unsqueeze(-1)
|
849 |
-
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
850 |
-
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
851 |
-
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
852 |
-
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
853 |
-
return o, x_mask, (z, z_p, m_p, logs_p)
|
854 |
-
|
855 |
-
|
856 |
-
class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
857 |
-
def __init__(
|
858 |
-
self,
|
859 |
-
spec_channels,
|
860 |
-
segment_size,
|
861 |
-
inter_channels,
|
862 |
-
hidden_channels,
|
863 |
-
filter_channels,
|
864 |
-
n_heads,
|
865 |
-
n_layers,
|
866 |
-
kernel_size,
|
867 |
-
p_dropout,
|
868 |
-
resblock,
|
869 |
-
resblock_kernel_sizes,
|
870 |
-
resblock_dilation_sizes,
|
871 |
-
upsample_rates,
|
872 |
-
upsample_initial_channel,
|
873 |
-
upsample_kernel_sizes,
|
874 |
-
spk_embed_dim,
|
875 |
-
gin_channels,
|
876 |
-
sr=None,
|
877 |
-
**kwargs
|
878 |
-
):
|
879 |
-
super().__init__()
|
880 |
-
self.spec_channels = spec_channels
|
881 |
-
self.inter_channels = inter_channels
|
882 |
-
self.hidden_channels = hidden_channels
|
883 |
-
self.filter_channels = filter_channels
|
884 |
-
self.n_heads = n_heads
|
885 |
-
self.n_layers = n_layers
|
886 |
-
self.kernel_size = kernel_size
|
887 |
-
self.p_dropout = p_dropout
|
888 |
-
self.resblock = resblock
|
889 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
890 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
891 |
-
self.upsample_rates = upsample_rates
|
892 |
-
self.upsample_initial_channel = upsample_initial_channel
|
893 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
894 |
-
self.segment_size = segment_size
|
895 |
-
self.gin_channels = gin_channels
|
896 |
-
# self.hop_length = hop_length#
|
897 |
-
self.spk_embed_dim = spk_embed_dim
|
898 |
-
self.enc_p = TextEncoder768(
|
899 |
-
inter_channels,
|
900 |
-
hidden_channels,
|
901 |
-
filter_channels,
|
902 |
-
n_heads,
|
903 |
-
n_layers,
|
904 |
-
kernel_size,
|
905 |
-
p_dropout,
|
906 |
-
f0=False,
|
907 |
-
)
|
908 |
-
self.dec = Generator(
|
909 |
-
inter_channels,
|
910 |
-
resblock,
|
911 |
-
resblock_kernel_sizes,
|
912 |
-
resblock_dilation_sizes,
|
913 |
-
upsample_rates,
|
914 |
-
upsample_initial_channel,
|
915 |
-
upsample_kernel_sizes,
|
916 |
-
gin_channels=gin_channels,
|
917 |
-
)
|
918 |
-
self.enc_q = PosteriorEncoder(
|
919 |
-
spec_channels,
|
920 |
-
inter_channels,
|
921 |
-
hidden_channels,
|
922 |
-
5,
|
923 |
-
1,
|
924 |
-
16,
|
925 |
-
gin_channels=gin_channels,
|
926 |
-
)
|
927 |
-
self.flow = ResidualCouplingBlock(
|
928 |
-
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
929 |
-
)
|
930 |
-
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
931 |
-
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
932 |
-
|
933 |
-
def remove_weight_norm(self):
|
934 |
-
self.dec.remove_weight_norm()
|
935 |
-
self.flow.remove_weight_norm()
|
936 |
-
self.enc_q.remove_weight_norm()
|
937 |
-
|
938 |
-
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
939 |
-
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
940 |
-
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
941 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
942 |
-
z_p = self.flow(z, y_mask, g=g)
|
943 |
-
z_slice, ids_slice = commons.rand_slice_segments(
|
944 |
-
z, y_lengths, self.segment_size
|
945 |
-
)
|
946 |
-
o = self.dec(z_slice, g=g)
|
947 |
-
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
948 |
-
|
949 |
-
def infer(self, phone, phone_lengths, sid, max_len=None):
|
950 |
-
g = self.emb_g(sid).unsqueeze(-1)
|
951 |
-
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
952 |
-
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
953 |
-
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
954 |
-
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
955 |
-
return o, x_mask, (z, z_p, m_p, logs_p)
|
956 |
-
|
957 |
-
|
958 |
-
class MultiPeriodDiscriminator(torch.nn.Module):
|
959 |
-
def __init__(self, use_spectral_norm=False):
|
960 |
-
super(MultiPeriodDiscriminator, self).__init__()
|
961 |
-
periods = [2, 3, 5, 7, 11, 17]
|
962 |
-
# periods = [3, 5, 7, 11, 17, 23, 37]
|
963 |
-
|
964 |
-
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
965 |
-
discs = discs + [
|
966 |
-
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
967 |
-
]
|
968 |
-
self.discriminators = nn.ModuleList(discs)
|
969 |
-
|
970 |
-
def forward(self, y, y_hat):
|
971 |
-
y_d_rs = [] #
|
972 |
-
y_d_gs = []
|
973 |
-
fmap_rs = []
|
974 |
-
fmap_gs = []
|
975 |
-
for i, d in enumerate(self.discriminators):
|
976 |
-
y_d_r, fmap_r = d(y)
|
977 |
-
y_d_g, fmap_g = d(y_hat)
|
978 |
-
# for j in range(len(fmap_r)):
|
979 |
-
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
980 |
-
y_d_rs.append(y_d_r)
|
981 |
-
y_d_gs.append(y_d_g)
|
982 |
-
fmap_rs.append(fmap_r)
|
983 |
-
fmap_gs.append(fmap_g)
|
984 |
-
|
985 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
986 |
-
|
987 |
-
|
988 |
-
class MultiPeriodDiscriminatorV2(torch.nn.Module):
|
989 |
-
def __init__(self, use_spectral_norm=False):
|
990 |
-
super(MultiPeriodDiscriminatorV2, self).__init__()
|
991 |
-
# periods = [2, 3, 5, 7, 11, 17]
|
992 |
-
periods = [2, 3, 5, 7, 11, 17, 23, 37]
|
993 |
-
|
994 |
-
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
995 |
-
discs = discs + [
|
996 |
-
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
997 |
-
]
|
998 |
-
self.discriminators = nn.ModuleList(discs)
|
999 |
-
|
1000 |
-
def forward(self, y, y_hat):
|
1001 |
-
y_d_rs = [] #
|
1002 |
-
y_d_gs = []
|
1003 |
-
fmap_rs = []
|
1004 |
-
fmap_gs = []
|
1005 |
-
for i, d in enumerate(self.discriminators):
|
1006 |
-
y_d_r, fmap_r = d(y)
|
1007 |
-
y_d_g, fmap_g = d(y_hat)
|
1008 |
-
# for j in range(len(fmap_r)):
|
1009 |
-
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
1010 |
-
y_d_rs.append(y_d_r)
|
1011 |
-
y_d_gs.append(y_d_g)
|
1012 |
-
fmap_rs.append(fmap_r)
|
1013 |
-
fmap_gs.append(fmap_g)
|
1014 |
-
|
1015 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
1016 |
-
|
1017 |
-
|
1018 |
-
class DiscriminatorS(torch.nn.Module):
|
1019 |
-
def __init__(self, use_spectral_norm=False):
|
1020 |
-
super(DiscriminatorS, self).__init__()
|
1021 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
1022 |
-
self.convs = nn.ModuleList(
|
1023 |
-
[
|
1024 |
-
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
1025 |
-
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
1026 |
-
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
1027 |
-
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
1028 |
-
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
1029 |
-
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
1030 |
-
]
|
1031 |
-
)
|
1032 |
-
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
1033 |
-
|
1034 |
-
def forward(self, x):
|
1035 |
-
fmap = []
|
1036 |
-
|
1037 |
-
for l in self.convs:
|
1038 |
-
x = l(x)
|
1039 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1040 |
-
fmap.append(x)
|
1041 |
-
x = self.conv_post(x)
|
1042 |
-
fmap.append(x)
|
1043 |
-
x = torch.flatten(x, 1, -1)
|
1044 |
-
|
1045 |
-
return x, fmap
|
1046 |
-
|
1047 |
-
|
1048 |
-
class DiscriminatorP(torch.nn.Module):
|
1049 |
-
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
1050 |
-
super(DiscriminatorP, self).__init__()
|
1051 |
-
self.period = period
|
1052 |
-
self.use_spectral_norm = use_spectral_norm
|
1053 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
1054 |
-
self.convs = nn.ModuleList(
|
1055 |
-
[
|
1056 |
-
norm_f(
|
1057 |
-
Conv2d(
|
1058 |
-
1,
|
1059 |
-
32,
|
1060 |
-
(kernel_size, 1),
|
1061 |
-
(stride, 1),
|
1062 |
-
padding=(get_padding(kernel_size, 1), 0),
|
1063 |
-
)
|
1064 |
-
),
|
1065 |
-
norm_f(
|
1066 |
-
Conv2d(
|
1067 |
-
32,
|
1068 |
-
128,
|
1069 |
-
(kernel_size, 1),
|
1070 |
-
(stride, 1),
|
1071 |
-
padding=(get_padding(kernel_size, 1), 0),
|
1072 |
-
)
|
1073 |
-
),
|
1074 |
-
norm_f(
|
1075 |
-
Conv2d(
|
1076 |
-
128,
|
1077 |
-
512,
|
1078 |
-
(kernel_size, 1),
|
1079 |
-
(stride, 1),
|
1080 |
-
padding=(get_padding(kernel_size, 1), 0),
|
1081 |
-
)
|
1082 |
-
),
|
1083 |
-
norm_f(
|
1084 |
-
Conv2d(
|
1085 |
-
512,
|
1086 |
-
1024,
|
1087 |
-
(kernel_size, 1),
|
1088 |
-
(stride, 1),
|
1089 |
-
padding=(get_padding(kernel_size, 1), 0),
|
1090 |
-
)
|
1091 |
-
),
|
1092 |
-
norm_f(
|
1093 |
-
Conv2d(
|
1094 |
-
1024,
|
1095 |
-
1024,
|
1096 |
-
(kernel_size, 1),
|
1097 |
-
1,
|
1098 |
-
padding=(get_padding(kernel_size, 1), 0),
|
1099 |
-
)
|
1100 |
-
),
|
1101 |
-
]
|
1102 |
-
)
|
1103 |
-
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
1104 |
-
|
1105 |
-
def forward(self, x):
|
1106 |
-
fmap = []
|
1107 |
-
|
1108 |
-
# 1d to 2d
|
1109 |
-
b, c, t = x.shape
|
1110 |
-
if t % self.period != 0: # pad first
|
1111 |
-
n_pad = self.period - (t % self.period)
|
1112 |
-
x = F.pad(x, (0, n_pad), "reflect")
|
1113 |
-
t = t + n_pad
|
1114 |
-
x = x.view(b, c, t // self.period, self.period)
|
1115 |
-
|
1116 |
-
for l in self.convs:
|
1117 |
-
x = l(x)
|
1118 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1119 |
-
fmap.append(x)
|
1120 |
-
x = self.conv_post(x)
|
1121 |
-
fmap.append(x)
|
1122 |
-
x = torch.flatten(x, 1, -1)
|
1123 |
-
|
1124 |
-
return x, fmap
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/infer_pack/models_onnx.py
DELETED
@@ -1,819 +0,0 @@
|
|
1 |
-
import math, pdb, os
|
2 |
-
from time import time as ttime
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
from torch.nn import functional as F
|
6 |
-
from lib.infer_pack import modules
|
7 |
-
from lib.infer_pack import attentions
|
8 |
-
from lib.infer_pack import commons
|
9 |
-
from lib.infer_pack.commons import init_weights, get_padding
|
10 |
-
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
11 |
-
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
12 |
-
from lib.infer_pack.commons import init_weights
|
13 |
-
import numpy as np
|
14 |
-
from lib.infer_pack import commons
|
15 |
-
|
16 |
-
|
17 |
-
class TextEncoder256(nn.Module):
|
18 |
-
def __init__(
|
19 |
-
self,
|
20 |
-
out_channels,
|
21 |
-
hidden_channels,
|
22 |
-
filter_channels,
|
23 |
-
n_heads,
|
24 |
-
n_layers,
|
25 |
-
kernel_size,
|
26 |
-
p_dropout,
|
27 |
-
f0=True,
|
28 |
-
):
|
29 |
-
super().__init__()
|
30 |
-
self.out_channels = out_channels
|
31 |
-
self.hidden_channels = hidden_channels
|
32 |
-
self.filter_channels = filter_channels
|
33 |
-
self.n_heads = n_heads
|
34 |
-
self.n_layers = n_layers
|
35 |
-
self.kernel_size = kernel_size
|
36 |
-
self.p_dropout = p_dropout
|
37 |
-
self.emb_phone = nn.Linear(256, hidden_channels)
|
38 |
-
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
39 |
-
if f0 == True:
|
40 |
-
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
41 |
-
self.encoder = attentions.Encoder(
|
42 |
-
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
43 |
-
)
|
44 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
45 |
-
|
46 |
-
def forward(self, phone, pitch, lengths):
|
47 |
-
if pitch == None:
|
48 |
-
x = self.emb_phone(phone)
|
49 |
-
else:
|
50 |
-
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
51 |
-
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
52 |
-
x = self.lrelu(x)
|
53 |
-
x = torch.transpose(x, 1, -1) # [b, h, t]
|
54 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
55 |
-
x.dtype
|
56 |
-
)
|
57 |
-
x = self.encoder(x * x_mask, x_mask)
|
58 |
-
stats = self.proj(x) * x_mask
|
59 |
-
|
60 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
61 |
-
return m, logs, x_mask
|
62 |
-
|
63 |
-
|
64 |
-
class TextEncoder768(nn.Module):
|
65 |
-
def __init__(
|
66 |
-
self,
|
67 |
-
out_channels,
|
68 |
-
hidden_channels,
|
69 |
-
filter_channels,
|
70 |
-
n_heads,
|
71 |
-
n_layers,
|
72 |
-
kernel_size,
|
73 |
-
p_dropout,
|
74 |
-
f0=True,
|
75 |
-
):
|
76 |
-
super().__init__()
|
77 |
-
self.out_channels = out_channels
|
78 |
-
self.hidden_channels = hidden_channels
|
79 |
-
self.filter_channels = filter_channels
|
80 |
-
self.n_heads = n_heads
|
81 |
-
self.n_layers = n_layers
|
82 |
-
self.kernel_size = kernel_size
|
83 |
-
self.p_dropout = p_dropout
|
84 |
-
self.emb_phone = nn.Linear(768, hidden_channels)
|
85 |
-
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
86 |
-
if f0 == True:
|
87 |
-
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
88 |
-
self.encoder = attentions.Encoder(
|
89 |
-
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
90 |
-
)
|
91 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
92 |
-
|
93 |
-
def forward(self, phone, pitch, lengths):
|
94 |
-
if pitch == None:
|
95 |
-
x = self.emb_phone(phone)
|
96 |
-
else:
|
97 |
-
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
98 |
-
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
99 |
-
x = self.lrelu(x)
|
100 |
-
x = torch.transpose(x, 1, -1) # [b, h, t]
|
101 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
102 |
-
x.dtype
|
103 |
-
)
|
104 |
-
x = self.encoder(x * x_mask, x_mask)
|
105 |
-
stats = self.proj(x) * x_mask
|
106 |
-
|
107 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
108 |
-
return m, logs, x_mask
|
109 |
-
|
110 |
-
|
111 |
-
class ResidualCouplingBlock(nn.Module):
|
112 |
-
def __init__(
|
113 |
-
self,
|
114 |
-
channels,
|
115 |
-
hidden_channels,
|
116 |
-
kernel_size,
|
117 |
-
dilation_rate,
|
118 |
-
n_layers,
|
119 |
-
n_flows=4,
|
120 |
-
gin_channels=0,
|
121 |
-
):
|
122 |
-
super().__init__()
|
123 |
-
self.channels = channels
|
124 |
-
self.hidden_channels = hidden_channels
|
125 |
-
self.kernel_size = kernel_size
|
126 |
-
self.dilation_rate = dilation_rate
|
127 |
-
self.n_layers = n_layers
|
128 |
-
self.n_flows = n_flows
|
129 |
-
self.gin_channels = gin_channels
|
130 |
-
|
131 |
-
self.flows = nn.ModuleList()
|
132 |
-
for i in range(n_flows):
|
133 |
-
self.flows.append(
|
134 |
-
modules.ResidualCouplingLayer(
|
135 |
-
channels,
|
136 |
-
hidden_channels,
|
137 |
-
kernel_size,
|
138 |
-
dilation_rate,
|
139 |
-
n_layers,
|
140 |
-
gin_channels=gin_channels,
|
141 |
-
mean_only=True,
|
142 |
-
)
|
143 |
-
)
|
144 |
-
self.flows.append(modules.Flip())
|
145 |
-
|
146 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
147 |
-
if not reverse:
|
148 |
-
for flow in self.flows:
|
149 |
-
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
150 |
-
else:
|
151 |
-
for flow in reversed(self.flows):
|
152 |
-
x = flow(x, x_mask, g=g, reverse=reverse)
|
153 |
-
return x
|
154 |
-
|
155 |
-
def remove_weight_norm(self):
|
156 |
-
for i in range(self.n_flows):
|
157 |
-
self.flows[i * 2].remove_weight_norm()
|
158 |
-
|
159 |
-
|
160 |
-
class PosteriorEncoder(nn.Module):
|
161 |
-
def __init__(
|
162 |
-
self,
|
163 |
-
in_channels,
|
164 |
-
out_channels,
|
165 |
-
hidden_channels,
|
166 |
-
kernel_size,
|
167 |
-
dilation_rate,
|
168 |
-
n_layers,
|
169 |
-
gin_channels=0,
|
170 |
-
):
|
171 |
-
super().__init__()
|
172 |
-
self.in_channels = in_channels
|
173 |
-
self.out_channels = out_channels
|
174 |
-
self.hidden_channels = hidden_channels
|
175 |
-
self.kernel_size = kernel_size
|
176 |
-
self.dilation_rate = dilation_rate
|
177 |
-
self.n_layers = n_layers
|
178 |
-
self.gin_channels = gin_channels
|
179 |
-
|
180 |
-
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
181 |
-
self.enc = modules.WN(
|
182 |
-
hidden_channels,
|
183 |
-
kernel_size,
|
184 |
-
dilation_rate,
|
185 |
-
n_layers,
|
186 |
-
gin_channels=gin_channels,
|
187 |
-
)
|
188 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
189 |
-
|
190 |
-
def forward(self, x, x_lengths, g=None):
|
191 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
192 |
-
x.dtype
|
193 |
-
)
|
194 |
-
x = self.pre(x) * x_mask
|
195 |
-
x = self.enc(x, x_mask, g=g)
|
196 |
-
stats = self.proj(x) * x_mask
|
197 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
198 |
-
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
199 |
-
return z, m, logs, x_mask
|
200 |
-
|
201 |
-
def remove_weight_norm(self):
|
202 |
-
self.enc.remove_weight_norm()
|
203 |
-
|
204 |
-
|
205 |
-
class Generator(torch.nn.Module):
|
206 |
-
def __init__(
|
207 |
-
self,
|
208 |
-
initial_channel,
|
209 |
-
resblock,
|
210 |
-
resblock_kernel_sizes,
|
211 |
-
resblock_dilation_sizes,
|
212 |
-
upsample_rates,
|
213 |
-
upsample_initial_channel,
|
214 |
-
upsample_kernel_sizes,
|
215 |
-
gin_channels=0,
|
216 |
-
):
|
217 |
-
super(Generator, self).__init__()
|
218 |
-
self.num_kernels = len(resblock_kernel_sizes)
|
219 |
-
self.num_upsamples = len(upsample_rates)
|
220 |
-
self.conv_pre = Conv1d(
|
221 |
-
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
222 |
-
)
|
223 |
-
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
224 |
-
|
225 |
-
self.ups = nn.ModuleList()
|
226 |
-
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
227 |
-
self.ups.append(
|
228 |
-
weight_norm(
|
229 |
-
ConvTranspose1d(
|
230 |
-
upsample_initial_channel // (2**i),
|
231 |
-
upsample_initial_channel // (2 ** (i + 1)),
|
232 |
-
k,
|
233 |
-
u,
|
234 |
-
padding=(k - u) // 2,
|
235 |
-
)
|
236 |
-
)
|
237 |
-
)
|
238 |
-
|
239 |
-
self.resblocks = nn.ModuleList()
|
240 |
-
for i in range(len(self.ups)):
|
241 |
-
ch = upsample_initial_channel // (2 ** (i + 1))
|
242 |
-
for j, (k, d) in enumerate(
|
243 |
-
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
244 |
-
):
|
245 |
-
self.resblocks.append(resblock(ch, k, d))
|
246 |
-
|
247 |
-
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
248 |
-
self.ups.apply(init_weights)
|
249 |
-
|
250 |
-
if gin_channels != 0:
|
251 |
-
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
252 |
-
|
253 |
-
def forward(self, x, g=None):
|
254 |
-
x = self.conv_pre(x)
|
255 |
-
if g is not None:
|
256 |
-
x = x + self.cond(g)
|
257 |
-
|
258 |
-
for i in range(self.num_upsamples):
|
259 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
260 |
-
x = self.ups[i](x)
|
261 |
-
xs = None
|
262 |
-
for j in range(self.num_kernels):
|
263 |
-
if xs is None:
|
264 |
-
xs = self.resblocks[i * self.num_kernels + j](x)
|
265 |
-
else:
|
266 |
-
xs += self.resblocks[i * self.num_kernels + j](x)
|
267 |
-
x = xs / self.num_kernels
|
268 |
-
x = F.leaky_relu(x)
|
269 |
-
x = self.conv_post(x)
|
270 |
-
x = torch.tanh(x)
|
271 |
-
|
272 |
-
return x
|
273 |
-
|
274 |
-
def remove_weight_norm(self):
|
275 |
-
for l in self.ups:
|
276 |
-
remove_weight_norm(l)
|
277 |
-
for l in self.resblocks:
|
278 |
-
l.remove_weight_norm()
|
279 |
-
|
280 |
-
|
281 |
-
class SineGen(torch.nn.Module):
|
282 |
-
"""Definition of sine generator
|
283 |
-
SineGen(samp_rate, harmonic_num = 0,
|
284 |
-
sine_amp = 0.1, noise_std = 0.003,
|
285 |
-
voiced_threshold = 0,
|
286 |
-
flag_for_pulse=False)
|
287 |
-
samp_rate: sampling rate in Hz
|
288 |
-
harmonic_num: number of harmonic overtones (default 0)
|
289 |
-
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
290 |
-
noise_std: std of Gaussian noise (default 0.003)
|
291 |
-
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
292 |
-
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
293 |
-
Note: when flag_for_pulse is True, the first time step of a voiced
|
294 |
-
segment is always sin(np.pi) or cos(0)
|
295 |
-
"""
|
296 |
-
|
297 |
-
def __init__(
|
298 |
-
self,
|
299 |
-
samp_rate,
|
300 |
-
harmonic_num=0,
|
301 |
-
sine_amp=0.1,
|
302 |
-
noise_std=0.003,
|
303 |
-
voiced_threshold=0,
|
304 |
-
flag_for_pulse=False,
|
305 |
-
):
|
306 |
-
super(SineGen, self).__init__()
|
307 |
-
self.sine_amp = sine_amp
|
308 |
-
self.noise_std = noise_std
|
309 |
-
self.harmonic_num = harmonic_num
|
310 |
-
self.dim = self.harmonic_num + 1
|
311 |
-
self.sampling_rate = samp_rate
|
312 |
-
self.voiced_threshold = voiced_threshold
|
313 |
-
|
314 |
-
def _f02uv(self, f0):
|
315 |
-
# generate uv signal
|
316 |
-
uv = torch.ones_like(f0)
|
317 |
-
uv = uv * (f0 > self.voiced_threshold)
|
318 |
-
return uv
|
319 |
-
|
320 |
-
def forward(self, f0, upp):
|
321 |
-
"""sine_tensor, uv = forward(f0)
|
322 |
-
input F0: tensor(batchsize=1, length, dim=1)
|
323 |
-
f0 for unvoiced steps should be 0
|
324 |
-
output sine_tensor: tensor(batchsize=1, length, dim)
|
325 |
-
output uv: tensor(batchsize=1, length, 1)
|
326 |
-
"""
|
327 |
-
with torch.no_grad():
|
328 |
-
f0 = f0[:, None].transpose(1, 2)
|
329 |
-
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
330 |
-
# fundamental component
|
331 |
-
f0_buf[:, :, 0] = f0[:, :, 0]
|
332 |
-
for idx in np.arange(self.harmonic_num):
|
333 |
-
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
334 |
-
idx + 2
|
335 |
-
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
336 |
-
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
337 |
-
rand_ini = torch.rand(
|
338 |
-
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
339 |
-
)
|
340 |
-
rand_ini[:, 0] = 0
|
341 |
-
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
342 |
-
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
343 |
-
tmp_over_one *= upp
|
344 |
-
tmp_over_one = F.interpolate(
|
345 |
-
tmp_over_one.transpose(2, 1),
|
346 |
-
scale_factor=upp,
|
347 |
-
mode="linear",
|
348 |
-
align_corners=True,
|
349 |
-
).transpose(2, 1)
|
350 |
-
rad_values = F.interpolate(
|
351 |
-
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
352 |
-
).transpose(
|
353 |
-
2, 1
|
354 |
-
) #######
|
355 |
-
tmp_over_one %= 1
|
356 |
-
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
357 |
-
cumsum_shift = torch.zeros_like(rad_values)
|
358 |
-
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
359 |
-
sine_waves = torch.sin(
|
360 |
-
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
361 |
-
)
|
362 |
-
sine_waves = sine_waves * self.sine_amp
|
363 |
-
uv = self._f02uv(f0)
|
364 |
-
uv = F.interpolate(
|
365 |
-
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
366 |
-
).transpose(2, 1)
|
367 |
-
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
368 |
-
noise = noise_amp * torch.randn_like(sine_waves)
|
369 |
-
sine_waves = sine_waves * uv + noise
|
370 |
-
return sine_waves, uv, noise
|
371 |
-
|
372 |
-
|
373 |
-
class SourceModuleHnNSF(torch.nn.Module):
|
374 |
-
"""SourceModule for hn-nsf
|
375 |
-
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
376 |
-
add_noise_std=0.003, voiced_threshod=0)
|
377 |
-
sampling_rate: sampling_rate in Hz
|
378 |
-
harmonic_num: number of harmonic above F0 (default: 0)
|
379 |
-
sine_amp: amplitude of sine source signal (default: 0.1)
|
380 |
-
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
381 |
-
note that amplitude of noise in unvoiced is decided
|
382 |
-
by sine_amp
|
383 |
-
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
384 |
-
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
385 |
-
F0_sampled (batchsize, length, 1)
|
386 |
-
Sine_source (batchsize, length, 1)
|
387 |
-
noise_source (batchsize, length 1)
|
388 |
-
uv (batchsize, length, 1)
|
389 |
-
"""
|
390 |
-
|
391 |
-
def __init__(
|
392 |
-
self,
|
393 |
-
sampling_rate,
|
394 |
-
harmonic_num=0,
|
395 |
-
sine_amp=0.1,
|
396 |
-
add_noise_std=0.003,
|
397 |
-
voiced_threshod=0,
|
398 |
-
is_half=True,
|
399 |
-
):
|
400 |
-
super(SourceModuleHnNSF, self).__init__()
|
401 |
-
|
402 |
-
self.sine_amp = sine_amp
|
403 |
-
self.noise_std = add_noise_std
|
404 |
-
self.is_half = is_half
|
405 |
-
# to produce sine waveforms
|
406 |
-
self.l_sin_gen = SineGen(
|
407 |
-
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
408 |
-
)
|
409 |
-
|
410 |
-
# to merge source harmonics into a single excitation
|
411 |
-
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
412 |
-
self.l_tanh = torch.nn.Tanh()
|
413 |
-
|
414 |
-
def forward(self, x, upp=None):
|
415 |
-
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
416 |
-
if self.is_half:
|
417 |
-
sine_wavs = sine_wavs.half()
|
418 |
-
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
419 |
-
return sine_merge, None, None # noise, uv
|
420 |
-
|
421 |
-
|
422 |
-
class GeneratorNSF(torch.nn.Module):
|
423 |
-
def __init__(
|
424 |
-
self,
|
425 |
-
initial_channel,
|
426 |
-
resblock,
|
427 |
-
resblock_kernel_sizes,
|
428 |
-
resblock_dilation_sizes,
|
429 |
-
upsample_rates,
|
430 |
-
upsample_initial_channel,
|
431 |
-
upsample_kernel_sizes,
|
432 |
-
gin_channels,
|
433 |
-
sr,
|
434 |
-
is_half=False,
|
435 |
-
):
|
436 |
-
super(GeneratorNSF, self).__init__()
|
437 |
-
self.num_kernels = len(resblock_kernel_sizes)
|
438 |
-
self.num_upsamples = len(upsample_rates)
|
439 |
-
|
440 |
-
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
441 |
-
self.m_source = SourceModuleHnNSF(
|
442 |
-
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
443 |
-
)
|
444 |
-
self.noise_convs = nn.ModuleList()
|
445 |
-
self.conv_pre = Conv1d(
|
446 |
-
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
447 |
-
)
|
448 |
-
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
449 |
-
|
450 |
-
self.ups = nn.ModuleList()
|
451 |
-
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
452 |
-
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
453 |
-
self.ups.append(
|
454 |
-
weight_norm(
|
455 |
-
ConvTranspose1d(
|
456 |
-
upsample_initial_channel // (2**i),
|
457 |
-
upsample_initial_channel // (2 ** (i + 1)),
|
458 |
-
k,
|
459 |
-
u,
|
460 |
-
padding=(k - u) // 2,
|
461 |
-
)
|
462 |
-
)
|
463 |
-
)
|
464 |
-
if i + 1 < len(upsample_rates):
|
465 |
-
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
466 |
-
self.noise_convs.append(
|
467 |
-
Conv1d(
|
468 |
-
1,
|
469 |
-
c_cur,
|
470 |
-
kernel_size=stride_f0 * 2,
|
471 |
-
stride=stride_f0,
|
472 |
-
padding=stride_f0 // 2,
|
473 |
-
)
|
474 |
-
)
|
475 |
-
else:
|
476 |
-
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
477 |
-
|
478 |
-
self.resblocks = nn.ModuleList()
|
479 |
-
for i in range(len(self.ups)):
|
480 |
-
ch = upsample_initial_channel // (2 ** (i + 1))
|
481 |
-
for j, (k, d) in enumerate(
|
482 |
-
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
483 |
-
):
|
484 |
-
self.resblocks.append(resblock(ch, k, d))
|
485 |
-
|
486 |
-
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
487 |
-
self.ups.apply(init_weights)
|
488 |
-
|
489 |
-
if gin_channels != 0:
|
490 |
-
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
491 |
-
|
492 |
-
self.upp = np.prod(upsample_rates)
|
493 |
-
|
494 |
-
def forward(self, x, f0, g=None):
|
495 |
-
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
496 |
-
har_source = har_source.transpose(1, 2)
|
497 |
-
x = self.conv_pre(x)
|
498 |
-
if g is not None:
|
499 |
-
x = x + self.cond(g)
|
500 |
-
|
501 |
-
for i in range(self.num_upsamples):
|
502 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
503 |
-
x = self.ups[i](x)
|
504 |
-
x_source = self.noise_convs[i](har_source)
|
505 |
-
x = x + x_source
|
506 |
-
xs = None
|
507 |
-
for j in range(self.num_kernels):
|
508 |
-
if xs is None:
|
509 |
-
xs = self.resblocks[i * self.num_kernels + j](x)
|
510 |
-
else:
|
511 |
-
xs += self.resblocks[i * self.num_kernels + j](x)
|
512 |
-
x = xs / self.num_kernels
|
513 |
-
x = F.leaky_relu(x)
|
514 |
-
x = self.conv_post(x)
|
515 |
-
x = torch.tanh(x)
|
516 |
-
return x
|
517 |
-
|
518 |
-
def remove_weight_norm(self):
|
519 |
-
for l in self.ups:
|
520 |
-
remove_weight_norm(l)
|
521 |
-
for l in self.resblocks:
|
522 |
-
l.remove_weight_norm()
|
523 |
-
|
524 |
-
|
525 |
-
sr2sr = {
|
526 |
-
"32k": 32000,
|
527 |
-
"40k": 40000,
|
528 |
-
"48k": 48000,
|
529 |
-
}
|
530 |
-
|
531 |
-
|
532 |
-
class SynthesizerTrnMsNSFsidM(nn.Module):
|
533 |
-
def __init__(
|
534 |
-
self,
|
535 |
-
spec_channels,
|
536 |
-
segment_size,
|
537 |
-
inter_channels,
|
538 |
-
hidden_channels,
|
539 |
-
filter_channels,
|
540 |
-
n_heads,
|
541 |
-
n_layers,
|
542 |
-
kernel_size,
|
543 |
-
p_dropout,
|
544 |
-
resblock,
|
545 |
-
resblock_kernel_sizes,
|
546 |
-
resblock_dilation_sizes,
|
547 |
-
upsample_rates,
|
548 |
-
upsample_initial_channel,
|
549 |
-
upsample_kernel_sizes,
|
550 |
-
spk_embed_dim,
|
551 |
-
gin_channels,
|
552 |
-
sr,
|
553 |
-
version,
|
554 |
-
**kwargs
|
555 |
-
):
|
556 |
-
super().__init__()
|
557 |
-
if type(sr) == type("strr"):
|
558 |
-
sr = sr2sr[sr]
|
559 |
-
self.spec_channels = spec_channels
|
560 |
-
self.inter_channels = inter_channels
|
561 |
-
self.hidden_channels = hidden_channels
|
562 |
-
self.filter_channels = filter_channels
|
563 |
-
self.n_heads = n_heads
|
564 |
-
self.n_layers = n_layers
|
565 |
-
self.kernel_size = kernel_size
|
566 |
-
self.p_dropout = p_dropout
|
567 |
-
self.resblock = resblock
|
568 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
569 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
570 |
-
self.upsample_rates = upsample_rates
|
571 |
-
self.upsample_initial_channel = upsample_initial_channel
|
572 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
573 |
-
self.segment_size = segment_size
|
574 |
-
self.gin_channels = gin_channels
|
575 |
-
# self.hop_length = hop_length#
|
576 |
-
self.spk_embed_dim = spk_embed_dim
|
577 |
-
if version == "v1":
|
578 |
-
self.enc_p = TextEncoder256(
|
579 |
-
inter_channels,
|
580 |
-
hidden_channels,
|
581 |
-
filter_channels,
|
582 |
-
n_heads,
|
583 |
-
n_layers,
|
584 |
-
kernel_size,
|
585 |
-
p_dropout,
|
586 |
-
)
|
587 |
-
else:
|
588 |
-
self.enc_p = TextEncoder768(
|
589 |
-
inter_channels,
|
590 |
-
hidden_channels,
|
591 |
-
filter_channels,
|
592 |
-
n_heads,
|
593 |
-
n_layers,
|
594 |
-
kernel_size,
|
595 |
-
p_dropout,
|
596 |
-
)
|
597 |
-
self.dec = GeneratorNSF(
|
598 |
-
inter_channels,
|
599 |
-
resblock,
|
600 |
-
resblock_kernel_sizes,
|
601 |
-
resblock_dilation_sizes,
|
602 |
-
upsample_rates,
|
603 |
-
upsample_initial_channel,
|
604 |
-
upsample_kernel_sizes,
|
605 |
-
gin_channels=gin_channels,
|
606 |
-
sr=sr,
|
607 |
-
is_half=kwargs["is_half"],
|
608 |
-
)
|
609 |
-
self.enc_q = PosteriorEncoder(
|
610 |
-
spec_channels,
|
611 |
-
inter_channels,
|
612 |
-
hidden_channels,
|
613 |
-
5,
|
614 |
-
1,
|
615 |
-
16,
|
616 |
-
gin_channels=gin_channels,
|
617 |
-
)
|
618 |
-
self.flow = ResidualCouplingBlock(
|
619 |
-
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
620 |
-
)
|
621 |
-
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
622 |
-
self.speaker_map = None
|
623 |
-
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
624 |
-
|
625 |
-
def remove_weight_norm(self):
|
626 |
-
self.dec.remove_weight_norm()
|
627 |
-
self.flow.remove_weight_norm()
|
628 |
-
self.enc_q.remove_weight_norm()
|
629 |
-
|
630 |
-
def construct_spkmixmap(self, n_speaker):
|
631 |
-
self.speaker_map = torch.zeros((n_speaker, 1, 1, self.gin_channels))
|
632 |
-
for i in range(n_speaker):
|
633 |
-
self.speaker_map[i] = self.emb_g(torch.LongTensor([[i]]))
|
634 |
-
self.speaker_map = self.speaker_map.unsqueeze(0)
|
635 |
-
|
636 |
-
def forward(self, phone, phone_lengths, pitch, nsff0, g, rnd, max_len=None):
|
637 |
-
if self.speaker_map is not None: # [N, S] * [S, B, 1, H]
|
638 |
-
g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
|
639 |
-
g = g * self.speaker_map # [N, S, B, 1, H]
|
640 |
-
g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
|
641 |
-
g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
|
642 |
-
else:
|
643 |
-
g = g.unsqueeze(0)
|
644 |
-
g = self.emb_g(g).transpose(1, 2)
|
645 |
-
|
646 |
-
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
647 |
-
z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
|
648 |
-
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
649 |
-
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
650 |
-
return o
|
651 |
-
|
652 |
-
|
653 |
-
class MultiPeriodDiscriminator(torch.nn.Module):
|
654 |
-
def __init__(self, use_spectral_norm=False):
|
655 |
-
super(MultiPeriodDiscriminator, self).__init__()
|
656 |
-
periods = [2, 3, 5, 7, 11, 17]
|
657 |
-
# periods = [3, 5, 7, 11, 17, 23, 37]
|
658 |
-
|
659 |
-
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
660 |
-
discs = discs + [
|
661 |
-
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
662 |
-
]
|
663 |
-
self.discriminators = nn.ModuleList(discs)
|
664 |
-
|
665 |
-
def forward(self, y, y_hat):
|
666 |
-
y_d_rs = [] #
|
667 |
-
y_d_gs = []
|
668 |
-
fmap_rs = []
|
669 |
-
fmap_gs = []
|
670 |
-
for i, d in enumerate(self.discriminators):
|
671 |
-
y_d_r, fmap_r = d(y)
|
672 |
-
y_d_g, fmap_g = d(y_hat)
|
673 |
-
# for j in range(len(fmap_r)):
|
674 |
-
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
675 |
-
y_d_rs.append(y_d_r)
|
676 |
-
y_d_gs.append(y_d_g)
|
677 |
-
fmap_rs.append(fmap_r)
|
678 |
-
fmap_gs.append(fmap_g)
|
679 |
-
|
680 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
681 |
-
|
682 |
-
|
683 |
-
class MultiPeriodDiscriminatorV2(torch.nn.Module):
|
684 |
-
def __init__(self, use_spectral_norm=False):
|
685 |
-
super(MultiPeriodDiscriminatorV2, self).__init__()
|
686 |
-
# periods = [2, 3, 5, 7, 11, 17]
|
687 |
-
periods = [2, 3, 5, 7, 11, 17, 23, 37]
|
688 |
-
|
689 |
-
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
690 |
-
discs = discs + [
|
691 |
-
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
692 |
-
]
|
693 |
-
self.discriminators = nn.ModuleList(discs)
|
694 |
-
|
695 |
-
def forward(self, y, y_hat):
|
696 |
-
y_d_rs = [] #
|
697 |
-
y_d_gs = []
|
698 |
-
fmap_rs = []
|
699 |
-
fmap_gs = []
|
700 |
-
for i, d in enumerate(self.discriminators):
|
701 |
-
y_d_r, fmap_r = d(y)
|
702 |
-
y_d_g, fmap_g = d(y_hat)
|
703 |
-
# for j in range(len(fmap_r)):
|
704 |
-
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
705 |
-
y_d_rs.append(y_d_r)
|
706 |
-
y_d_gs.append(y_d_g)
|
707 |
-
fmap_rs.append(fmap_r)
|
708 |
-
fmap_gs.append(fmap_g)
|
709 |
-
|
710 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
711 |
-
|
712 |
-
|
713 |
-
class DiscriminatorS(torch.nn.Module):
|
714 |
-
def __init__(self, use_spectral_norm=False):
|
715 |
-
super(DiscriminatorS, self).__init__()
|
716 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
717 |
-
self.convs = nn.ModuleList(
|
718 |
-
[
|
719 |
-
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
720 |
-
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
721 |
-
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
722 |
-
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
723 |
-
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
724 |
-
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
725 |
-
]
|
726 |
-
)
|
727 |
-
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
728 |
-
|
729 |
-
def forward(self, x):
|
730 |
-
fmap = []
|
731 |
-
|
732 |
-
for l in self.convs:
|
733 |
-
x = l(x)
|
734 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
735 |
-
fmap.append(x)
|
736 |
-
x = self.conv_post(x)
|
737 |
-
fmap.append(x)
|
738 |
-
x = torch.flatten(x, 1, -1)
|
739 |
-
|
740 |
-
return x, fmap
|
741 |
-
|
742 |
-
|
743 |
-
class DiscriminatorP(torch.nn.Module):
|
744 |
-
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
745 |
-
super(DiscriminatorP, self).__init__()
|
746 |
-
self.period = period
|
747 |
-
self.use_spectral_norm = use_spectral_norm
|
748 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
749 |
-
self.convs = nn.ModuleList(
|
750 |
-
[
|
751 |
-
norm_f(
|
752 |
-
Conv2d(
|
753 |
-
1,
|
754 |
-
32,
|
755 |
-
(kernel_size, 1),
|
756 |
-
(stride, 1),
|
757 |
-
padding=(get_padding(kernel_size, 1), 0),
|
758 |
-
)
|
759 |
-
),
|
760 |
-
norm_f(
|
761 |
-
Conv2d(
|
762 |
-
32,
|
763 |
-
128,
|
764 |
-
(kernel_size, 1),
|
765 |
-
(stride, 1),
|
766 |
-
padding=(get_padding(kernel_size, 1), 0),
|
767 |
-
)
|
768 |
-
),
|
769 |
-
norm_f(
|
770 |
-
Conv2d(
|
771 |
-
128,
|
772 |
-
512,
|
773 |
-
(kernel_size, 1),
|
774 |
-
(stride, 1),
|
775 |
-
padding=(get_padding(kernel_size, 1), 0),
|
776 |
-
)
|
777 |
-
),
|
778 |
-
norm_f(
|
779 |
-
Conv2d(
|
780 |
-
512,
|
781 |
-
1024,
|
782 |
-
(kernel_size, 1),
|
783 |
-
(stride, 1),
|
784 |
-
padding=(get_padding(kernel_size, 1), 0),
|
785 |
-
)
|
786 |
-
),
|
787 |
-
norm_f(
|
788 |
-
Conv2d(
|
789 |
-
1024,
|
790 |
-
1024,
|
791 |
-
(kernel_size, 1),
|
792 |
-
1,
|
793 |
-
padding=(get_padding(kernel_size, 1), 0),
|
794 |
-
)
|
795 |
-
),
|
796 |
-
]
|
797 |
-
)
|
798 |
-
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
799 |
-
|
800 |
-
def forward(self, x):
|
801 |
-
fmap = []
|
802 |
-
|
803 |
-
# 1d to 2d
|
804 |
-
b, c, t = x.shape
|
805 |
-
if t % self.period != 0: # pad first
|
806 |
-
n_pad = self.period - (t % self.period)
|
807 |
-
x = F.pad(x, (0, n_pad), "reflect")
|
808 |
-
t = t + n_pad
|
809 |
-
x = x.view(b, c, t // self.period, self.period)
|
810 |
-
|
811 |
-
for l in self.convs:
|
812 |
-
x = l(x)
|
813 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
814 |
-
fmap.append(x)
|
815 |
-
x = self.conv_post(x)
|
816 |
-
fmap.append(x)
|
817 |
-
x = torch.flatten(x, 1, -1)
|
818 |
-
|
819 |
-
return x, fmap
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/infer_pack/modules.py
DELETED
@@ -1,522 +0,0 @@
|
|
1 |
-
import copy
|
2 |
-
import math
|
3 |
-
import numpy as np
|
4 |
-
import scipy
|
5 |
-
import torch
|
6 |
-
from torch import nn
|
7 |
-
from torch.nn import functional as F
|
8 |
-
|
9 |
-
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
-
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
-
|
12 |
-
from lib.infer_pack import commons
|
13 |
-
from lib.infer_pack.commons import init_weights, get_padding
|
14 |
-
from lib.infer_pack.transforms import piecewise_rational_quadratic_transform
|
15 |
-
|
16 |
-
|
17 |
-
LRELU_SLOPE = 0.1
|
18 |
-
|
19 |
-
|
20 |
-
class LayerNorm(nn.Module):
|
21 |
-
def __init__(self, channels, eps=1e-5):
|
22 |
-
super().__init__()
|
23 |
-
self.channels = channels
|
24 |
-
self.eps = eps
|
25 |
-
|
26 |
-
self.gamma = nn.Parameter(torch.ones(channels))
|
27 |
-
self.beta = nn.Parameter(torch.zeros(channels))
|
28 |
-
|
29 |
-
def forward(self, x):
|
30 |
-
x = x.transpose(1, -1)
|
31 |
-
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
32 |
-
return x.transpose(1, -1)
|
33 |
-
|
34 |
-
|
35 |
-
class ConvReluNorm(nn.Module):
|
36 |
-
def __init__(
|
37 |
-
self,
|
38 |
-
in_channels,
|
39 |
-
hidden_channels,
|
40 |
-
out_channels,
|
41 |
-
kernel_size,
|
42 |
-
n_layers,
|
43 |
-
p_dropout,
|
44 |
-
):
|
45 |
-
super().__init__()
|
46 |
-
self.in_channels = in_channels
|
47 |
-
self.hidden_channels = hidden_channels
|
48 |
-
self.out_channels = out_channels
|
49 |
-
self.kernel_size = kernel_size
|
50 |
-
self.n_layers = n_layers
|
51 |
-
self.p_dropout = p_dropout
|
52 |
-
assert n_layers > 1, "Number of layers should be larger than 0."
|
53 |
-
|
54 |
-
self.conv_layers = nn.ModuleList()
|
55 |
-
self.norm_layers = nn.ModuleList()
|
56 |
-
self.conv_layers.append(
|
57 |
-
nn.Conv1d(
|
58 |
-
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
59 |
-
)
|
60 |
-
)
|
61 |
-
self.norm_layers.append(LayerNorm(hidden_channels))
|
62 |
-
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
63 |
-
for _ in range(n_layers - 1):
|
64 |
-
self.conv_layers.append(
|
65 |
-
nn.Conv1d(
|
66 |
-
hidden_channels,
|
67 |
-
hidden_channels,
|
68 |
-
kernel_size,
|
69 |
-
padding=kernel_size // 2,
|
70 |
-
)
|
71 |
-
)
|
72 |
-
self.norm_layers.append(LayerNorm(hidden_channels))
|
73 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
74 |
-
self.proj.weight.data.zero_()
|
75 |
-
self.proj.bias.data.zero_()
|
76 |
-
|
77 |
-
def forward(self, x, x_mask):
|
78 |
-
x_org = x
|
79 |
-
for i in range(self.n_layers):
|
80 |
-
x = self.conv_layers[i](x * x_mask)
|
81 |
-
x = self.norm_layers[i](x)
|
82 |
-
x = self.relu_drop(x)
|
83 |
-
x = x_org + self.proj(x)
|
84 |
-
return x * x_mask
|
85 |
-
|
86 |
-
|
87 |
-
class DDSConv(nn.Module):
|
88 |
-
"""
|
89 |
-
Dialted and Depth-Separable Convolution
|
90 |
-
"""
|
91 |
-
|
92 |
-
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
93 |
-
super().__init__()
|
94 |
-
self.channels = channels
|
95 |
-
self.kernel_size = kernel_size
|
96 |
-
self.n_layers = n_layers
|
97 |
-
self.p_dropout = p_dropout
|
98 |
-
|
99 |
-
self.drop = nn.Dropout(p_dropout)
|
100 |
-
self.convs_sep = nn.ModuleList()
|
101 |
-
self.convs_1x1 = nn.ModuleList()
|
102 |
-
self.norms_1 = nn.ModuleList()
|
103 |
-
self.norms_2 = nn.ModuleList()
|
104 |
-
for i in range(n_layers):
|
105 |
-
dilation = kernel_size**i
|
106 |
-
padding = (kernel_size * dilation - dilation) // 2
|
107 |
-
self.convs_sep.append(
|
108 |
-
nn.Conv1d(
|
109 |
-
channels,
|
110 |
-
channels,
|
111 |
-
kernel_size,
|
112 |
-
groups=channels,
|
113 |
-
dilation=dilation,
|
114 |
-
padding=padding,
|
115 |
-
)
|
116 |
-
)
|
117 |
-
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
118 |
-
self.norms_1.append(LayerNorm(channels))
|
119 |
-
self.norms_2.append(LayerNorm(channels))
|
120 |
-
|
121 |
-
def forward(self, x, x_mask, g=None):
|
122 |
-
if g is not None:
|
123 |
-
x = x + g
|
124 |
-
for i in range(self.n_layers):
|
125 |
-
y = self.convs_sep[i](x * x_mask)
|
126 |
-
y = self.norms_1[i](y)
|
127 |
-
y = F.gelu(y)
|
128 |
-
y = self.convs_1x1[i](y)
|
129 |
-
y = self.norms_2[i](y)
|
130 |
-
y = F.gelu(y)
|
131 |
-
y = self.drop(y)
|
132 |
-
x = x + y
|
133 |
-
return x * x_mask
|
134 |
-
|
135 |
-
|
136 |
-
class WN(torch.nn.Module):
|
137 |
-
def __init__(
|
138 |
-
self,
|
139 |
-
hidden_channels,
|
140 |
-
kernel_size,
|
141 |
-
dilation_rate,
|
142 |
-
n_layers,
|
143 |
-
gin_channels=0,
|
144 |
-
p_dropout=0,
|
145 |
-
):
|
146 |
-
super(WN, self).__init__()
|
147 |
-
assert kernel_size % 2 == 1
|
148 |
-
self.hidden_channels = hidden_channels
|
149 |
-
self.kernel_size = (kernel_size,)
|
150 |
-
self.dilation_rate = dilation_rate
|
151 |
-
self.n_layers = n_layers
|
152 |
-
self.gin_channels = gin_channels
|
153 |
-
self.p_dropout = p_dropout
|
154 |
-
|
155 |
-
self.in_layers = torch.nn.ModuleList()
|
156 |
-
self.res_skip_layers = torch.nn.ModuleList()
|
157 |
-
self.drop = nn.Dropout(p_dropout)
|
158 |
-
|
159 |
-
if gin_channels != 0:
|
160 |
-
cond_layer = torch.nn.Conv1d(
|
161 |
-
gin_channels, 2 * hidden_channels * n_layers, 1
|
162 |
-
)
|
163 |
-
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
164 |
-
|
165 |
-
for i in range(n_layers):
|
166 |
-
dilation = dilation_rate**i
|
167 |
-
padding = int((kernel_size * dilation - dilation) / 2)
|
168 |
-
in_layer = torch.nn.Conv1d(
|
169 |
-
hidden_channels,
|
170 |
-
2 * hidden_channels,
|
171 |
-
kernel_size,
|
172 |
-
dilation=dilation,
|
173 |
-
padding=padding,
|
174 |
-
)
|
175 |
-
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
176 |
-
self.in_layers.append(in_layer)
|
177 |
-
|
178 |
-
# last one is not necessary
|
179 |
-
if i < n_layers - 1:
|
180 |
-
res_skip_channels = 2 * hidden_channels
|
181 |
-
else:
|
182 |
-
res_skip_channels = hidden_channels
|
183 |
-
|
184 |
-
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
185 |
-
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
186 |
-
self.res_skip_layers.append(res_skip_layer)
|
187 |
-
|
188 |
-
def forward(self, x, x_mask, g=None, **kwargs):
|
189 |
-
output = torch.zeros_like(x)
|
190 |
-
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
191 |
-
|
192 |
-
if g is not None:
|
193 |
-
g = self.cond_layer(g)
|
194 |
-
|
195 |
-
for i in range(self.n_layers):
|
196 |
-
x_in = self.in_layers[i](x)
|
197 |
-
if g is not None:
|
198 |
-
cond_offset = i * 2 * self.hidden_channels
|
199 |
-
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
200 |
-
else:
|
201 |
-
g_l = torch.zeros_like(x_in)
|
202 |
-
|
203 |
-
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
204 |
-
acts = self.drop(acts)
|
205 |
-
|
206 |
-
res_skip_acts = self.res_skip_layers[i](acts)
|
207 |
-
if i < self.n_layers - 1:
|
208 |
-
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
209 |
-
x = (x + res_acts) * x_mask
|
210 |
-
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
211 |
-
else:
|
212 |
-
output = output + res_skip_acts
|
213 |
-
return output * x_mask
|
214 |
-
|
215 |
-
def remove_weight_norm(self):
|
216 |
-
if self.gin_channels != 0:
|
217 |
-
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
218 |
-
for l in self.in_layers:
|
219 |
-
torch.nn.utils.remove_weight_norm(l)
|
220 |
-
for l in self.res_skip_layers:
|
221 |
-
torch.nn.utils.remove_weight_norm(l)
|
222 |
-
|
223 |
-
|
224 |
-
class ResBlock1(torch.nn.Module):
|
225 |
-
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
226 |
-
super(ResBlock1, self).__init__()
|
227 |
-
self.convs1 = nn.ModuleList(
|
228 |
-
[
|
229 |
-
weight_norm(
|
230 |
-
Conv1d(
|
231 |
-
channels,
|
232 |
-
channels,
|
233 |
-
kernel_size,
|
234 |
-
1,
|
235 |
-
dilation=dilation[0],
|
236 |
-
padding=get_padding(kernel_size, dilation[0]),
|
237 |
-
)
|
238 |
-
),
|
239 |
-
weight_norm(
|
240 |
-
Conv1d(
|
241 |
-
channels,
|
242 |
-
channels,
|
243 |
-
kernel_size,
|
244 |
-
1,
|
245 |
-
dilation=dilation[1],
|
246 |
-
padding=get_padding(kernel_size, dilation[1]),
|
247 |
-
)
|
248 |
-
),
|
249 |
-
weight_norm(
|
250 |
-
Conv1d(
|
251 |
-
channels,
|
252 |
-
channels,
|
253 |
-
kernel_size,
|
254 |
-
1,
|
255 |
-
dilation=dilation[2],
|
256 |
-
padding=get_padding(kernel_size, dilation[2]),
|
257 |
-
)
|
258 |
-
),
|
259 |
-
]
|
260 |
-
)
|
261 |
-
self.convs1.apply(init_weights)
|
262 |
-
|
263 |
-
self.convs2 = nn.ModuleList(
|
264 |
-
[
|
265 |
-
weight_norm(
|
266 |
-
Conv1d(
|
267 |
-
channels,
|
268 |
-
channels,
|
269 |
-
kernel_size,
|
270 |
-
1,
|
271 |
-
dilation=1,
|
272 |
-
padding=get_padding(kernel_size, 1),
|
273 |
-
)
|
274 |
-
),
|
275 |
-
weight_norm(
|
276 |
-
Conv1d(
|
277 |
-
channels,
|
278 |
-
channels,
|
279 |
-
kernel_size,
|
280 |
-
1,
|
281 |
-
dilation=1,
|
282 |
-
padding=get_padding(kernel_size, 1),
|
283 |
-
)
|
284 |
-
),
|
285 |
-
weight_norm(
|
286 |
-
Conv1d(
|
287 |
-
channels,
|
288 |
-
channels,
|
289 |
-
kernel_size,
|
290 |
-
1,
|
291 |
-
dilation=1,
|
292 |
-
padding=get_padding(kernel_size, 1),
|
293 |
-
)
|
294 |
-
),
|
295 |
-
]
|
296 |
-
)
|
297 |
-
self.convs2.apply(init_weights)
|
298 |
-
|
299 |
-
def forward(self, x, x_mask=None):
|
300 |
-
for c1, c2 in zip(self.convs1, self.convs2):
|
301 |
-
xt = F.leaky_relu(x, LRELU_SLOPE)
|
302 |
-
if x_mask is not None:
|
303 |
-
xt = xt * x_mask
|
304 |
-
xt = c1(xt)
|
305 |
-
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
306 |
-
if x_mask is not None:
|
307 |
-
xt = xt * x_mask
|
308 |
-
xt = c2(xt)
|
309 |
-
x = xt + x
|
310 |
-
if x_mask is not None:
|
311 |
-
x = x * x_mask
|
312 |
-
return x
|
313 |
-
|
314 |
-
def remove_weight_norm(self):
|
315 |
-
for l in self.convs1:
|
316 |
-
remove_weight_norm(l)
|
317 |
-
for l in self.convs2:
|
318 |
-
remove_weight_norm(l)
|
319 |
-
|
320 |
-
|
321 |
-
class ResBlock2(torch.nn.Module):
|
322 |
-
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
323 |
-
super(ResBlock2, self).__init__()
|
324 |
-
self.convs = nn.ModuleList(
|
325 |
-
[
|
326 |
-
weight_norm(
|
327 |
-
Conv1d(
|
328 |
-
channels,
|
329 |
-
channels,
|
330 |
-
kernel_size,
|
331 |
-
1,
|
332 |
-
dilation=dilation[0],
|
333 |
-
padding=get_padding(kernel_size, dilation[0]),
|
334 |
-
)
|
335 |
-
),
|
336 |
-
weight_norm(
|
337 |
-
Conv1d(
|
338 |
-
channels,
|
339 |
-
channels,
|
340 |
-
kernel_size,
|
341 |
-
1,
|
342 |
-
dilation=dilation[1],
|
343 |
-
padding=get_padding(kernel_size, dilation[1]),
|
344 |
-
)
|
345 |
-
),
|
346 |
-
]
|
347 |
-
)
|
348 |
-
self.convs.apply(init_weights)
|
349 |
-
|
350 |
-
def forward(self, x, x_mask=None):
|
351 |
-
for c in self.convs:
|
352 |
-
xt = F.leaky_relu(x, LRELU_SLOPE)
|
353 |
-
if x_mask is not None:
|
354 |
-
xt = xt * x_mask
|
355 |
-
xt = c(xt)
|
356 |
-
x = xt + x
|
357 |
-
if x_mask is not None:
|
358 |
-
x = x * x_mask
|
359 |
-
return x
|
360 |
-
|
361 |
-
def remove_weight_norm(self):
|
362 |
-
for l in self.convs:
|
363 |
-
remove_weight_norm(l)
|
364 |
-
|
365 |
-
|
366 |
-
class Log(nn.Module):
|
367 |
-
def forward(self, x, x_mask, reverse=False, **kwargs):
|
368 |
-
if not reverse:
|
369 |
-
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
370 |
-
logdet = torch.sum(-y, [1, 2])
|
371 |
-
return y, logdet
|
372 |
-
else:
|
373 |
-
x = torch.exp(x) * x_mask
|
374 |
-
return x
|
375 |
-
|
376 |
-
|
377 |
-
class Flip(nn.Module):
|
378 |
-
def forward(self, x, *args, reverse=False, **kwargs):
|
379 |
-
x = torch.flip(x, [1])
|
380 |
-
if not reverse:
|
381 |
-
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
382 |
-
return x, logdet
|
383 |
-
else:
|
384 |
-
return x
|
385 |
-
|
386 |
-
|
387 |
-
class ElementwiseAffine(nn.Module):
|
388 |
-
def __init__(self, channels):
|
389 |
-
super().__init__()
|
390 |
-
self.channels = channels
|
391 |
-
self.m = nn.Parameter(torch.zeros(channels, 1))
|
392 |
-
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
393 |
-
|
394 |
-
def forward(self, x, x_mask, reverse=False, **kwargs):
|
395 |
-
if not reverse:
|
396 |
-
y = self.m + torch.exp(self.logs) * x
|
397 |
-
y = y * x_mask
|
398 |
-
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
399 |
-
return y, logdet
|
400 |
-
else:
|
401 |
-
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
402 |
-
return x
|
403 |
-
|
404 |
-
|
405 |
-
class ResidualCouplingLayer(nn.Module):
|
406 |
-
def __init__(
|
407 |
-
self,
|
408 |
-
channels,
|
409 |
-
hidden_channels,
|
410 |
-
kernel_size,
|
411 |
-
dilation_rate,
|
412 |
-
n_layers,
|
413 |
-
p_dropout=0,
|
414 |
-
gin_channels=0,
|
415 |
-
mean_only=False,
|
416 |
-
):
|
417 |
-
assert channels % 2 == 0, "channels should be divisible by 2"
|
418 |
-
super().__init__()
|
419 |
-
self.channels = channels
|
420 |
-
self.hidden_channels = hidden_channels
|
421 |
-
self.kernel_size = kernel_size
|
422 |
-
self.dilation_rate = dilation_rate
|
423 |
-
self.n_layers = n_layers
|
424 |
-
self.half_channels = channels // 2
|
425 |
-
self.mean_only = mean_only
|
426 |
-
|
427 |
-
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
428 |
-
self.enc = WN(
|
429 |
-
hidden_channels,
|
430 |
-
kernel_size,
|
431 |
-
dilation_rate,
|
432 |
-
n_layers,
|
433 |
-
p_dropout=p_dropout,
|
434 |
-
gin_channels=gin_channels,
|
435 |
-
)
|
436 |
-
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
437 |
-
self.post.weight.data.zero_()
|
438 |
-
self.post.bias.data.zero_()
|
439 |
-
|
440 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
441 |
-
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
442 |
-
h = self.pre(x0) * x_mask
|
443 |
-
h = self.enc(h, x_mask, g=g)
|
444 |
-
stats = self.post(h) * x_mask
|
445 |
-
if not self.mean_only:
|
446 |
-
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
447 |
-
else:
|
448 |
-
m = stats
|
449 |
-
logs = torch.zeros_like(m)
|
450 |
-
|
451 |
-
if not reverse:
|
452 |
-
x1 = m + x1 * torch.exp(logs) * x_mask
|
453 |
-
x = torch.cat([x0, x1], 1)
|
454 |
-
logdet = torch.sum(logs, [1, 2])
|
455 |
-
return x, logdet
|
456 |
-
else:
|
457 |
-
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
458 |
-
x = torch.cat([x0, x1], 1)
|
459 |
-
return x
|
460 |
-
|
461 |
-
def remove_weight_norm(self):
|
462 |
-
self.enc.remove_weight_norm()
|
463 |
-
|
464 |
-
|
465 |
-
class ConvFlow(nn.Module):
|
466 |
-
def __init__(
|
467 |
-
self,
|
468 |
-
in_channels,
|
469 |
-
filter_channels,
|
470 |
-
kernel_size,
|
471 |
-
n_layers,
|
472 |
-
num_bins=10,
|
473 |
-
tail_bound=5.0,
|
474 |
-
):
|
475 |
-
super().__init__()
|
476 |
-
self.in_channels = in_channels
|
477 |
-
self.filter_channels = filter_channels
|
478 |
-
self.kernel_size = kernel_size
|
479 |
-
self.n_layers = n_layers
|
480 |
-
self.num_bins = num_bins
|
481 |
-
self.tail_bound = tail_bound
|
482 |
-
self.half_channels = in_channels // 2
|
483 |
-
|
484 |
-
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
485 |
-
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
486 |
-
self.proj = nn.Conv1d(
|
487 |
-
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
488 |
-
)
|
489 |
-
self.proj.weight.data.zero_()
|
490 |
-
self.proj.bias.data.zero_()
|
491 |
-
|
492 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
493 |
-
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
494 |
-
h = self.pre(x0)
|
495 |
-
h = self.convs(h, x_mask, g=g)
|
496 |
-
h = self.proj(h) * x_mask
|
497 |
-
|
498 |
-
b, c, t = x0.shape
|
499 |
-
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
500 |
-
|
501 |
-
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
502 |
-
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
503 |
-
self.filter_channels
|
504 |
-
)
|
505 |
-
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
506 |
-
|
507 |
-
x1, logabsdet = piecewise_rational_quadratic_transform(
|
508 |
-
x1,
|
509 |
-
unnormalized_widths,
|
510 |
-
unnormalized_heights,
|
511 |
-
unnormalized_derivatives,
|
512 |
-
inverse=reverse,
|
513 |
-
tails="linear",
|
514 |
-
tail_bound=self.tail_bound,
|
515 |
-
)
|
516 |
-
|
517 |
-
x = torch.cat([x0, x1], 1) * x_mask
|
518 |
-
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
519 |
-
if not reverse:
|
520 |
-
return x, logdet
|
521 |
-
else:
|
522 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/infer_pack/modules/F0Predictor/DioF0Predictor.py
DELETED
@@ -1,90 +0,0 @@
|
|
1 |
-
from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
2 |
-
import pyworld
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
|
6 |
-
class DioF0Predictor(F0Predictor):
|
7 |
-
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
8 |
-
self.hop_length = hop_length
|
9 |
-
self.f0_min = f0_min
|
10 |
-
self.f0_max = f0_max
|
11 |
-
self.sampling_rate = sampling_rate
|
12 |
-
|
13 |
-
def interpolate_f0(self, f0):
|
14 |
-
"""
|
15 |
-
对F0进行插值处理
|
16 |
-
"""
|
17 |
-
|
18 |
-
data = np.reshape(f0, (f0.size, 1))
|
19 |
-
|
20 |
-
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
21 |
-
vuv_vector[data > 0.0] = 1.0
|
22 |
-
vuv_vector[data <= 0.0] = 0.0
|
23 |
-
|
24 |
-
ip_data = data
|
25 |
-
|
26 |
-
frame_number = data.size
|
27 |
-
last_value = 0.0
|
28 |
-
for i in range(frame_number):
|
29 |
-
if data[i] <= 0.0:
|
30 |
-
j = i + 1
|
31 |
-
for j in range(i + 1, frame_number):
|
32 |
-
if data[j] > 0.0:
|
33 |
-
break
|
34 |
-
if j < frame_number - 1:
|
35 |
-
if last_value > 0.0:
|
36 |
-
step = (data[j] - data[i - 1]) / float(j - i)
|
37 |
-
for k in range(i, j):
|
38 |
-
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
39 |
-
else:
|
40 |
-
for k in range(i, j):
|
41 |
-
ip_data[k] = data[j]
|
42 |
-
else:
|
43 |
-
for k in range(i, frame_number):
|
44 |
-
ip_data[k] = last_value
|
45 |
-
else:
|
46 |
-
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
47 |
-
last_value = data[i]
|
48 |
-
|
49 |
-
return ip_data[:, 0], vuv_vector[:, 0]
|
50 |
-
|
51 |
-
def resize_f0(self, x, target_len):
|
52 |
-
source = np.array(x)
|
53 |
-
source[source < 0.001] = np.nan
|
54 |
-
target = np.interp(
|
55 |
-
np.arange(0, len(source) * target_len, len(source)) / target_len,
|
56 |
-
np.arange(0, len(source)),
|
57 |
-
source,
|
58 |
-
)
|
59 |
-
res = np.nan_to_num(target)
|
60 |
-
return res
|
61 |
-
|
62 |
-
def compute_f0(self, wav, p_len=None):
|
63 |
-
if p_len is None:
|
64 |
-
p_len = wav.shape[0] // self.hop_length
|
65 |
-
f0, t = pyworld.dio(
|
66 |
-
wav.astype(np.double),
|
67 |
-
fs=self.sampling_rate,
|
68 |
-
f0_floor=self.f0_min,
|
69 |
-
f0_ceil=self.f0_max,
|
70 |
-
frame_period=1000 * self.hop_length / self.sampling_rate,
|
71 |
-
)
|
72 |
-
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
73 |
-
for index, pitch in enumerate(f0):
|
74 |
-
f0[index] = round(pitch, 1)
|
75 |
-
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
76 |
-
|
77 |
-
def compute_f0_uv(self, wav, p_len=None):
|
78 |
-
if p_len is None:
|
79 |
-
p_len = wav.shape[0] // self.hop_length
|
80 |
-
f0, t = pyworld.dio(
|
81 |
-
wav.astype(np.double),
|
82 |
-
fs=self.sampling_rate,
|
83 |
-
f0_floor=self.f0_min,
|
84 |
-
f0_ceil=self.f0_max,
|
85 |
-
frame_period=1000 * self.hop_length / self.sampling_rate,
|
86 |
-
)
|
87 |
-
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
88 |
-
for index, pitch in enumerate(f0):
|
89 |
-
f0[index] = round(pitch, 1)
|
90 |
-
return self.interpolate_f0(self.resize_f0(f0, p_len))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/infer_pack/modules/F0Predictor/F0Predictor.py
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
class F0Predictor(object):
|
2 |
-
def compute_f0(self, wav, p_len):
|
3 |
-
"""
|
4 |
-
input: wav:[signal_length]
|
5 |
-
p_len:int
|
6 |
-
output: f0:[signal_length//hop_length]
|
7 |
-
"""
|
8 |
-
pass
|
9 |
-
|
10 |
-
def compute_f0_uv(self, wav, p_len):
|
11 |
-
"""
|
12 |
-
input: wav:[signal_length]
|
13 |
-
p_len:int
|
14 |
-
output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
|
15 |
-
"""
|
16 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py
DELETED
@@ -1,86 +0,0 @@
|
|
1 |
-
from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
2 |
-
import pyworld
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
|
6 |
-
class HarvestF0Predictor(F0Predictor):
|
7 |
-
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
8 |
-
self.hop_length = hop_length
|
9 |
-
self.f0_min = f0_min
|
10 |
-
self.f0_max = f0_max
|
11 |
-
self.sampling_rate = sampling_rate
|
12 |
-
|
13 |
-
def interpolate_f0(self, f0):
|
14 |
-
"""
|
15 |
-
对F0进行插值处理
|
16 |
-
"""
|
17 |
-
|
18 |
-
data = np.reshape(f0, (f0.size, 1))
|
19 |
-
|
20 |
-
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
21 |
-
vuv_vector[data > 0.0] = 1.0
|
22 |
-
vuv_vector[data <= 0.0] = 0.0
|
23 |
-
|
24 |
-
ip_data = data
|
25 |
-
|
26 |
-
frame_number = data.size
|
27 |
-
last_value = 0.0
|
28 |
-
for i in range(frame_number):
|
29 |
-
if data[i] <= 0.0:
|
30 |
-
j = i + 1
|
31 |
-
for j in range(i + 1, frame_number):
|
32 |
-
if data[j] > 0.0:
|
33 |
-
break
|
34 |
-
if j < frame_number - 1:
|
35 |
-
if last_value > 0.0:
|
36 |
-
step = (data[j] - data[i - 1]) / float(j - i)
|
37 |
-
for k in range(i, j):
|
38 |
-
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
39 |
-
else:
|
40 |
-
for k in range(i, j):
|
41 |
-
ip_data[k] = data[j]
|
42 |
-
else:
|
43 |
-
for k in range(i, frame_number):
|
44 |
-
ip_data[k] = last_value
|
45 |
-
else:
|
46 |
-
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
47 |
-
last_value = data[i]
|
48 |
-
|
49 |
-
return ip_data[:, 0], vuv_vector[:, 0]
|
50 |
-
|
51 |
-
def resize_f0(self, x, target_len):
|
52 |
-
source = np.array(x)
|
53 |
-
source[source < 0.001] = np.nan
|
54 |
-
target = np.interp(
|
55 |
-
np.arange(0, len(source) * target_len, len(source)) / target_len,
|
56 |
-
np.arange(0, len(source)),
|
57 |
-
source,
|
58 |
-
)
|
59 |
-
res = np.nan_to_num(target)
|
60 |
-
return res
|
61 |
-
|
62 |
-
def compute_f0(self, wav, p_len=None):
|
63 |
-
if p_len is None:
|
64 |
-
p_len = wav.shape[0] // self.hop_length
|
65 |
-
f0, t = pyworld.harvest(
|
66 |
-
wav.astype(np.double),
|
67 |
-
fs=self.hop_length,
|
68 |
-
f0_ceil=self.f0_max,
|
69 |
-
f0_floor=self.f0_min,
|
70 |
-
frame_period=1000 * self.hop_length / self.sampling_rate,
|
71 |
-
)
|
72 |
-
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs)
|
73 |
-
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
74 |
-
|
75 |
-
def compute_f0_uv(self, wav, p_len=None):
|
76 |
-
if p_len is None:
|
77 |
-
p_len = wav.shape[0] // self.hop_length
|
78 |
-
f0, t = pyworld.harvest(
|
79 |
-
wav.astype(np.double),
|
80 |
-
fs=self.sampling_rate,
|
81 |
-
f0_floor=self.f0_min,
|
82 |
-
f0_ceil=self.f0_max,
|
83 |
-
frame_period=1000 * self.hop_length / self.sampling_rate,
|
84 |
-
)
|
85 |
-
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
86 |
-
return self.interpolate_f0(self.resize_f0(f0, p_len))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/infer_pack/modules/F0Predictor/PMF0Predictor.py
DELETED
@@ -1,97 +0,0 @@
|
|
1 |
-
from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
2 |
-
import parselmouth
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
|
6 |
-
class PMF0Predictor(F0Predictor):
|
7 |
-
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
8 |
-
self.hop_length = hop_length
|
9 |
-
self.f0_min = f0_min
|
10 |
-
self.f0_max = f0_max
|
11 |
-
self.sampling_rate = sampling_rate
|
12 |
-
|
13 |
-
def interpolate_f0(self, f0):
|
14 |
-
"""
|
15 |
-
对F0进行插值处理
|
16 |
-
"""
|
17 |
-
|
18 |
-
data = np.reshape(f0, (f0.size, 1))
|
19 |
-
|
20 |
-
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
21 |
-
vuv_vector[data > 0.0] = 1.0
|
22 |
-
vuv_vector[data <= 0.0] = 0.0
|
23 |
-
|
24 |
-
ip_data = data
|
25 |
-
|
26 |
-
frame_number = data.size
|
27 |
-
last_value = 0.0
|
28 |
-
for i in range(frame_number):
|
29 |
-
if data[i] <= 0.0:
|
30 |
-
j = i + 1
|
31 |
-
for j in range(i + 1, frame_number):
|
32 |
-
if data[j] > 0.0:
|
33 |
-
break
|
34 |
-
if j < frame_number - 1:
|
35 |
-
if last_value > 0.0:
|
36 |
-
step = (data[j] - data[i - 1]) / float(j - i)
|
37 |
-
for k in range(i, j):
|
38 |
-
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
39 |
-
else:
|
40 |
-
for k in range(i, j):
|
41 |
-
ip_data[k] = data[j]
|
42 |
-
else:
|
43 |
-
for k in range(i, frame_number):
|
44 |
-
ip_data[k] = last_value
|
45 |
-
else:
|
46 |
-
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
47 |
-
last_value = data[i]
|
48 |
-
|
49 |
-
return ip_data[:, 0], vuv_vector[:, 0]
|
50 |
-
|
51 |
-
def compute_f0(self, wav, p_len=None):
|
52 |
-
x = wav
|
53 |
-
if p_len is None:
|
54 |
-
p_len = x.shape[0] // self.hop_length
|
55 |
-
else:
|
56 |
-
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
57 |
-
time_step = self.hop_length / self.sampling_rate * 1000
|
58 |
-
f0 = (
|
59 |
-
parselmouth.Sound(x, self.sampling_rate)
|
60 |
-
.to_pitch_ac(
|
61 |
-
time_step=time_step / 1000,
|
62 |
-
voicing_threshold=0.6,
|
63 |
-
pitch_floor=self.f0_min,
|
64 |
-
pitch_ceiling=self.f0_max,
|
65 |
-
)
|
66 |
-
.selected_array["frequency"]
|
67 |
-
)
|
68 |
-
|
69 |
-
pad_size = (p_len - len(f0) + 1) // 2
|
70 |
-
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
71 |
-
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
72 |
-
f0, uv = self.interpolate_f0(f0)
|
73 |
-
return f0
|
74 |
-
|
75 |
-
def compute_f0_uv(self, wav, p_len=None):
|
76 |
-
x = wav
|
77 |
-
if p_len is None:
|
78 |
-
p_len = x.shape[0] // self.hop_length
|
79 |
-
else:
|
80 |
-
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
81 |
-
time_step = self.hop_length / self.sampling_rate * 1000
|
82 |
-
f0 = (
|
83 |
-
parselmouth.Sound(x, self.sampling_rate)
|
84 |
-
.to_pitch_ac(
|
85 |
-
time_step=time_step / 1000,
|
86 |
-
voicing_threshold=0.6,
|
87 |
-
pitch_floor=self.f0_min,
|
88 |
-
pitch_ceiling=self.f0_max,
|
89 |
-
)
|
90 |
-
.selected_array["frequency"]
|
91 |
-
)
|
92 |
-
|
93 |
-
pad_size = (p_len - len(f0) + 1) // 2
|
94 |
-
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
95 |
-
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
96 |
-
f0, uv = self.interpolate_f0(f0)
|
97 |
-
return f0, uv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/infer_pack/modules/F0Predictor/__init__.py
DELETED
File without changes
|
lib/infer_pack/onnx_inference.py
DELETED
@@ -1,145 +0,0 @@
|
|
1 |
-
import onnxruntime
|
2 |
-
import librosa
|
3 |
-
import numpy as np
|
4 |
-
import soundfile
|
5 |
-
|
6 |
-
|
7 |
-
class ContentVec:
|
8 |
-
def __init__(self, vec_path="pretrained/vec-768-layer-12.onnx", device=None):
|
9 |
-
print("load model(s) from {}".format(vec_path))
|
10 |
-
if device == "cpu" or device is None:
|
11 |
-
providers = ["CPUExecutionProvider"]
|
12 |
-
elif device == "cuda":
|
13 |
-
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
14 |
-
elif device == "dml":
|
15 |
-
providers = ["DmlExecutionProvider"]
|
16 |
-
else:
|
17 |
-
raise RuntimeError("Unsportted Device")
|
18 |
-
self.model = onnxruntime.InferenceSession(vec_path, providers=providers)
|
19 |
-
|
20 |
-
def __call__(self, wav):
|
21 |
-
return self.forward(wav)
|
22 |
-
|
23 |
-
def forward(self, wav):
|
24 |
-
feats = wav
|
25 |
-
if feats.ndim == 2: # double channels
|
26 |
-
feats = feats.mean(-1)
|
27 |
-
assert feats.ndim == 1, feats.ndim
|
28 |
-
feats = np.expand_dims(np.expand_dims(feats, 0), 0)
|
29 |
-
onnx_input = {self.model.get_inputs()[0].name: feats}
|
30 |
-
logits = self.model.run(None, onnx_input)[0]
|
31 |
-
return logits.transpose(0, 2, 1)
|
32 |
-
|
33 |
-
|
34 |
-
def get_f0_predictor(f0_predictor, hop_length, sampling_rate, **kargs):
|
35 |
-
if f0_predictor == "pm":
|
36 |
-
from lib.infer_pack.modules.F0Predictor.PMF0Predictor import PMF0Predictor
|
37 |
-
|
38 |
-
f0_predictor_object = PMF0Predictor(
|
39 |
-
hop_length=hop_length, sampling_rate=sampling_rate
|
40 |
-
)
|
41 |
-
elif f0_predictor == "harvest":
|
42 |
-
from lib.infer_pack.modules.F0Predictor.HarvestF0Predictor import (
|
43 |
-
HarvestF0Predictor,
|
44 |
-
)
|
45 |
-
|
46 |
-
f0_predictor_object = HarvestF0Predictor(
|
47 |
-
hop_length=hop_length, sampling_rate=sampling_rate
|
48 |
-
)
|
49 |
-
elif f0_predictor == "dio":
|
50 |
-
from lib.infer_pack.modules.F0Predictor.DioF0Predictor import DioF0Predictor
|
51 |
-
|
52 |
-
f0_predictor_object = DioF0Predictor(
|
53 |
-
hop_length=hop_length, sampling_rate=sampling_rate
|
54 |
-
)
|
55 |
-
else:
|
56 |
-
raise Exception("Unknown f0 predictor")
|
57 |
-
return f0_predictor_object
|
58 |
-
|
59 |
-
|
60 |
-
class OnnxRVC:
|
61 |
-
def __init__(
|
62 |
-
self,
|
63 |
-
model_path,
|
64 |
-
sr=40000,
|
65 |
-
hop_size=512,
|
66 |
-
vec_path="vec-768-layer-12",
|
67 |
-
device="cpu",
|
68 |
-
):
|
69 |
-
vec_path = f"pretrained/{vec_path}.onnx"
|
70 |
-
self.vec_model = ContentVec(vec_path, device)
|
71 |
-
if device == "cpu" or device is None:
|
72 |
-
providers = ["CPUExecutionProvider"]
|
73 |
-
elif device == "cuda":
|
74 |
-
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
75 |
-
elif device == "dml":
|
76 |
-
providers = ["DmlExecutionProvider"]
|
77 |
-
else:
|
78 |
-
raise RuntimeError("Unsportted Device")
|
79 |
-
self.model = onnxruntime.InferenceSession(model_path, providers=providers)
|
80 |
-
self.sampling_rate = sr
|
81 |
-
self.hop_size = hop_size
|
82 |
-
|
83 |
-
def forward(self, hubert, hubert_length, pitch, pitchf, ds, rnd):
|
84 |
-
onnx_input = {
|
85 |
-
self.model.get_inputs()[0].name: hubert,
|
86 |
-
self.model.get_inputs()[1].name: hubert_length,
|
87 |
-
self.model.get_inputs()[2].name: pitch,
|
88 |
-
self.model.get_inputs()[3].name: pitchf,
|
89 |
-
self.model.get_inputs()[4].name: ds,
|
90 |
-
self.model.get_inputs()[5].name: rnd,
|
91 |
-
}
|
92 |
-
return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16)
|
93 |
-
|
94 |
-
def inference(
|
95 |
-
self,
|
96 |
-
raw_path,
|
97 |
-
sid,
|
98 |
-
f0_method="dio",
|
99 |
-
f0_up_key=0,
|
100 |
-
pad_time=0.5,
|
101 |
-
cr_threshold=0.02,
|
102 |
-
):
|
103 |
-
f0_min = 50
|
104 |
-
f0_max = 1100
|
105 |
-
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
106 |
-
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
107 |
-
f0_predictor = get_f0_predictor(
|
108 |
-
f0_method,
|
109 |
-
hop_length=self.hop_size,
|
110 |
-
sampling_rate=self.sampling_rate,
|
111 |
-
threshold=cr_threshold,
|
112 |
-
)
|
113 |
-
wav, sr = librosa.load(raw_path, sr=self.sampling_rate)
|
114 |
-
org_length = len(wav)
|
115 |
-
if org_length / sr > 50.0:
|
116 |
-
raise RuntimeError("Reached Max Length")
|
117 |
-
|
118 |
-
wav16k = librosa.resample(wav, orig_sr=self.sampling_rate, target_sr=16000)
|
119 |
-
wav16k = wav16k
|
120 |
-
|
121 |
-
hubert = self.vec_model(wav16k)
|
122 |
-
hubert = np.repeat(hubert, 2, axis=2).transpose(0, 2, 1).astype(np.float32)
|
123 |
-
hubert_length = hubert.shape[1]
|
124 |
-
|
125 |
-
pitchf = f0_predictor.compute_f0(wav, hubert_length)
|
126 |
-
pitchf = pitchf * 2 ** (f0_up_key / 12)
|
127 |
-
pitch = pitchf.copy()
|
128 |
-
f0_mel = 1127 * np.log(1 + pitch / 700)
|
129 |
-
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
130 |
-
f0_mel_max - f0_mel_min
|
131 |
-
) + 1
|
132 |
-
f0_mel[f0_mel <= 1] = 1
|
133 |
-
f0_mel[f0_mel > 255] = 255
|
134 |
-
pitch = np.rint(f0_mel).astype(np.int64)
|
135 |
-
|
136 |
-
pitchf = pitchf.reshape(1, len(pitchf)).astype(np.float32)
|
137 |
-
pitch = pitch.reshape(1, len(pitch))
|
138 |
-
ds = np.array([sid]).astype(np.int64)
|
139 |
-
|
140 |
-
rnd = np.random.randn(1, 192, hubert_length).astype(np.float32)
|
141 |
-
hubert_length = np.array([hubert_length]).astype(np.int64)
|
142 |
-
|
143 |
-
out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze()
|
144 |
-
out_wav = np.pad(out_wav, (0, 2 * self.hop_size), "constant")
|
145 |
-
return out_wav[0:org_length]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/infer_pack/transforms.py
DELETED
@@ -1,209 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch.nn import functional as F
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
-
|
6 |
-
|
7 |
-
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
8 |
-
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
9 |
-
DEFAULT_MIN_DERIVATIVE = 1e-3
|
10 |
-
|
11 |
-
|
12 |
-
def piecewise_rational_quadratic_transform(
|
13 |
-
inputs,
|
14 |
-
unnormalized_widths,
|
15 |
-
unnormalized_heights,
|
16 |
-
unnormalized_derivatives,
|
17 |
-
inverse=False,
|
18 |
-
tails=None,
|
19 |
-
tail_bound=1.0,
|
20 |
-
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
21 |
-
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
22 |
-
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
23 |
-
):
|
24 |
-
if tails is None:
|
25 |
-
spline_fn = rational_quadratic_spline
|
26 |
-
spline_kwargs = {}
|
27 |
-
else:
|
28 |
-
spline_fn = unconstrained_rational_quadratic_spline
|
29 |
-
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
30 |
-
|
31 |
-
outputs, logabsdet = spline_fn(
|
32 |
-
inputs=inputs,
|
33 |
-
unnormalized_widths=unnormalized_widths,
|
34 |
-
unnormalized_heights=unnormalized_heights,
|
35 |
-
unnormalized_derivatives=unnormalized_derivatives,
|
36 |
-
inverse=inverse,
|
37 |
-
min_bin_width=min_bin_width,
|
38 |
-
min_bin_height=min_bin_height,
|
39 |
-
min_derivative=min_derivative,
|
40 |
-
**spline_kwargs
|
41 |
-
)
|
42 |
-
return outputs, logabsdet
|
43 |
-
|
44 |
-
|
45 |
-
def searchsorted(bin_locations, inputs, eps=1e-6):
|
46 |
-
bin_locations[..., -1] += eps
|
47 |
-
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
48 |
-
|
49 |
-
|
50 |
-
def unconstrained_rational_quadratic_spline(
|
51 |
-
inputs,
|
52 |
-
unnormalized_widths,
|
53 |
-
unnormalized_heights,
|
54 |
-
unnormalized_derivatives,
|
55 |
-
inverse=False,
|
56 |
-
tails="linear",
|
57 |
-
tail_bound=1.0,
|
58 |
-
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
59 |
-
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
60 |
-
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
61 |
-
):
|
62 |
-
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
63 |
-
outside_interval_mask = ~inside_interval_mask
|
64 |
-
|
65 |
-
outputs = torch.zeros_like(inputs)
|
66 |
-
logabsdet = torch.zeros_like(inputs)
|
67 |
-
|
68 |
-
if tails == "linear":
|
69 |
-
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
70 |
-
constant = np.log(np.exp(1 - min_derivative) - 1)
|
71 |
-
unnormalized_derivatives[..., 0] = constant
|
72 |
-
unnormalized_derivatives[..., -1] = constant
|
73 |
-
|
74 |
-
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
75 |
-
logabsdet[outside_interval_mask] = 0
|
76 |
-
else:
|
77 |
-
raise RuntimeError("{} tails are not implemented.".format(tails))
|
78 |
-
|
79 |
-
(
|
80 |
-
outputs[inside_interval_mask],
|
81 |
-
logabsdet[inside_interval_mask],
|
82 |
-
) = rational_quadratic_spline(
|
83 |
-
inputs=inputs[inside_interval_mask],
|
84 |
-
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
85 |
-
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
86 |
-
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
87 |
-
inverse=inverse,
|
88 |
-
left=-tail_bound,
|
89 |
-
right=tail_bound,
|
90 |
-
bottom=-tail_bound,
|
91 |
-
top=tail_bound,
|
92 |
-
min_bin_width=min_bin_width,
|
93 |
-
min_bin_height=min_bin_height,
|
94 |
-
min_derivative=min_derivative,
|
95 |
-
)
|
96 |
-
|
97 |
-
return outputs, logabsdet
|
98 |
-
|
99 |
-
|
100 |
-
def rational_quadratic_spline(
|
101 |
-
inputs,
|
102 |
-
unnormalized_widths,
|
103 |
-
unnormalized_heights,
|
104 |
-
unnormalized_derivatives,
|
105 |
-
inverse=False,
|
106 |
-
left=0.0,
|
107 |
-
right=1.0,
|
108 |
-
bottom=0.0,
|
109 |
-
top=1.0,
|
110 |
-
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
111 |
-
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
112 |
-
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
113 |
-
):
|
114 |
-
if torch.min(inputs) < left or torch.max(inputs) > right:
|
115 |
-
raise ValueError("Input to a transform is not within its domain")
|
116 |
-
|
117 |
-
num_bins = unnormalized_widths.shape[-1]
|
118 |
-
|
119 |
-
if min_bin_width * num_bins > 1.0:
|
120 |
-
raise ValueError("Minimal bin width too large for the number of bins")
|
121 |
-
if min_bin_height * num_bins > 1.0:
|
122 |
-
raise ValueError("Minimal bin height too large for the number of bins")
|
123 |
-
|
124 |
-
widths = F.softmax(unnormalized_widths, dim=-1)
|
125 |
-
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
126 |
-
cumwidths = torch.cumsum(widths, dim=-1)
|
127 |
-
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
128 |
-
cumwidths = (right - left) * cumwidths + left
|
129 |
-
cumwidths[..., 0] = left
|
130 |
-
cumwidths[..., -1] = right
|
131 |
-
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
132 |
-
|
133 |
-
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
134 |
-
|
135 |
-
heights = F.softmax(unnormalized_heights, dim=-1)
|
136 |
-
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
137 |
-
cumheights = torch.cumsum(heights, dim=-1)
|
138 |
-
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
139 |
-
cumheights = (top - bottom) * cumheights + bottom
|
140 |
-
cumheights[..., 0] = bottom
|
141 |
-
cumheights[..., -1] = top
|
142 |
-
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
143 |
-
|
144 |
-
if inverse:
|
145 |
-
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
146 |
-
else:
|
147 |
-
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
148 |
-
|
149 |
-
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
150 |
-
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
151 |
-
|
152 |
-
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
153 |
-
delta = heights / widths
|
154 |
-
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
155 |
-
|
156 |
-
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
157 |
-
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
158 |
-
|
159 |
-
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
160 |
-
|
161 |
-
if inverse:
|
162 |
-
a = (inputs - input_cumheights) * (
|
163 |
-
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
164 |
-
) + input_heights * (input_delta - input_derivatives)
|
165 |
-
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
166 |
-
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
167 |
-
)
|
168 |
-
c = -input_delta * (inputs - input_cumheights)
|
169 |
-
|
170 |
-
discriminant = b.pow(2) - 4 * a * c
|
171 |
-
assert (discriminant >= 0).all()
|
172 |
-
|
173 |
-
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
174 |
-
outputs = root * input_bin_widths + input_cumwidths
|
175 |
-
|
176 |
-
theta_one_minus_theta = root * (1 - root)
|
177 |
-
denominator = input_delta + (
|
178 |
-
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
179 |
-
* theta_one_minus_theta
|
180 |
-
)
|
181 |
-
derivative_numerator = input_delta.pow(2) * (
|
182 |
-
input_derivatives_plus_one * root.pow(2)
|
183 |
-
+ 2 * input_delta * theta_one_minus_theta
|
184 |
-
+ input_derivatives * (1 - root).pow(2)
|
185 |
-
)
|
186 |
-
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
187 |
-
|
188 |
-
return outputs, -logabsdet
|
189 |
-
else:
|
190 |
-
theta = (inputs - input_cumwidths) / input_bin_widths
|
191 |
-
theta_one_minus_theta = theta * (1 - theta)
|
192 |
-
|
193 |
-
numerator = input_heights * (
|
194 |
-
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
195 |
-
)
|
196 |
-
denominator = input_delta + (
|
197 |
-
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
198 |
-
* theta_one_minus_theta
|
199 |
-
)
|
200 |
-
outputs = input_cumheights + numerator / denominator
|
201 |
-
|
202 |
-
derivative_numerator = input_delta.pow(2) * (
|
203 |
-
input_derivatives_plus_one * theta.pow(2)
|
204 |
-
+ 2 * input_delta * theta_one_minus_theta
|
205 |
-
+ input_derivatives * (1 - theta).pow(2)
|
206 |
-
)
|
207 |
-
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
208 |
-
|
209 |
-
return outputs, logabsdet
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/rmvpe.py
DELETED
@@ -1,432 +0,0 @@
|
|
1 |
-
import torch, numpy as np
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
class BiGRU(nn.Module):
|
8 |
-
def __init__(self, input_features, hidden_features, num_layers):
|
9 |
-
super(BiGRU, self).__init__()
|
10 |
-
self.gru = nn.GRU(
|
11 |
-
input_features,
|
12 |
-
hidden_features,
|
13 |
-
num_layers=num_layers,
|
14 |
-
batch_first=True,
|
15 |
-
bidirectional=True,
|
16 |
-
)
|
17 |
-
|
18 |
-
def forward(self, x):
|
19 |
-
return self.gru(x)[0]
|
20 |
-
|
21 |
-
|
22 |
-
class ConvBlockRes(nn.Module):
|
23 |
-
def __init__(self, in_channels, out_channels, momentum=0.01):
|
24 |
-
super(ConvBlockRes, self).__init__()
|
25 |
-
self.conv = nn.Sequential(
|
26 |
-
nn.Conv2d(
|
27 |
-
in_channels=in_channels,
|
28 |
-
out_channels=out_channels,
|
29 |
-
kernel_size=(3, 3),
|
30 |
-
stride=(1, 1),
|
31 |
-
padding=(1, 1),
|
32 |
-
bias=False,
|
33 |
-
),
|
34 |
-
nn.BatchNorm2d(out_channels, momentum=momentum),
|
35 |
-
nn.ReLU(),
|
36 |
-
nn.Conv2d(
|
37 |
-
in_channels=out_channels,
|
38 |
-
out_channels=out_channels,
|
39 |
-
kernel_size=(3, 3),
|
40 |
-
stride=(1, 1),
|
41 |
-
padding=(1, 1),
|
42 |
-
bias=False,
|
43 |
-
),
|
44 |
-
nn.BatchNorm2d(out_channels, momentum=momentum),
|
45 |
-
nn.ReLU(),
|
46 |
-
)
|
47 |
-
if in_channels != out_channels:
|
48 |
-
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
|
49 |
-
self.is_shortcut = True
|
50 |
-
else:
|
51 |
-
self.is_shortcut = False
|
52 |
-
|
53 |
-
def forward(self, x):
|
54 |
-
if self.is_shortcut:
|
55 |
-
return self.conv(x) + self.shortcut(x)
|
56 |
-
else:
|
57 |
-
return self.conv(x) + x
|
58 |
-
|
59 |
-
|
60 |
-
class Encoder(nn.Module):
|
61 |
-
def __init__(
|
62 |
-
self,
|
63 |
-
in_channels,
|
64 |
-
in_size,
|
65 |
-
n_encoders,
|
66 |
-
kernel_size,
|
67 |
-
n_blocks,
|
68 |
-
out_channels=16,
|
69 |
-
momentum=0.01,
|
70 |
-
):
|
71 |
-
super(Encoder, self).__init__()
|
72 |
-
self.n_encoders = n_encoders
|
73 |
-
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
|
74 |
-
self.layers = nn.ModuleList()
|
75 |
-
self.latent_channels = []
|
76 |
-
for i in range(self.n_encoders):
|
77 |
-
self.layers.append(
|
78 |
-
ResEncoderBlock(
|
79 |
-
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
|
80 |
-
)
|
81 |
-
)
|
82 |
-
self.latent_channels.append([out_channels, in_size])
|
83 |
-
in_channels = out_channels
|
84 |
-
out_channels *= 2
|
85 |
-
in_size //= 2
|
86 |
-
self.out_size = in_size
|
87 |
-
self.out_channel = out_channels
|
88 |
-
|
89 |
-
def forward(self, x):
|
90 |
-
concat_tensors = []
|
91 |
-
x = self.bn(x)
|
92 |
-
for i in range(self.n_encoders):
|
93 |
-
_, x = self.layers[i](x)
|
94 |
-
concat_tensors.append(_)
|
95 |
-
return x, concat_tensors
|
96 |
-
|
97 |
-
|
98 |
-
class ResEncoderBlock(nn.Module):
|
99 |
-
def __init__(
|
100 |
-
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
|
101 |
-
):
|
102 |
-
super(ResEncoderBlock, self).__init__()
|
103 |
-
self.n_blocks = n_blocks
|
104 |
-
self.conv = nn.ModuleList()
|
105 |
-
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
|
106 |
-
for i in range(n_blocks - 1):
|
107 |
-
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
|
108 |
-
self.kernel_size = kernel_size
|
109 |
-
if self.kernel_size is not None:
|
110 |
-
self.pool = nn.AvgPool2d(kernel_size=kernel_size)
|
111 |
-
|
112 |
-
def forward(self, x):
|
113 |
-
for i in range(self.n_blocks):
|
114 |
-
x = self.conv[i](x)
|
115 |
-
if self.kernel_size is not None:
|
116 |
-
return x, self.pool(x)
|
117 |
-
else:
|
118 |
-
return x
|
119 |
-
|
120 |
-
|
121 |
-
class Intermediate(nn.Module): #
|
122 |
-
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
|
123 |
-
super(Intermediate, self).__init__()
|
124 |
-
self.n_inters = n_inters
|
125 |
-
self.layers = nn.ModuleList()
|
126 |
-
self.layers.append(
|
127 |
-
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
|
128 |
-
)
|
129 |
-
for i in range(self.n_inters - 1):
|
130 |
-
self.layers.append(
|
131 |
-
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
|
132 |
-
)
|
133 |
-
|
134 |
-
def forward(self, x):
|
135 |
-
for i in range(self.n_inters):
|
136 |
-
x = self.layers[i](x)
|
137 |
-
return x
|
138 |
-
|
139 |
-
|
140 |
-
class ResDecoderBlock(nn.Module):
|
141 |
-
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
|
142 |
-
super(ResDecoderBlock, self).__init__()
|
143 |
-
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
|
144 |
-
self.n_blocks = n_blocks
|
145 |
-
self.conv1 = nn.Sequential(
|
146 |
-
nn.ConvTranspose2d(
|
147 |
-
in_channels=in_channels,
|
148 |
-
out_channels=out_channels,
|
149 |
-
kernel_size=(3, 3),
|
150 |
-
stride=stride,
|
151 |
-
padding=(1, 1),
|
152 |
-
output_padding=out_padding,
|
153 |
-
bias=False,
|
154 |
-
),
|
155 |
-
nn.BatchNorm2d(out_channels, momentum=momentum),
|
156 |
-
nn.ReLU(),
|
157 |
-
)
|
158 |
-
self.conv2 = nn.ModuleList()
|
159 |
-
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
|
160 |
-
for i in range(n_blocks - 1):
|
161 |
-
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
|
162 |
-
|
163 |
-
def forward(self, x, concat_tensor):
|
164 |
-
x = self.conv1(x)
|
165 |
-
x = torch.cat((x, concat_tensor), dim=1)
|
166 |
-
for i in range(self.n_blocks):
|
167 |
-
x = self.conv2[i](x)
|
168 |
-
return x
|
169 |
-
|
170 |
-
|
171 |
-
class Decoder(nn.Module):
|
172 |
-
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
|
173 |
-
super(Decoder, self).__init__()
|
174 |
-
self.layers = nn.ModuleList()
|
175 |
-
self.n_decoders = n_decoders
|
176 |
-
for i in range(self.n_decoders):
|
177 |
-
out_channels = in_channels // 2
|
178 |
-
self.layers.append(
|
179 |
-
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
|
180 |
-
)
|
181 |
-
in_channels = out_channels
|
182 |
-
|
183 |
-
def forward(self, x, concat_tensors):
|
184 |
-
for i in range(self.n_decoders):
|
185 |
-
x = self.layers[i](x, concat_tensors[-1 - i])
|
186 |
-
return x
|
187 |
-
|
188 |
-
|
189 |
-
class DeepUnet(nn.Module):
|
190 |
-
def __init__(
|
191 |
-
self,
|
192 |
-
kernel_size,
|
193 |
-
n_blocks,
|
194 |
-
en_de_layers=5,
|
195 |
-
inter_layers=4,
|
196 |
-
in_channels=1,
|
197 |
-
en_out_channels=16,
|
198 |
-
):
|
199 |
-
super(DeepUnet, self).__init__()
|
200 |
-
self.encoder = Encoder(
|
201 |
-
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
|
202 |
-
)
|
203 |
-
self.intermediate = Intermediate(
|
204 |
-
self.encoder.out_channel // 2,
|
205 |
-
self.encoder.out_channel,
|
206 |
-
inter_layers,
|
207 |
-
n_blocks,
|
208 |
-
)
|
209 |
-
self.decoder = Decoder(
|
210 |
-
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
|
211 |
-
)
|
212 |
-
|
213 |
-
def forward(self, x):
|
214 |
-
x, concat_tensors = self.encoder(x)
|
215 |
-
x = self.intermediate(x)
|
216 |
-
x = self.decoder(x, concat_tensors)
|
217 |
-
return x
|
218 |
-
|
219 |
-
|
220 |
-
class E2E(nn.Module):
|
221 |
-
def __init__(
|
222 |
-
self,
|
223 |
-
n_blocks,
|
224 |
-
n_gru,
|
225 |
-
kernel_size,
|
226 |
-
en_de_layers=5,
|
227 |
-
inter_layers=4,
|
228 |
-
in_channels=1,
|
229 |
-
en_out_channels=16,
|
230 |
-
):
|
231 |
-
super(E2E, self).__init__()
|
232 |
-
self.unet = DeepUnet(
|
233 |
-
kernel_size,
|
234 |
-
n_blocks,
|
235 |
-
en_de_layers,
|
236 |
-
inter_layers,
|
237 |
-
in_channels,
|
238 |
-
en_out_channels,
|
239 |
-
)
|
240 |
-
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
|
241 |
-
if n_gru:
|
242 |
-
self.fc = nn.Sequential(
|
243 |
-
BiGRU(3 * 128, 256, n_gru),
|
244 |
-
nn.Linear(512, 360),
|
245 |
-
nn.Dropout(0.25),
|
246 |
-
nn.Sigmoid(),
|
247 |
-
)
|
248 |
-
else:
|
249 |
-
self.fc = nn.Sequential(
|
250 |
-
nn.Linear(3 * nn.N_MELS, nn.N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
|
251 |
-
)
|
252 |
-
|
253 |
-
def forward(self, mel):
|
254 |
-
mel = mel.transpose(-1, -2).unsqueeze(1)
|
255 |
-
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
|
256 |
-
x = self.fc(x)
|
257 |
-
return x
|
258 |
-
|
259 |
-
|
260 |
-
from librosa.filters import mel
|
261 |
-
|
262 |
-
|
263 |
-
class MelSpectrogram(torch.nn.Module):
|
264 |
-
def __init__(
|
265 |
-
self,
|
266 |
-
is_half,
|
267 |
-
n_mel_channels,
|
268 |
-
sampling_rate,
|
269 |
-
win_length,
|
270 |
-
hop_length,
|
271 |
-
n_fft=None,
|
272 |
-
mel_fmin=0,
|
273 |
-
mel_fmax=None,
|
274 |
-
clamp=1e-5,
|
275 |
-
):
|
276 |
-
super().__init__()
|
277 |
-
n_fft = win_length if n_fft is None else n_fft
|
278 |
-
self.hann_window = {}
|
279 |
-
mel_basis = mel(
|
280 |
-
sr=sampling_rate,
|
281 |
-
n_fft=n_fft,
|
282 |
-
n_mels=n_mel_channels,
|
283 |
-
fmin=mel_fmin,
|
284 |
-
fmax=mel_fmax,
|
285 |
-
htk=True,
|
286 |
-
)
|
287 |
-
mel_basis = torch.from_numpy(mel_basis).float()
|
288 |
-
self.register_buffer("mel_basis", mel_basis)
|
289 |
-
self.n_fft = win_length if n_fft is None else n_fft
|
290 |
-
self.hop_length = hop_length
|
291 |
-
self.win_length = win_length
|
292 |
-
self.sampling_rate = sampling_rate
|
293 |
-
self.n_mel_channels = n_mel_channels
|
294 |
-
self.clamp = clamp
|
295 |
-
self.is_half = is_half
|
296 |
-
|
297 |
-
def forward(self, audio, keyshift=0, speed=1, center=True):
|
298 |
-
factor = 2 ** (keyshift / 12)
|
299 |
-
n_fft_new = int(np.round(self.n_fft * factor))
|
300 |
-
win_length_new = int(np.round(self.win_length * factor))
|
301 |
-
hop_length_new = int(np.round(self.hop_length * speed))
|
302 |
-
keyshift_key = str(keyshift) + "_" + str(audio.device)
|
303 |
-
if keyshift_key not in self.hann_window:
|
304 |
-
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
|
305 |
-
audio.device
|
306 |
-
)
|
307 |
-
fft = torch.stft(
|
308 |
-
audio,
|
309 |
-
n_fft=n_fft_new,
|
310 |
-
hop_length=hop_length_new,
|
311 |
-
win_length=win_length_new,
|
312 |
-
window=self.hann_window[keyshift_key],
|
313 |
-
center=center,
|
314 |
-
return_complex=True,
|
315 |
-
)
|
316 |
-
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
|
317 |
-
if keyshift != 0:
|
318 |
-
size = self.n_fft // 2 + 1
|
319 |
-
resize = magnitude.size(1)
|
320 |
-
if resize < size:
|
321 |
-
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
|
322 |
-
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
|
323 |
-
mel_output = torch.matmul(self.mel_basis, magnitude)
|
324 |
-
if self.is_half == True:
|
325 |
-
mel_output = mel_output.half()
|
326 |
-
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
|
327 |
-
return log_mel_spec
|
328 |
-
|
329 |
-
|
330 |
-
class RMVPE:
|
331 |
-
def __init__(self, model_path, is_half, device=None):
|
332 |
-
self.resample_kernel = {}
|
333 |
-
model = E2E(4, 1, (2, 2))
|
334 |
-
ckpt = torch.load(model_path, map_location="cpu")
|
335 |
-
model.load_state_dict(ckpt)
|
336 |
-
model.eval()
|
337 |
-
if is_half == True:
|
338 |
-
model = model.half()
|
339 |
-
self.model = model
|
340 |
-
self.resample_kernel = {}
|
341 |
-
self.is_half = is_half
|
342 |
-
if device is None:
|
343 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
344 |
-
self.device = device
|
345 |
-
self.mel_extractor = MelSpectrogram(
|
346 |
-
is_half, 128, 16000, 1024, 160, None, 30, 8000
|
347 |
-
).to(device)
|
348 |
-
self.model = self.model.to(device)
|
349 |
-
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
|
350 |
-
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
|
351 |
-
|
352 |
-
def mel2hidden(self, mel):
|
353 |
-
with torch.no_grad():
|
354 |
-
n_frames = mel.shape[-1]
|
355 |
-
mel = F.pad(
|
356 |
-
mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
|
357 |
-
)
|
358 |
-
hidden = self.model(mel)
|
359 |
-
return hidden[:, :n_frames]
|
360 |
-
|
361 |
-
def decode(self, hidden, thred=0.03):
|
362 |
-
cents_pred = self.to_local_average_cents(hidden, thred=thred)
|
363 |
-
f0 = 10 * (2 ** (cents_pred / 1200))
|
364 |
-
f0[f0 == 10] = 0
|
365 |
-
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
|
366 |
-
return f0
|
367 |
-
|
368 |
-
def infer_from_audio(self, audio, thred=0.03):
|
369 |
-
audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
|
370 |
-
# torch.cuda.synchronize()
|
371 |
-
# t0=ttime()
|
372 |
-
mel = self.mel_extractor(audio, center=True)
|
373 |
-
# torch.cuda.synchronize()
|
374 |
-
# t1=ttime()
|
375 |
-
hidden = self.mel2hidden(mel)
|
376 |
-
# torch.cuda.synchronize()
|
377 |
-
# t2=ttime()
|
378 |
-
hidden = hidden.squeeze(0).cpu().numpy()
|
379 |
-
if self.is_half == True:
|
380 |
-
hidden = hidden.astype("float32")
|
381 |
-
f0 = self.decode(hidden, thred=thred)
|
382 |
-
# torch.cuda.synchronize()
|
383 |
-
# t3=ttime()
|
384 |
-
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
|
385 |
-
return f0
|
386 |
-
|
387 |
-
def to_local_average_cents(self, salience, thred=0.05):
|
388 |
-
# t0 = ttime()
|
389 |
-
center = np.argmax(salience, axis=1) # frame length#index
|
390 |
-
salience = np.pad(salience, ((0, 0), (4, 4))) # frame length,368
|
391 |
-
# t1 = ttime()
|
392 |
-
center += 4
|
393 |
-
todo_salience = []
|
394 |
-
todo_cents_mapping = []
|
395 |
-
starts = center - 4
|
396 |
-
ends = center + 5
|
397 |
-
for idx in range(salience.shape[0]):
|
398 |
-
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
|
399 |
-
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
|
400 |
-
# t2 = ttime()
|
401 |
-
todo_salience = np.array(todo_salience) # frame length,9
|
402 |
-
todo_cents_mapping = np.array(todo_cents_mapping) # frame length,9
|
403 |
-
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
|
404 |
-
weight_sum = np.sum(todo_salience, 1) # frame length
|
405 |
-
devided = product_sum / weight_sum # frame length
|
406 |
-
# t3 = ttime()
|
407 |
-
maxx = np.max(salience, axis=1) # frame length
|
408 |
-
devided[maxx <= thred] = 0
|
409 |
-
# t4 = ttime()
|
410 |
-
# print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
411 |
-
return devided
|
412 |
-
|
413 |
-
|
414 |
-
# if __name__ == '__main__':
|
415 |
-
# audio, sampling_rate = sf.read("Quotations~1.wav") ### edit
|
416 |
-
# if len(audio.shape) > 1:
|
417 |
-
# audio = librosa.to_mono(audio.transpose(1, 0))
|
418 |
-
# audio_bak = audio.copy()
|
419 |
-
# if sampling_rate != 16000:
|
420 |
-
# audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
421 |
-
# model_path = "/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/test-RMVPE/weights/rmvpe_llc_half.pt"
|
422 |
-
# thred = 0.03 # 0.01
|
423 |
-
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
424 |
-
# rmvpe = RMVPE(model_path,is_half=False, device=device)
|
425 |
-
# t0=ttime()
|
426 |
-
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
427 |
-
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
428 |
-
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
429 |
-
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
430 |
-
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
431 |
-
# t1=ttime()
|
432 |
-
# print(f0.shape,t1-t0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
no_requirements.txt
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
torch
|
2 |
-
torchvision
|
3 |
-
git+https://github.com/m-bain/whisperx.git
|
4 |
-
yt-dlp
|
5 |
-
gTTS
|
6 |
-
pydub
|
7 |
-
edge_tts
|
8 |
-
deep_translator
|
9 |
-
torchaudio==2.0.0
|
10 |
-
gradio
|
11 |
-
nest_asyncio
|
12 |
-
gradio_client==0.2.7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
packages.txt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
git-lfs
|
2 |
-
aria2 -y
|
3 |
-
ffmpeg
|
|
|
|
|
|
|
|
requirements_colab.txt
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
--extra-index-url https://download.pytorch.org/whl/cu117 torch==2.0.0+cu117 torchvision==0.15.2+cu117 torchaudio==2.0.0
|
2 |
-
yt-dlp
|
3 |
-
nest_asyncio
|
4 |
-
gradio==3.35.2
|
5 |
-
pydub==0.25.1
|
6 |
-
edge_tts==6.1.7
|
7 |
-
deep_translator==1.11.4
|
8 |
-
git+https://github.com/R3gm/whisperX.git@cuda_11_8
|
9 |
-
gTTS
|
10 |
-
gradio_client==0.2.7
|
11 |
-
ipython
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements_extra.txt
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
praat-parselmouth>=0.4.3
|
2 |
-
pyworld==0.3.2
|
3 |
-
faiss-cpu==1.7.3
|
4 |
-
torchcrepe==0.0.20
|
5 |
-
ffmpeg-python>=0.2.0
|
6 |
-
fairseq==0.12.2
|
7 |
-
gdown
|
8 |
-
rarfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
soni_translate/audio_segments.py
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
from pydub import AudioSegment
|
2 |
-
from tqdm import tqdm
|
3 |
-
import os
|
4 |
-
|
5 |
-
def create_translated_audio(result_diarize, audio_files, Output_name_file):
|
6 |
-
total_duration = result_diarize['segments'][-1]['end'] # in seconds
|
7 |
-
|
8 |
-
# silent audio with total_duration
|
9 |
-
combined_audio = AudioSegment.silent(duration=int(total_duration * 1000))
|
10 |
-
print(round((total_duration / 60),2), 'minutes of video')
|
11 |
-
|
12 |
-
for line, audio_file in tqdm(zip(result_diarize['segments'], audio_files)):
|
13 |
-
start = float(line['start'])
|
14 |
-
|
15 |
-
# Overlay each audio at the corresponding time
|
16 |
-
try:
|
17 |
-
audio = AudioSegment.from_file(audio_file)
|
18 |
-
###audio_a = audio.speedup(playback_speed=1.5)
|
19 |
-
start_time = start * 1000 # to ms
|
20 |
-
combined_audio = combined_audio.overlay(audio, position=start_time)
|
21 |
-
except:
|
22 |
-
print(f'ERROR AUDIO FILE {audio_file}')
|
23 |
-
|
24 |
-
os.system("rm -rf audio/*")
|
25 |
-
|
26 |
-
# combined audio as a file
|
27 |
-
combined_audio.export(Output_name_file, format="wav") # best than ogg, change if the audio is anomalous
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
soni_translate/text_to_speech.py
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
from gtts import gTTS
|
2 |
-
import edge_tts
|
3 |
-
import asyncio
|
4 |
-
import nest_asyncio
|
5 |
-
|
6 |
-
def make_voice(tts_text, tts_voice, filename,language):
|
7 |
-
#print(tts_text, filename)
|
8 |
-
try:
|
9 |
-
nest_asyncio.apply()
|
10 |
-
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(filename))
|
11 |
-
except:
|
12 |
-
try:
|
13 |
-
tts = gTTS(tts_text, lang=language)
|
14 |
-
tts.save(filename)
|
15 |
-
print(f'No audio was received. Please change the tts voice for {tts_voice}. TTS auxiliary will be used in the segment')
|
16 |
-
except:
|
17 |
-
tts = gTTS('a', lang=language)
|
18 |
-
tts.save(filename)
|
19 |
-
print('Error: Audio will be replaced.')
|
20 |
-
|
21 |
-
def make_voice_gradio(tts_text, tts_voice, filename, language):
|
22 |
-
print(tts_text, filename)
|
23 |
-
try:
|
24 |
-
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(filename))
|
25 |
-
except:
|
26 |
-
try:
|
27 |
-
tts = gTTS(tts_text, lang=language)
|
28 |
-
tts.save(filename)
|
29 |
-
print(f'No audio was received. Please change the tts voice for {tts_voice}. TTS auxiliary will be used in the segment')
|
30 |
-
except:
|
31 |
-
tts = gTTS('a', lang=language)
|
32 |
-
tts.save(filename)
|
33 |
-
print('Error: Audio will be replaced.')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
soni_translate/translate_segments.py
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
from tqdm import tqdm
|
2 |
-
from deep_translator import GoogleTranslator
|
3 |
-
|
4 |
-
def translate_text(segments, TRANSLATE_AUDIO_TO):
|
5 |
-
|
6 |
-
translator = GoogleTranslator(source='auto', target=TRANSLATE_AUDIO_TO)
|
7 |
-
|
8 |
-
for line in tqdm(range(len(segments))):
|
9 |
-
text = segments[line]['text']
|
10 |
-
translated_line = translator.translate(text.strip())
|
11 |
-
segments[line]['text'] = translated_line
|
12 |
-
|
13 |
-
return segments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
soni_translate/video_dubbing.py
DELETED
@@ -1,217 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import gradio as gr
|
3 |
-
import whisperx
|
4 |
-
import torch
|
5 |
-
from gtts import gTTS
|
6 |
-
import librosa
|
7 |
-
import edge_tts
|
8 |
-
import gc
|
9 |
-
from pydub import AudioSegment
|
10 |
-
from tqdm import tqdm
|
11 |
-
from deep_translator import GoogleTranslator
|
12 |
-
import os
|
13 |
-
from soni_translate.audio_segments import create_translated_audio
|
14 |
-
from soni_translate.text_to_speech import make_voice
|
15 |
-
from soni_translate.translate_segments import translate_text
|
16 |
-
import time
|
17 |
-
|
18 |
-
def translate_from_video(
|
19 |
-
video,
|
20 |
-
YOUR_HF_TOKEN,
|
21 |
-
preview=False,
|
22 |
-
WHISPER_MODEL_SIZE="large-v1",
|
23 |
-
batch_size=16,
|
24 |
-
compute_type="float16",
|
25 |
-
SOURCE_LANGUAGE= "Automatic detection",
|
26 |
-
TRANSLATE_AUDIO_TO="en",
|
27 |
-
min_speakers=1,
|
28 |
-
max_speakers=2,
|
29 |
-
tts_voice00="en-AU-WilliamNeural-Male",
|
30 |
-
tts_voice01="en-CA-ClaraNeural-Female",
|
31 |
-
tts_voice02="en-GB-ThomasNeural-Male",
|
32 |
-
tts_voice03="en-GB-SoniaNeural-Female",
|
33 |
-
tts_voice04="en-NZ-MitchellNeural-Male",
|
34 |
-
tts_voice05="en-GB-MaisieNeural-Female",
|
35 |
-
video_output="video_dub.mp4"
|
36 |
-
):
|
37 |
-
|
38 |
-
if YOUR_HF_TOKEN == "" or YOUR_HF_TOKEN == None:
|
39 |
-
YOUR_HF_TOKEN = os.getenv("YOUR_HF_TOKEN")
|
40 |
-
|
41 |
-
if not os.path.exists('audio'):
|
42 |
-
os.makedirs('audio')
|
43 |
-
|
44 |
-
if not os.path.exists('audio2/audio'):
|
45 |
-
os.makedirs('audio2/audio')
|
46 |
-
|
47 |
-
# Check GPU
|
48 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
49 |
-
compute_type = "float32" if device == "cpu" else compute_type
|
50 |
-
|
51 |
-
OutputFile = 'Video.mp4'
|
52 |
-
audio_wav = "audio.wav"
|
53 |
-
Output_name_file = "audio_dub_solo.ogg"
|
54 |
-
mix_audio = "audio_mix.mp3"
|
55 |
-
|
56 |
-
os.system("rm Video.mp4")
|
57 |
-
os.system("rm audio.webm")
|
58 |
-
os.system("rm audio.wav")
|
59 |
-
|
60 |
-
if os.path.exists(video):
|
61 |
-
if preview:
|
62 |
-
print('Creating preview video, 10 seconds')
|
63 |
-
os.system(f'ffmpeg -y -i "{video}" -ss 00:00:20 -t 00:00:10 -c:v libx264 -c:a aac -strict experimental Video.mp4')
|
64 |
-
else:
|
65 |
-
os.system(f'ffmpeg -y -i "{video}" -c:v libx264 -c:a aac -strict experimental Video.mp4')
|
66 |
-
|
67 |
-
os.system("ffmpeg -y -i Video.mp4 -vn -acodec pcm_s16le -ar 44100 -ac 2 audio.wav")
|
68 |
-
else:
|
69 |
-
if preview:
|
70 |
-
print('Creating preview from link, 10 seconds')
|
71 |
-
#https://github.com/yt-dlp/yt-dlp/issues/2220
|
72 |
-
mp4_ = f'yt-dlp -f "mp4" --downloader ffmpeg --downloader-args "ffmpeg_i: -ss 00:00:20 -t 00:00:10" --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --restrict-filenames -o {OutputFile} {video}'
|
73 |
-
wav_ = "ffmpeg -y -i Video.mp4 -vn -acodec pcm_s16le -ar 44100 -ac 2 audio.wav"
|
74 |
-
os.system(mp4_)
|
75 |
-
os.system(wav_)
|
76 |
-
else:
|
77 |
-
mp4_ = f'yt-dlp -f "mp4" --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --restrict-filenames -o {OutputFile} {video}'
|
78 |
-
wav_ = f'python -m yt_dlp --output {audio_wav} --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --extract-audio --audio-format wav {video}'
|
79 |
-
|
80 |
-
os.system(wav_)
|
81 |
-
|
82 |
-
for i in range (120):
|
83 |
-
time.sleep(1)
|
84 |
-
print('process audio')
|
85 |
-
if os.path.exists(audio_wav) and not os.path.exists('audio.webm'):
|
86 |
-
time.sleep(1)
|
87 |
-
os.system(mp4_)
|
88 |
-
break
|
89 |
-
if i == 119:
|
90 |
-
print('Error donwloading the audio')
|
91 |
-
return
|
92 |
-
|
93 |
-
print("Set file complete.")
|
94 |
-
|
95 |
-
SOURCE_LANGUAGE = None if SOURCE_LANGUAGE == 'Automatic detection' else SOURCE_LANGUAGE
|
96 |
-
|
97 |
-
# 1. Transcribe with original whisper (batched)
|
98 |
-
model = whisperx.load_model(
|
99 |
-
WHISPER_MODEL_SIZE,
|
100 |
-
device,
|
101 |
-
compute_type=compute_type,
|
102 |
-
language= SOURCE_LANGUAGE,
|
103 |
-
)
|
104 |
-
audio = whisperx.load_audio(audio_wav)
|
105 |
-
result = model.transcribe(audio, batch_size=batch_size)
|
106 |
-
gc.collect(); torch.cuda.empty_cache(); del model
|
107 |
-
print("Transcript complete")
|
108 |
-
|
109 |
-
# 2. Align whisper output
|
110 |
-
model_a, metadata = whisperx.load_align_model(
|
111 |
-
language_code=result["language"],
|
112 |
-
device=device
|
113 |
-
)
|
114 |
-
result = whisperx.align(
|
115 |
-
result["segments"],
|
116 |
-
model_a,
|
117 |
-
metadata,
|
118 |
-
audio,
|
119 |
-
device,
|
120 |
-
return_char_alignments=True,
|
121 |
-
)
|
122 |
-
gc.collect(); torch.cuda.empty_cache(); del model_a
|
123 |
-
print("Align complete")
|
124 |
-
|
125 |
-
if result['segments'] == []:
|
126 |
-
print('No active speech found in audio')
|
127 |
-
return
|
128 |
-
|
129 |
-
# 3. Assign speaker labels
|
130 |
-
diarize_model = whisperx.DiarizationPipeline(use_auth_token=YOUR_HF_TOKEN, device=device)
|
131 |
-
diarize_segments = diarize_model(
|
132 |
-
audio_wav,
|
133 |
-
min_speakers=min_speakers,
|
134 |
-
max_speakers=max_speakers)
|
135 |
-
result_diarize = whisperx.assign_word_speakers(diarize_segments, result)
|
136 |
-
gc.collect(); torch.cuda.empty_cache(); del diarize_model
|
137 |
-
print("Diarize complete")
|
138 |
-
|
139 |
-
result_diarize['segments'] = translate_text(result_diarize['segments'], TRANSLATE_AUDIO_TO)
|
140 |
-
print("Translation complete")
|
141 |
-
|
142 |
-
audio_files = []
|
143 |
-
|
144 |
-
# Mapping speakers to voice variables
|
145 |
-
speaker_to_voice = {
|
146 |
-
'SPEAKER_00': tts_voice00,
|
147 |
-
'SPEAKER_01': tts_voice01,
|
148 |
-
'SPEAKER_02': tts_voice02,
|
149 |
-
'SPEAKER_03': tts_voice03,
|
150 |
-
'SPEAKER_04': tts_voice04,
|
151 |
-
'SPEAKER_05': tts_voice05
|
152 |
-
}
|
153 |
-
|
154 |
-
for segment in tqdm(result_diarize['segments']):
|
155 |
-
|
156 |
-
text = segment['text']
|
157 |
-
start = segment['start']
|
158 |
-
end = segment['end']
|
159 |
-
|
160 |
-
try:
|
161 |
-
speaker = segment['speaker']
|
162 |
-
except KeyError:
|
163 |
-
segment['speaker'] = "SPEAKER_99"
|
164 |
-
speaker = segment['speaker']
|
165 |
-
print("NO SPEAKER DETECT IN SEGMENT")
|
166 |
-
|
167 |
-
# make the tts audio
|
168 |
-
filename = f"audio/{start}.ogg"
|
169 |
-
|
170 |
-
if speaker in speaker_to_voice and speaker_to_voice[speaker] != 'None':
|
171 |
-
make_voice(text, speaker_to_voice[speaker], filename, TRANSLATE_AUDIO_TO)
|
172 |
-
elif speaker == "SPEAKER_99":
|
173 |
-
try:
|
174 |
-
tts = gTTS(text, lang=TRANSLATE_AUDIO_TO)
|
175 |
-
tts.save(filename)
|
176 |
-
print('Using GTTS')
|
177 |
-
except:
|
178 |
-
tts = gTTS('a', lang=TRANSLATE_AUDIO_TO)
|
179 |
-
tts.save(filename)
|
180 |
-
print('Error: Audio will be replaced.')
|
181 |
-
|
182 |
-
# duration
|
183 |
-
duration_true = end - start
|
184 |
-
duration_tts = librosa.get_duration(filename=filename)
|
185 |
-
|
186 |
-
# porcentaje
|
187 |
-
porcentaje = duration_tts / duration_true
|
188 |
-
|
189 |
-
if porcentaje > 2.1:
|
190 |
-
porcentaje = 2.1
|
191 |
-
elif porcentaje <= 1.2 and porcentaje >= 0.8:
|
192 |
-
porcentaje = 1.0
|
193 |
-
elif porcentaje <= 0.79:
|
194 |
-
porcentaje = 0.8
|
195 |
-
|
196 |
-
# Smoth and round
|
197 |
-
porcentaje = round(porcentaje+0.0, 1)
|
198 |
-
|
199 |
-
# apply aceleration or opposite to the audio file in audio2 folder
|
200 |
-
os.system(f"ffmpeg -y -loglevel panic -i {filename} -filter:a atempo={porcentaje} audio2/{filename}")
|
201 |
-
|
202 |
-
duration_create = librosa.get_duration(filename=f"audio2/{filename}")
|
203 |
-
audio_files.append(filename)
|
204 |
-
|
205 |
-
# replace files with the accelerates
|
206 |
-
os.system("mv -f audio2/audio/*.ogg audio/")
|
207 |
-
|
208 |
-
os.system(f"rm {Output_name_file}")
|
209 |
-
create_translated_audio(result_diarize, audio_files, Output_name_file)
|
210 |
-
|
211 |
-
os.system(f"rm {mix_audio}")
|
212 |
-
os.system(f'ffmpeg -i {audio_wav} -i {Output_name_file} -filter_complex "[1:a]asplit=2[sc][mix];[0:a][sc]sidechaincompress=threshold=0.003:ratio=20[bg]; [bg][mix]amerge[final]" -map [final] {mix_audio}')
|
213 |
-
|
214 |
-
os.system(f"rm {video_output}")
|
215 |
-
os.system(f"ffmpeg -i {OutputFile} -i {mix_audio} -c:v copy -c:a copy -map 0:v -map 1:a -shortest {video_output}")
|
216 |
-
|
217 |
-
return video_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vc_infer_pipeline.py
DELETED
@@ -1,445 +0,0 @@
|
|
1 |
-
import numpy as np, parselmouth, torch, pdb, sys, os
|
2 |
-
from time import time as ttime
|
3 |
-
import torch.nn.functional as F
|
4 |
-
import scipy.signal as signal
|
5 |
-
import pyworld, os, traceback, faiss, librosa, torchcrepe
|
6 |
-
from scipy import signal
|
7 |
-
from functools import lru_cache
|
8 |
-
|
9 |
-
now_dir = os.getcwd()
|
10 |
-
sys.path.append(now_dir)
|
11 |
-
|
12 |
-
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
13 |
-
|
14 |
-
input_audio_path2wav = {}
|
15 |
-
|
16 |
-
|
17 |
-
@lru_cache
|
18 |
-
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
|
19 |
-
audio = input_audio_path2wav[input_audio_path]
|
20 |
-
f0, t = pyworld.harvest(
|
21 |
-
audio,
|
22 |
-
fs=fs,
|
23 |
-
f0_ceil=f0max,
|
24 |
-
f0_floor=f0min,
|
25 |
-
frame_period=frame_period,
|
26 |
-
)
|
27 |
-
f0 = pyworld.stonemask(audio, f0, t, fs)
|
28 |
-
return f0
|
29 |
-
|
30 |
-
|
31 |
-
def change_rms(data1, sr1, data2, sr2, rate): # 1 is the input audio, 2 is the output audio, rate is the proportion of 2
|
32 |
-
# print(data1.max(),data2.max())
|
33 |
-
rms1 = librosa.feature.rms(
|
34 |
-
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
|
35 |
-
) # one dot every half second
|
36 |
-
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
|
37 |
-
rms1 = torch.from_numpy(rms1)
|
38 |
-
rms1 = F.interpolate(
|
39 |
-
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
|
40 |
-
).squeeze()
|
41 |
-
rms2 = torch.from_numpy(rms2)
|
42 |
-
rms2 = F.interpolate(
|
43 |
-
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
|
44 |
-
).squeeze()
|
45 |
-
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
46 |
-
data2 *= (
|
47 |
-
torch.pow(rms1, torch.tensor(1 - rate))
|
48 |
-
* torch.pow(rms2, torch.tensor(rate - 1))
|
49 |
-
).numpy()
|
50 |
-
return data2
|
51 |
-
|
52 |
-
|
53 |
-
class VC(object):
|
54 |
-
def __init__(self, tgt_sr, config):
|
55 |
-
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
|
56 |
-
config.x_pad,
|
57 |
-
config.x_query,
|
58 |
-
config.x_center,
|
59 |
-
config.x_max,
|
60 |
-
config.is_half,
|
61 |
-
)
|
62 |
-
self.sr = 16000 # hubert input sampling rate
|
63 |
-
self.window = 160 # points per frame
|
64 |
-
self.t_pad = self.sr * self.x_pad # Pad time before and after each bar
|
65 |
-
self.t_pad_tgt = tgt_sr * self.x_pad
|
66 |
-
self.t_pad2 = self.t_pad * 2
|
67 |
-
self.t_query = self.sr * self.x_query # Query time before and after the cut point
|
68 |
-
self.t_center = self.sr * self.x_center # Query point cut position
|
69 |
-
self.t_max = self.sr * self.x_max # Query-free duration threshold
|
70 |
-
self.device = config.device
|
71 |
-
|
72 |
-
def get_f0(
|
73 |
-
self,
|
74 |
-
input_audio_path,
|
75 |
-
x,
|
76 |
-
p_len,
|
77 |
-
f0_up_key,
|
78 |
-
f0_method,
|
79 |
-
filter_radius,
|
80 |
-
inp_f0=None,
|
81 |
-
):
|
82 |
-
global input_audio_path2wav
|
83 |
-
time_step = self.window / self.sr * 1000
|
84 |
-
f0_min = 50
|
85 |
-
f0_max = 1100
|
86 |
-
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
87 |
-
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
88 |
-
if f0_method == "pm":
|
89 |
-
f0 = (
|
90 |
-
parselmouth.Sound(x, self.sr)
|
91 |
-
.to_pitch_ac(
|
92 |
-
time_step=time_step / 1000,
|
93 |
-
voicing_threshold=0.6,
|
94 |
-
pitch_floor=f0_min,
|
95 |
-
pitch_ceiling=f0_max,
|
96 |
-
)
|
97 |
-
.selected_array["frequency"]
|
98 |
-
)
|
99 |
-
pad_size = (p_len - len(f0) + 1) // 2
|
100 |
-
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
101 |
-
f0 = np.pad(
|
102 |
-
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
103 |
-
)
|
104 |
-
elif f0_method == "harvest":
|
105 |
-
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
106 |
-
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
107 |
-
if filter_radius > 2:
|
108 |
-
f0 = signal.medfilt(f0, 3)
|
109 |
-
elif f0_method == "crepe":
|
110 |
-
model = "full"
|
111 |
-
# Pick a batch size that doesn't cause memory errors on your gpu
|
112 |
-
batch_size = 512
|
113 |
-
# Compute pitch using first gpu
|
114 |
-
audio = torch.tensor(np.copy(x))[None].float()
|
115 |
-
f0, pd = torchcrepe.predict(
|
116 |
-
audio,
|
117 |
-
self.sr,
|
118 |
-
self.window,
|
119 |
-
f0_min,
|
120 |
-
f0_max,
|
121 |
-
model,
|
122 |
-
batch_size=batch_size,
|
123 |
-
device=self.device,
|
124 |
-
return_periodicity=True,
|
125 |
-
)
|
126 |
-
pd = torchcrepe.filter.median(pd, 3)
|
127 |
-
f0 = torchcrepe.filter.mean(f0, 3)
|
128 |
-
f0[pd < 0.1] = 0
|
129 |
-
f0 = f0[0].cpu().numpy()
|
130 |
-
elif f0_method == "rmvpe":
|
131 |
-
if hasattr(self, "model_rmvpe") == False:
|
132 |
-
from lib.rmvpe import RMVPE
|
133 |
-
|
134 |
-
print("loading rmvpe model")
|
135 |
-
self.model_rmvpe = RMVPE(
|
136 |
-
"rmvpe.pt", is_half=self.is_half, device=self.device
|
137 |
-
)
|
138 |
-
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
139 |
-
f0 *= pow(2, f0_up_key / 12)
|
140 |
-
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
141 |
-
tf0 = self.sr // self.window # f0 points per second
|
142 |
-
if inp_f0 is not None:
|
143 |
-
delta_t = np.round(
|
144 |
-
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
145 |
-
).astype("int16")
|
146 |
-
replace_f0 = np.interp(
|
147 |
-
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
148 |
-
)
|
149 |
-
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
|
150 |
-
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
|
151 |
-
:shape
|
152 |
-
]
|
153 |
-
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
154 |
-
f0bak = f0.copy()
|
155 |
-
f0_mel = 1127 * np.log(1 + f0 / 700)
|
156 |
-
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
157 |
-
f0_mel_max - f0_mel_min
|
158 |
-
) + 1
|
159 |
-
f0_mel[f0_mel <= 1] = 1
|
160 |
-
f0_mel[f0_mel > 255] = 255
|
161 |
-
f0_coarse = np.rint(f0_mel).astype(int) # change np.int
|
162 |
-
return f0_coarse, f0bak # 1-0
|
163 |
-
|
164 |
-
def vc(
|
165 |
-
self,
|
166 |
-
model,
|
167 |
-
net_g,
|
168 |
-
sid,
|
169 |
-
audio0,
|
170 |
-
pitch,
|
171 |
-
pitchf,
|
172 |
-
times,
|
173 |
-
index,
|
174 |
-
big_npy,
|
175 |
-
index_rate,
|
176 |
-
version,
|
177 |
-
protect,
|
178 |
-
): # ,file_index,file_big_npy
|
179 |
-
feats = torch.from_numpy(audio0)
|
180 |
-
if self.is_half:
|
181 |
-
feats = feats.half()
|
182 |
-
else:
|
183 |
-
feats = feats.float()
|
184 |
-
if feats.dim() == 2: # double channels
|
185 |
-
feats = feats.mean(-1)
|
186 |
-
assert feats.dim() == 1, feats.dim()
|
187 |
-
feats = feats.view(1, -1)
|
188 |
-
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
189 |
-
|
190 |
-
inputs = {
|
191 |
-
"source": feats.to(self.device),
|
192 |
-
"padding_mask": padding_mask,
|
193 |
-
"output_layer": 9 if version == "v1" else 12,
|
194 |
-
}
|
195 |
-
t0 = ttime()
|
196 |
-
with torch.no_grad():
|
197 |
-
logits = model.extract_features(**inputs)
|
198 |
-
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
|
199 |
-
if protect < 0.5 and pitch != None and pitchf != None:
|
200 |
-
feats0 = feats.clone()
|
201 |
-
if (
|
202 |
-
isinstance(index, type(None)) == False
|
203 |
-
and isinstance(big_npy, type(None)) == False
|
204 |
-
and index_rate != 0
|
205 |
-
):
|
206 |
-
npy = feats[0].cpu().numpy()
|
207 |
-
if self.is_half:
|
208 |
-
npy = npy.astype("float32")
|
209 |
-
|
210 |
-
# _, I = index.search(npy, 1)
|
211 |
-
# npy = big_npy[I.squeeze()]
|
212 |
-
|
213 |
-
score, ix = index.search(npy, k=8)
|
214 |
-
weight = np.square(1 / score)
|
215 |
-
weight /= weight.sum(axis=1, keepdims=True)
|
216 |
-
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
217 |
-
|
218 |
-
if self.is_half:
|
219 |
-
npy = npy.astype("float16")
|
220 |
-
feats = (
|
221 |
-
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
222 |
-
+ (1 - index_rate) * feats
|
223 |
-
)
|
224 |
-
|
225 |
-
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
226 |
-
if protect < 0.5 and pitch != None and pitchf != None:
|
227 |
-
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
|
228 |
-
0, 2, 1
|
229 |
-
)
|
230 |
-
t1 = ttime()
|
231 |
-
p_len = audio0.shape[0] // self.window
|
232 |
-
if feats.shape[1] < p_len:
|
233 |
-
p_len = feats.shape[1]
|
234 |
-
if pitch != None and pitchf != None:
|
235 |
-
pitch = pitch[:, :p_len]
|
236 |
-
pitchf = pitchf[:, :p_len]
|
237 |
-
|
238 |
-
if protect < 0.5 and pitch != None and pitchf != None:
|
239 |
-
pitchff = pitchf.clone()
|
240 |
-
pitchff[pitchf > 0] = 1
|
241 |
-
pitchff[pitchf < 1] = protect
|
242 |
-
pitchff = pitchff.unsqueeze(-1)
|
243 |
-
feats = feats * pitchff + feats0 * (1 - pitchff)
|
244 |
-
feats = feats.to(feats0.dtype)
|
245 |
-
p_len = torch.tensor([p_len], device=self.device).long()
|
246 |
-
with torch.no_grad():
|
247 |
-
if pitch != None and pitchf != None:
|
248 |
-
audio1 = (
|
249 |
-
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
|
250 |
-
.data.cpu()
|
251 |
-
.float()
|
252 |
-
.numpy()
|
253 |
-
)
|
254 |
-
else:
|
255 |
-
audio1 = (
|
256 |
-
(net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
|
257 |
-
)
|
258 |
-
del feats, p_len, padding_mask
|
259 |
-
if torch.cuda.is_available():
|
260 |
-
torch.cuda.empty_cache()
|
261 |
-
t2 = ttime()
|
262 |
-
times[0] += t1 - t0
|
263 |
-
times[2] += t2 - t1
|
264 |
-
return audio1
|
265 |
-
|
266 |
-
def pipeline(
|
267 |
-
self,
|
268 |
-
model,
|
269 |
-
net_g,
|
270 |
-
sid,
|
271 |
-
audio,
|
272 |
-
input_audio_path,
|
273 |
-
times,
|
274 |
-
f0_up_key,
|
275 |
-
f0_method,
|
276 |
-
file_index,
|
277 |
-
# file_big_npy,
|
278 |
-
index_rate,
|
279 |
-
if_f0,
|
280 |
-
filter_radius,
|
281 |
-
tgt_sr,
|
282 |
-
resample_sr,
|
283 |
-
rms_mix_rate,
|
284 |
-
version,
|
285 |
-
protect,
|
286 |
-
f0_file=None,
|
287 |
-
):
|
288 |
-
if (
|
289 |
-
file_index != ""
|
290 |
-
# and file_big_npy != ""
|
291 |
-
# and os.path.exists(file_big_npy) == True
|
292 |
-
and os.path.exists(file_index) == True
|
293 |
-
and index_rate != 0
|
294 |
-
):
|
295 |
-
try:
|
296 |
-
index = faiss.read_index(file_index)
|
297 |
-
# big_npy = np.load(file_big_npy)
|
298 |
-
big_npy = index.reconstruct_n(0, index.ntotal)
|
299 |
-
except:
|
300 |
-
traceback.print_exc()
|
301 |
-
index = big_npy = None
|
302 |
-
else:
|
303 |
-
index = big_npy = None
|
304 |
-
print("File index Not found, set None")
|
305 |
-
|
306 |
-
audio = signal.filtfilt(bh, ah, audio)
|
307 |
-
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
308 |
-
opt_ts = []
|
309 |
-
if audio_pad.shape[0] > self.t_max:
|
310 |
-
audio_sum = np.zeros_like(audio)
|
311 |
-
for i in range(self.window):
|
312 |
-
audio_sum += audio_pad[i : i - self.window]
|
313 |
-
for t in range(self.t_center, audio.shape[0], self.t_center):
|
314 |
-
opt_ts.append(
|
315 |
-
t
|
316 |
-
- self.t_query
|
317 |
-
+ np.where(
|
318 |
-
np.abs(audio_sum[t - self.t_query : t + self.t_query])
|
319 |
-
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
|
320 |
-
)[0][0]
|
321 |
-
)
|
322 |
-
s = 0
|
323 |
-
audio_opt = []
|
324 |
-
t = None
|
325 |
-
t1 = ttime()
|
326 |
-
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
327 |
-
p_len = audio_pad.shape[0] // self.window
|
328 |
-
inp_f0 = None
|
329 |
-
if hasattr(f0_file, "name") == True:
|
330 |
-
try:
|
331 |
-
with open(f0_file.name, "r") as f:
|
332 |
-
lines = f.read().strip("\n").split("\n")
|
333 |
-
inp_f0 = []
|
334 |
-
for line in lines:
|
335 |
-
inp_f0.append([float(i) for i in line.split(",")])
|
336 |
-
inp_f0 = np.array(inp_f0, dtype="float32")
|
337 |
-
except:
|
338 |
-
traceback.print_exc()
|
339 |
-
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
340 |
-
pitch, pitchf = None, None
|
341 |
-
if if_f0 == 1:
|
342 |
-
pitch, pitchf = self.get_f0(
|
343 |
-
input_audio_path,
|
344 |
-
audio_pad,
|
345 |
-
p_len,
|
346 |
-
f0_up_key,
|
347 |
-
f0_method,
|
348 |
-
filter_radius,
|
349 |
-
inp_f0,
|
350 |
-
)
|
351 |
-
pitch = pitch[:p_len]
|
352 |
-
pitchf = pitchf[:p_len]
|
353 |
-
if self.device == "mps":
|
354 |
-
pitchf = pitchf.astype(np.float32)
|
355 |
-
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
356 |
-
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
357 |
-
t2 = ttime()
|
358 |
-
times[1] += t2 - t1
|
359 |
-
for t in opt_ts:
|
360 |
-
t = t // self.window * self.window
|
361 |
-
if if_f0 == 1:
|
362 |
-
audio_opt.append(
|
363 |
-
self.vc(
|
364 |
-
model,
|
365 |
-
net_g,
|
366 |
-
sid,
|
367 |
-
audio_pad[s : t + self.t_pad2 + self.window],
|
368 |
-
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
|
369 |
-
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
|
370 |
-
times,
|
371 |
-
index,
|
372 |
-
big_npy,
|
373 |
-
index_rate,
|
374 |
-
version,
|
375 |
-
protect,
|
376 |
-
)[self.t_pad_tgt : -self.t_pad_tgt]
|
377 |
-
)
|
378 |
-
else:
|
379 |
-
audio_opt.append(
|
380 |
-
self.vc(
|
381 |
-
model,
|
382 |
-
net_g,
|
383 |
-
sid,
|
384 |
-
audio_pad[s : t + self.t_pad2 + self.window],
|
385 |
-
None,
|
386 |
-
None,
|
387 |
-
times,
|
388 |
-
index,
|
389 |
-
big_npy,
|
390 |
-
index_rate,
|
391 |
-
version,
|
392 |
-
protect,
|
393 |
-
)[self.t_pad_tgt : -self.t_pad_tgt]
|
394 |
-
)
|
395 |
-
s = t
|
396 |
-
if if_f0 == 1:
|
397 |
-
audio_opt.append(
|
398 |
-
self.vc(
|
399 |
-
model,
|
400 |
-
net_g,
|
401 |
-
sid,
|
402 |
-
audio_pad[t:],
|
403 |
-
pitch[:, t // self.window :] if t is not None else pitch,
|
404 |
-
pitchf[:, t // self.window :] if t is not None else pitchf,
|
405 |
-
times,
|
406 |
-
index,
|
407 |
-
big_npy,
|
408 |
-
index_rate,
|
409 |
-
version,
|
410 |
-
protect,
|
411 |
-
)[self.t_pad_tgt : -self.t_pad_tgt]
|
412 |
-
)
|
413 |
-
else:
|
414 |
-
audio_opt.append(
|
415 |
-
self.vc(
|
416 |
-
model,
|
417 |
-
net_g,
|
418 |
-
sid,
|
419 |
-
audio_pad[t:],
|
420 |
-
None,
|
421 |
-
None,
|
422 |
-
times,
|
423 |
-
index,
|
424 |
-
big_npy,
|
425 |
-
index_rate,
|
426 |
-
version,
|
427 |
-
protect,
|
428 |
-
)[self.t_pad_tgt : -self.t_pad_tgt]
|
429 |
-
)
|
430 |
-
audio_opt = np.concatenate(audio_opt)
|
431 |
-
if rms_mix_rate != 1:
|
432 |
-
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
|
433 |
-
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
434 |
-
audio_opt = librosa.resample(
|
435 |
-
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
436 |
-
)
|
437 |
-
audio_max = np.abs(audio_opt).max() / 0.99
|
438 |
-
max_int16 = 32768
|
439 |
-
if audio_max > 1:
|
440 |
-
max_int16 /= audio_max
|
441 |
-
audio_opt = (audio_opt * max_int16).astype(np.int16)
|
442 |
-
del pitch, pitchf, sid
|
443 |
-
if torch.cuda.is_available():
|
444 |
-
torch.cuda.empty_cache()
|
445 |
-
return audio_opt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
voice_main.py
DELETED
@@ -1,554 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from lib.infer_pack.models import (
|
3 |
-
SynthesizerTrnMs256NSFsid,
|
4 |
-
SynthesizerTrnMs256NSFsid_nono,
|
5 |
-
SynthesizerTrnMs768NSFsid,
|
6 |
-
SynthesizerTrnMs768NSFsid_nono,
|
7 |
-
)
|
8 |
-
from vc_infer_pipeline import VC
|
9 |
-
import traceback, pdb
|
10 |
-
from lib.audio import load_audio
|
11 |
-
import numpy as np
|
12 |
-
import os
|
13 |
-
from fairseq import checkpoint_utils
|
14 |
-
import soundfile as sf
|
15 |
-
from gtts import gTTS
|
16 |
-
import edge_tts
|
17 |
-
import asyncio
|
18 |
-
import nest_asyncio
|
19 |
-
|
20 |
-
# model load
|
21 |
-
def get_vc(sid, to_return_protect0, to_return_protect1):
|
22 |
-
global n_spk, tgt_sr, net_g, vc, cpt, version
|
23 |
-
if sid == "" or sid == []:
|
24 |
-
global hubert_model
|
25 |
-
if hubert_model is not None: # change model or not
|
26 |
-
print("clean_empty_cache")
|
27 |
-
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
|
28 |
-
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
|
29 |
-
if torch.cuda.is_available():
|
30 |
-
torch.cuda.empty_cache()
|
31 |
-
### if clean
|
32 |
-
if_f0 = cpt.get("f0", 1)
|
33 |
-
version = cpt.get("version", "v1")
|
34 |
-
if version == "v1":
|
35 |
-
if if_f0 == 1:
|
36 |
-
net_g = SynthesizerTrnMs256NSFsid(
|
37 |
-
*cpt["config"], is_half=config.is_half
|
38 |
-
)
|
39 |
-
else:
|
40 |
-
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
41 |
-
elif version == "v2":
|
42 |
-
if if_f0 == 1:
|
43 |
-
net_g = SynthesizerTrnMs768NSFsid(
|
44 |
-
*cpt["config"], is_half=config.is_half
|
45 |
-
)
|
46 |
-
else:
|
47 |
-
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
48 |
-
del net_g, cpt
|
49 |
-
if torch.cuda.is_available():
|
50 |
-
torch.cuda.empty_cache()
|
51 |
-
return {"visible": False, "__type__": "update"}
|
52 |
-
person = "%s/%s" % (weight_root, sid)
|
53 |
-
print("loading %s" % person)
|
54 |
-
cpt = torch.load(person, map_location="cpu")
|
55 |
-
tgt_sr = cpt["config"][-1]
|
56 |
-
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
57 |
-
if_f0 = cpt.get("f0", 1)
|
58 |
-
if if_f0 == 0:
|
59 |
-
to_return_protect0 = to_return_protect1 = {
|
60 |
-
"visible": False,
|
61 |
-
"value": 0.5,
|
62 |
-
"__type__": "update",
|
63 |
-
}
|
64 |
-
else:
|
65 |
-
to_return_protect0 = {
|
66 |
-
"visible": True,
|
67 |
-
"value": to_return_protect0,
|
68 |
-
"__type__": "update",
|
69 |
-
}
|
70 |
-
to_return_protect1 = {
|
71 |
-
"visible": True,
|
72 |
-
"value": to_return_protect1,
|
73 |
-
"__type__": "update",
|
74 |
-
}
|
75 |
-
version = cpt.get("version", "v1")
|
76 |
-
if version == "v1":
|
77 |
-
if if_f0 == 1:
|
78 |
-
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
79 |
-
else:
|
80 |
-
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
81 |
-
elif version == "v2":
|
82 |
-
if if_f0 == 1:
|
83 |
-
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
84 |
-
else:
|
85 |
-
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
86 |
-
del net_g.enc_q
|
87 |
-
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
88 |
-
net_g.eval().to(config.device)
|
89 |
-
if config.is_half:
|
90 |
-
net_g = net_g.half()
|
91 |
-
else:
|
92 |
-
net_g = net_g.float()
|
93 |
-
vc = VC(tgt_sr, config)
|
94 |
-
n_spk = cpt["config"][-3]
|
95 |
-
return (
|
96 |
-
{"visible": True, "maximum": n_spk, "__type__": "update"},
|
97 |
-
to_return_protect0,
|
98 |
-
to_return_protect1,
|
99 |
-
)
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
# inference
|
104 |
-
def vc_single(
|
105 |
-
sid,
|
106 |
-
input_audio_path,
|
107 |
-
f0_up_key,
|
108 |
-
f0_file,
|
109 |
-
f0_method,
|
110 |
-
file_index,
|
111 |
-
file_index2,
|
112 |
-
# file_big_npy,
|
113 |
-
index_rate,
|
114 |
-
filter_radius,
|
115 |
-
resample_sr,
|
116 |
-
rms_mix_rate,
|
117 |
-
protect,
|
118 |
-
):
|
119 |
-
global tgt_sr, net_g, vc, hubert_model, version, cpt
|
120 |
-
if input_audio_path is None:
|
121 |
-
return "You need to upload an audio", None
|
122 |
-
f0_up_key = int(f0_up_key)
|
123 |
-
try:
|
124 |
-
audio = load_audio(input_audio_path, 16000)
|
125 |
-
audio_max = np.abs(audio).max() / 0.95
|
126 |
-
if audio_max > 1:
|
127 |
-
audio /= audio_max
|
128 |
-
times = [0, 0, 0]
|
129 |
-
if not hubert_model:
|
130 |
-
load_hubert()
|
131 |
-
if_f0 = cpt.get("f0", 1)
|
132 |
-
file_index = (
|
133 |
-
(
|
134 |
-
file_index.strip(" ")
|
135 |
-
.strip('"')
|
136 |
-
.strip("\n")
|
137 |
-
.strip('"')
|
138 |
-
.strip(" ")
|
139 |
-
.replace("trained", "added")
|
140 |
-
)
|
141 |
-
if file_index != ""
|
142 |
-
else file_index2
|
143 |
-
) # reemplace for 2
|
144 |
-
# file_big_npy = (
|
145 |
-
# file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
146 |
-
# )
|
147 |
-
audio_opt = vc.pipeline(
|
148 |
-
hubert_model,
|
149 |
-
net_g,
|
150 |
-
sid,
|
151 |
-
audio,
|
152 |
-
input_audio_path,
|
153 |
-
times,
|
154 |
-
f0_up_key,
|
155 |
-
f0_method,
|
156 |
-
file_index,
|
157 |
-
# file_big_npy,
|
158 |
-
index_rate,
|
159 |
-
if_f0,
|
160 |
-
filter_radius,
|
161 |
-
tgt_sr,
|
162 |
-
resample_sr,
|
163 |
-
rms_mix_rate,
|
164 |
-
version,
|
165 |
-
protect,
|
166 |
-
f0_file=f0_file,
|
167 |
-
)
|
168 |
-
if tgt_sr != resample_sr >= 16000:
|
169 |
-
tgt_sr = resample_sr
|
170 |
-
index_info = (
|
171 |
-
"Using index:%s." % file_index
|
172 |
-
if os.path.exists(file_index)
|
173 |
-
else "Index not used."
|
174 |
-
)
|
175 |
-
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
|
176 |
-
index_info,
|
177 |
-
times[0],
|
178 |
-
times[1],
|
179 |
-
times[2],
|
180 |
-
), (tgt_sr, audio_opt)
|
181 |
-
except:
|
182 |
-
info = traceback.format_exc()
|
183 |
-
print(info)
|
184 |
-
return info, (None, None)
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
# hubert model
|
189 |
-
def load_hubert():
|
190 |
-
global hubert_model
|
191 |
-
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
192 |
-
["hubert_base.pt"],
|
193 |
-
suffix="",
|
194 |
-
)
|
195 |
-
hubert_model = models[0]
|
196 |
-
hubert_model = hubert_model.to(config.device)
|
197 |
-
if config.is_half:
|
198 |
-
hubert_model = hubert_model.half()
|
199 |
-
else:
|
200 |
-
hubert_model = hubert_model.float()
|
201 |
-
hubert_model.eval()
|
202 |
-
|
203 |
-
# config cpu
|
204 |
-
def use_fp32_config():
|
205 |
-
for config_file in [
|
206 |
-
"32k.json",
|
207 |
-
"40k.json",
|
208 |
-
"48k.json",
|
209 |
-
"48k_v2.json",
|
210 |
-
"32k_v2.json",
|
211 |
-
]:
|
212 |
-
with open(f"configs/{config_file}", "r") as f:
|
213 |
-
strr = f.read().replace("true", "false")
|
214 |
-
with open(f"configs/{config_file}", "w") as f:
|
215 |
-
f.write(strr)
|
216 |
-
|
217 |
-
# config device and torch type
|
218 |
-
class Config:
|
219 |
-
def __init__(self, device, is_half):
|
220 |
-
self.device = device
|
221 |
-
self.is_half = is_half
|
222 |
-
self.n_cpu = 2 # set cpu cores ####################
|
223 |
-
self.gpu_name = None
|
224 |
-
self.gpu_mem = None
|
225 |
-
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
|
226 |
-
|
227 |
-
def device_config(self) -> tuple:
|
228 |
-
if torch.cuda.is_available():
|
229 |
-
i_device = int(self.device.split(":")[-1])
|
230 |
-
self.gpu_name = torch.cuda.get_device_name(i_device)
|
231 |
-
if (
|
232 |
-
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
233 |
-
or "P40" in self.gpu_name.upper()
|
234 |
-
or "1060" in self.gpu_name
|
235 |
-
or "1070" in self.gpu_name
|
236 |
-
or "1080" in self.gpu_name
|
237 |
-
):
|
238 |
-
print("16 series / 10 series graphics cards and P40 force single precision")
|
239 |
-
self.is_half = False
|
240 |
-
for config_file in ["32k.json", "40k.json", "48k.json"]:
|
241 |
-
with open(f"configs/{config_file}", "r") as f:
|
242 |
-
strr = f.read().replace("true", "false")
|
243 |
-
with open(f"configs/{config_file}", "w") as f:
|
244 |
-
f.write(strr)
|
245 |
-
with open("trainset_preprocess_pipeline_print.py", "r") as f:
|
246 |
-
strr = f.read().replace("3.7", "3.0")
|
247 |
-
with open("trainset_preprocess_pipeline_print.py", "w") as f:
|
248 |
-
f.write(strr)
|
249 |
-
else:
|
250 |
-
self.gpu_name = None
|
251 |
-
self.gpu_mem = int(
|
252 |
-
torch.cuda.get_device_properties(i_device).total_memory
|
253 |
-
/ 1024
|
254 |
-
/ 1024
|
255 |
-
/ 1024
|
256 |
-
+ 0.4
|
257 |
-
)
|
258 |
-
if self.gpu_mem <= 4:
|
259 |
-
with open("trainset_preprocess_pipeline_print.py", "r") as f:
|
260 |
-
strr = f.read().replace("3.7", "3.0")
|
261 |
-
with open("trainset_preprocess_pipeline_print.py", "w") as f:
|
262 |
-
f.write(strr)
|
263 |
-
elif torch.backends.mps.is_available():
|
264 |
-
print("Supported N-card not found, using MPS for inference")
|
265 |
-
self.device = "mps"
|
266 |
-
else:
|
267 |
-
print("No supported N-card found, using CPU for inference")
|
268 |
-
self.device = "cpu"
|
269 |
-
self.is_half = False
|
270 |
-
use_fp32_config()
|
271 |
-
|
272 |
-
if self.n_cpu == 0:
|
273 |
-
self.n_cpu = cpu_count()
|
274 |
-
|
275 |
-
if self.is_half:
|
276 |
-
# 6GB VRAM configuration
|
277 |
-
x_pad = 3
|
278 |
-
x_query = 10
|
279 |
-
x_center = 60
|
280 |
-
x_max = 65
|
281 |
-
else:
|
282 |
-
# 5GB VRAM configuration
|
283 |
-
x_pad = 1
|
284 |
-
x_query = 6
|
285 |
-
x_center = 38
|
286 |
-
x_max = 41
|
287 |
-
|
288 |
-
if self.gpu_mem != None and self.gpu_mem <= 4:
|
289 |
-
x_pad = 1
|
290 |
-
x_query = 5
|
291 |
-
x_center = 30
|
292 |
-
x_max = 32
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
print(self.device, self.is_half)
|
298 |
-
|
299 |
-
return x_pad, x_query, x_center, x_max
|
300 |
-
|
301 |
-
# call inference
|
302 |
-
class ClassVoices:
|
303 |
-
def __init__(self):
|
304 |
-
self.file_index = "" # root
|
305 |
-
|
306 |
-
def apply_conf(self, f0method,
|
307 |
-
model_voice_path00, transpose00, file_index2_00,
|
308 |
-
model_voice_path01, transpose01, file_index2_01,
|
309 |
-
model_voice_path02, transpose02, file_index2_02,
|
310 |
-
model_voice_path03, transpose03, file_index2_03,
|
311 |
-
model_voice_path04, transpose04, file_index2_04,
|
312 |
-
model_voice_path05, transpose05, file_index2_05,
|
313 |
-
model_voice_path99, transpose99, file_index2_99):
|
314 |
-
|
315 |
-
#self.filename = filename
|
316 |
-
self.f0method = f0method # pm
|
317 |
-
|
318 |
-
self.model_voice_path00 = model_voice_path00
|
319 |
-
self.transpose00 = transpose00
|
320 |
-
self.file_index200 = file_index2_00
|
321 |
-
|
322 |
-
self.model_voice_path01 = model_voice_path01
|
323 |
-
self.transpose01 = transpose01
|
324 |
-
self.file_index201 = file_index2_01
|
325 |
-
|
326 |
-
self.model_voice_path02 = model_voice_path02
|
327 |
-
self.transpose02 = transpose02
|
328 |
-
self.file_index202 = file_index2_02
|
329 |
-
|
330 |
-
self.model_voice_path03 = model_voice_path03
|
331 |
-
self.transpose03 = transpose03
|
332 |
-
self.file_index203 = file_index2_03
|
333 |
-
|
334 |
-
self.model_voice_path04 = model_voice_path04
|
335 |
-
self.transpose04 = transpose04
|
336 |
-
self.file_index204 = file_index2_04
|
337 |
-
|
338 |
-
self.model_voice_path05 = model_voice_path05
|
339 |
-
self.transpose05 = transpose05
|
340 |
-
self.file_index205 = file_index2_05
|
341 |
-
|
342 |
-
self.model_voice_path99 = model_voice_path99
|
343 |
-
self.transpose99 = transpose99
|
344 |
-
self.file_index299 = file_index2_99
|
345 |
-
return "CONFIGURATION APPLIED"
|
346 |
-
|
347 |
-
def custom_voice(self,
|
348 |
-
_values, # filter indices
|
349 |
-
audio_files, # all audio files
|
350 |
-
model_voice_path='',
|
351 |
-
transpose=0,
|
352 |
-
f0method='pm',
|
353 |
-
file_index='',
|
354 |
-
file_index2='',
|
355 |
-
):
|
356 |
-
|
357 |
-
#hubert_model = None
|
358 |
-
|
359 |
-
get_vc(
|
360 |
-
sid=model_voice_path, # model path
|
361 |
-
to_return_protect0=0.33,
|
362 |
-
to_return_protect1=0.33
|
363 |
-
)
|
364 |
-
|
365 |
-
for _value_item in _values:
|
366 |
-
filename = "audio2/"+audio_files[_value_item] if _value_item != "test" else audio_files[0]
|
367 |
-
#filename = "audio2/"+audio_files[_value_item]
|
368 |
-
try:
|
369 |
-
print(audio_files[_value_item], model_voice_path)
|
370 |
-
except:
|
371 |
-
pass
|
372 |
-
|
373 |
-
info_, (sample_, audio_output_) = vc_single(
|
374 |
-
sid=0,
|
375 |
-
input_audio_path=filename, #f"audio2/{filename}",
|
376 |
-
f0_up_key=transpose, # transpose for m to f and reverse 0 12
|
377 |
-
f0_file=None,
|
378 |
-
f0_method= f0method,
|
379 |
-
file_index= file_index, # dir pwd?
|
380 |
-
file_index2= file_index2,
|
381 |
-
# file_big_npy1,
|
382 |
-
index_rate= float(0.66),
|
383 |
-
filter_radius= int(3),
|
384 |
-
resample_sr= int(0),
|
385 |
-
rms_mix_rate= float(0.25),
|
386 |
-
protect= float(0.33),
|
387 |
-
)
|
388 |
-
|
389 |
-
sf.write(
|
390 |
-
file= filename, #f"audio2/{filename}",
|
391 |
-
samplerate=sample_,
|
392 |
-
data=audio_output_
|
393 |
-
)
|
394 |
-
|
395 |
-
# detele the model
|
396 |
-
|
397 |
-
def make_test(self,
|
398 |
-
tts_text,
|
399 |
-
tts_voice,
|
400 |
-
model_path,
|
401 |
-
index_path,
|
402 |
-
transpose,
|
403 |
-
f0_method,
|
404 |
-
):
|
405 |
-
os.system("rm -rf test")
|
406 |
-
filename = "test/test.wav"
|
407 |
-
|
408 |
-
if "SET_LIMIT" == os.getenv("DEMO"):
|
409 |
-
if len(tts_text) > 60:
|
410 |
-
tts_text = tts_text[:60]
|
411 |
-
print("DEMO; limit to 60 characters")
|
412 |
-
|
413 |
-
language = tts_voice[:2]
|
414 |
-
try:
|
415 |
-
os.system("mkdir test")
|
416 |
-
#nest_asyncio.apply() # gradio;not
|
417 |
-
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(filename))
|
418 |
-
except:
|
419 |
-
try:
|
420 |
-
tts = gTTS(tts_text, lang=language)
|
421 |
-
tts.save(filename)
|
422 |
-
tts.save
|
423 |
-
print(f'No audio was received. Please change the tts voice for {tts_voice}. USING gTTS.')
|
424 |
-
except:
|
425 |
-
tts = gTTS('a', lang=language)
|
426 |
-
tts.save(filename)
|
427 |
-
print('Error: Audio will be replaced.')
|
428 |
-
|
429 |
-
os.system("cp test/test.wav test/real_test.wav")
|
430 |
-
|
431 |
-
self([],[]) # start modules
|
432 |
-
|
433 |
-
self.custom_voice(
|
434 |
-
["test"], # filter indices
|
435 |
-
["test/test.wav"], # all audio files
|
436 |
-
model_voice_path=model_path,
|
437 |
-
transpose=transpose,
|
438 |
-
f0method=f0_method,
|
439 |
-
file_index='',
|
440 |
-
file_index2=index_path,
|
441 |
-
)
|
442 |
-
return "test/test.wav", "test/real_test.wav"
|
443 |
-
|
444 |
-
def __call__(self, speakers_list, audio_files):
|
445 |
-
|
446 |
-
speakers_indices = {}
|
447 |
-
|
448 |
-
for index, speak_ in enumerate(speakers_list):
|
449 |
-
if speak_ in speakers_indices:
|
450 |
-
speakers_indices[speak_].append(index)
|
451 |
-
else:
|
452 |
-
speakers_indices[speak_] = [index]
|
453 |
-
|
454 |
-
|
455 |
-
# find models and index
|
456 |
-
global weight_root, index_root, config, hubert_model
|
457 |
-
weight_root = "weights"
|
458 |
-
names = []
|
459 |
-
for name in os.listdir(weight_root):
|
460 |
-
if name.endswith(".pth"):
|
461 |
-
names.append(name)
|
462 |
-
|
463 |
-
index_root = "logs"
|
464 |
-
index_paths = []
|
465 |
-
for name in os.listdir(index_root):
|
466 |
-
if name.endswith(".index"):
|
467 |
-
index_paths.append(name)
|
468 |
-
|
469 |
-
print(names, index_paths)
|
470 |
-
# config machine
|
471 |
-
hubert_model = None
|
472 |
-
config = Config('cuda:0', is_half=True) # config = Config('cpu', is_half=False) # cpu
|
473 |
-
|
474 |
-
# filter by speaker
|
475 |
-
for _speak, _values in speakers_indices.items():
|
476 |
-
#print(_speak, _values)
|
477 |
-
#for _value_item in _values:
|
478 |
-
# self.filename = "audio2/"+audio_files[_value_item]
|
479 |
-
###print(audio_files[_value_item])
|
480 |
-
|
481 |
-
#vc(_speak, _values, audio_files)
|
482 |
-
|
483 |
-
if _speak == "SPEAKER_00":
|
484 |
-
self.custom_voice(
|
485 |
-
_values, # filteredd
|
486 |
-
audio_files,
|
487 |
-
model_voice_path=self.model_voice_path00,
|
488 |
-
file_index2=self.file_index200,
|
489 |
-
transpose=self.transpose00,
|
490 |
-
f0method=self.f0method,
|
491 |
-
file_index=self.file_index,
|
492 |
-
)
|
493 |
-
elif _speak == "SPEAKER_01":
|
494 |
-
self.custom_voice(
|
495 |
-
_values,
|
496 |
-
audio_files,
|
497 |
-
model_voice_path=self.model_voice_path01,
|
498 |
-
file_index2=self.file_index201,
|
499 |
-
transpose=self.transpose01,
|
500 |
-
f0method=self.f0method,
|
501 |
-
file_index=self.file_index,
|
502 |
-
)
|
503 |
-
elif _speak == "SPEAKER_02":
|
504 |
-
self.custom_voice(
|
505 |
-
_values,
|
506 |
-
audio_files,
|
507 |
-
model_voice_path=self.model_voice_path02,
|
508 |
-
file_index2=self.file_index202,
|
509 |
-
transpose=self.transpose02,
|
510 |
-
f0method=self.f0method,
|
511 |
-
file_index=self.file_index,
|
512 |
-
)
|
513 |
-
elif _speak == "SPEAKER_03":
|
514 |
-
self.custom_voice(
|
515 |
-
_values,
|
516 |
-
audio_files,
|
517 |
-
model_voice_path=self.model_voice_path03,
|
518 |
-
file_index2=self.file_index203,
|
519 |
-
transpose=self.transpose03,
|
520 |
-
f0method=self.f0method,
|
521 |
-
file_index=self.file_index,
|
522 |
-
)
|
523 |
-
elif _speak == "SPEAKER_04":
|
524 |
-
self.custom_voice(
|
525 |
-
_values,
|
526 |
-
audio_files,
|
527 |
-
model_voice_path=self.model_voice_path04,
|
528 |
-
file_index2=self.file_index204,
|
529 |
-
transpose=self.transpose04,
|
530 |
-
f0method=self.f0method,
|
531 |
-
file_index=self.file_index,
|
532 |
-
)
|
533 |
-
elif _speak == "SPEAKER_05":
|
534 |
-
self.custom_voice(
|
535 |
-
_values,
|
536 |
-
audio_files,
|
537 |
-
model_voice_path=self.model_voice_path05,
|
538 |
-
file_index2=self.file_index205,
|
539 |
-
transpose=self.transpose05,
|
540 |
-
f0method=self.f0method,
|
541 |
-
file_index=self.file_index,
|
542 |
-
)
|
543 |
-
elif _speak == "SPEAKER_99":
|
544 |
-
self.custom_voice(
|
545 |
-
_values,
|
546 |
-
audio_files,
|
547 |
-
model_voice_path=self.model_voice_path99,
|
548 |
-
file_index2=self.file_index299,
|
549 |
-
transpose=self.transpose99,
|
550 |
-
f0method=self.f0method,
|
551 |
-
file_index=self.file_index,
|
552 |
-
)
|
553 |
-
else:
|
554 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|