|
from .logging_setup import logger |
|
from whisperx.utils import get_writer |
|
from .utils import remove_files, run_command, remove_directory_contents |
|
from typing import List |
|
import srt |
|
import re |
|
import os |
|
import copy |
|
import string |
|
import soundfile as sf |
|
from PIL import Image, ImageOps, ImageDraw, ImageFont |
|
|
|
punctuation_list = list( |
|
string.punctuation + "¡¿«»„”“”‚‘’「」『』《》()【】〈〉〔〕〖〗〘〙〚〛⸤⸥⸨⸩" |
|
) |
|
symbol_list = punctuation_list + ["", "..", "..."] |
|
|
|
|
|
def extract_from_srt(file_path): |
|
with open(file_path, "r", encoding="utf-8") as file: |
|
srt_content = file.read() |
|
|
|
subtitle_generator = srt.parse(srt_content) |
|
srt_content_list = list(subtitle_generator) |
|
|
|
return srt_content_list |
|
|
|
|
|
def clean_text(text): |
|
|
|
|
|
text = re.sub(r'\[.*?\]', '', text) |
|
|
|
text = re.sub(r'<comment>.*?</comment>', '', text) |
|
|
|
text = re.sub(r'<.*?>', '', text) |
|
|
|
text = re.sub(r'♫.*?♫', '', text) |
|
text = re.sub(r'♪.*?♪', '', text) |
|
|
|
text = text.replace("\n", ". ") |
|
|
|
text = text.replace('"', '') |
|
|
|
text = re.sub(r"\s+", " ", text) |
|
|
|
text = re.sub(r"[\s\.]+(?=\s)", ". ", text) |
|
|
|
if '♫' in text or '♪' in text: |
|
return "" |
|
|
|
text = text.strip() |
|
|
|
|
|
return text if text not in symbol_list else "" |
|
|
|
|
|
def srt_file_to_segments(file_path, speaker=False): |
|
try: |
|
srt_content_list = extract_from_srt(file_path) |
|
except Exception as error: |
|
logger.error(str(error)) |
|
fixed_file = "fixed_sub.srt" |
|
remove_files(fixed_file) |
|
fix_sub = f'ffmpeg -i "{file_path}" "{fixed_file}" -y' |
|
run_command(fix_sub) |
|
srt_content_list = extract_from_srt(fixed_file) |
|
|
|
segments = [] |
|
for segment in srt_content_list: |
|
|
|
text = clean_text(str(segment.content)) |
|
|
|
if text: |
|
segments.append( |
|
{ |
|
"text": text, |
|
"start": float(segment.start.total_seconds()), |
|
"end": float(segment.end.total_seconds()), |
|
} |
|
) |
|
|
|
if not segments: |
|
raise Exception("No data found in srt subtitle file") |
|
|
|
if speaker: |
|
segments = [{**seg, "speaker": "SPEAKER_00"} for seg in segments] |
|
|
|
return {"segments": segments} |
|
|
|
|
|
|
|
|
|
|
|
def dehyphenate(lines: List[str], line_no: int) -> List[str]: |
|
next_line = lines[line_no + 1] |
|
word_suffix = next_line.split(" ")[0] |
|
|
|
lines[line_no] = lines[line_no][:-1] + word_suffix |
|
lines[line_no + 1] = lines[line_no + 1][len(word_suffix):] |
|
return lines |
|
|
|
|
|
def remove_hyphens(text: str) -> str: |
|
""" |
|
|
|
This fails for: |
|
* Natural dashes: well-known, self-replication, use-cases, non-semantic, |
|
Post-processing, Window-wise, viewpoint-dependent |
|
* Trailing math operands: 2 - 4 |
|
* Names: Lopez-Ferreras, VGG-19, CIFAR-100 |
|
""" |
|
lines = [line.rstrip() for line in text.split("\n")] |
|
|
|
|
|
line_numbers = [] |
|
for line_no, line in enumerate(lines[:-1]): |
|
if line.endswith("-"): |
|
line_numbers.append(line_no) |
|
|
|
|
|
for line_no in line_numbers: |
|
lines = dehyphenate(lines, line_no) |
|
|
|
return "\n".join(lines) |
|
|
|
|
|
def pdf_to_txt(pdf_file, start_page, end_page): |
|
from pypdf import PdfReader |
|
|
|
with open(pdf_file, "rb") as file: |
|
reader = PdfReader(file) |
|
logger.debug(f"Total pages: {reader.get_num_pages()}") |
|
text = "" |
|
|
|
start_page_idx = max((start_page-1), 0) |
|
end_page_inx = min((end_page), (reader.get_num_pages())) |
|
document_pages = reader.pages[start_page_idx:end_page_inx] |
|
logger.info( |
|
f"Selected pages from {start_page_idx} to {end_page_inx}: " |
|
f"{len(document_pages)}" |
|
) |
|
|
|
for page in document_pages: |
|
text += remove_hyphens(page.extract_text()) |
|
return text |
|
|
|
|
|
def docx_to_txt(docx_file): |
|
|
|
from docx import Document |
|
|
|
doc = Document(docx_file) |
|
text = "" |
|
for paragraph in doc.paragraphs: |
|
text += paragraph.text + "\n" |
|
return text |
|
|
|
|
|
def replace_multiple_elements(text, replacements): |
|
pattern = re.compile("|".join(map(re.escape, replacements.keys()))) |
|
replaced_text = pattern.sub( |
|
lambda match: replacements[match.group(0)], text |
|
) |
|
|
|
|
|
replaced_text = re.sub(r"\s+", " ", replaced_text) |
|
|
|
return replaced_text |
|
|
|
|
|
def document_preprocessor(file_path, is_string, start_page, end_page): |
|
if not is_string: |
|
file_ext = os.path.splitext(file_path)[1].lower() |
|
|
|
if is_string: |
|
text = file_path |
|
elif file_ext == ".pdf": |
|
text = pdf_to_txt(file_path, start_page, end_page) |
|
elif file_ext == ".docx": |
|
text = docx_to_txt(file_path) |
|
elif file_ext == ".txt": |
|
with open( |
|
file_path, "r", encoding='utf-8', errors='replace' |
|
) as file: |
|
text = file.read() |
|
else: |
|
raise Exception("Unsupported file format") |
|
|
|
|
|
replacements = { |
|
"、": "、 ", |
|
"。": "。 ", |
|
|
|
} |
|
text = replace_multiple_elements(text, replacements) |
|
|
|
|
|
|
|
txt_file_path = "./text_preprocessor.txt" |
|
|
|
with open( |
|
txt_file_path, "w", encoding='utf-8', errors='replace' |
|
) as txt_file: |
|
txt_file.write(text) |
|
|
|
return txt_file_path, text |
|
|
|
|
|
def split_text_into_chunks(text, chunk_size): |
|
words = re.findall(r"\b\w+\b", text) |
|
chunks = [] |
|
current_chunk = "" |
|
for word in words: |
|
if ( |
|
len(current_chunk) + len(word) + 1 <= chunk_size |
|
): |
|
if current_chunk: |
|
current_chunk += " " |
|
current_chunk += word |
|
else: |
|
chunks.append(current_chunk) |
|
current_chunk = word |
|
if current_chunk: |
|
chunks.append(current_chunk) |
|
return chunks |
|
|
|
|
|
def determine_chunk_size(file_name): |
|
patterns = { |
|
re.compile(r".*-(Male|Female)$"): 1024, |
|
re.compile(r".* BARK$"): 100, |
|
re.compile(r".* VITS$"): 500, |
|
re.compile( |
|
r".+\.(wav|mp3|ogg|m4a)$" |
|
): 150, |
|
re.compile(r".* VITS-onnx$"): 250, |
|
re.compile(r".* OpenAI-TTS$"): 1024 |
|
} |
|
|
|
for pattern, chunk_size in patterns.items(): |
|
if pattern.match(file_name): |
|
return chunk_size |
|
|
|
|
|
return 100 |
|
|
|
|
|
def plain_text_to_segments(result_text=None, chunk_size=None): |
|
if not chunk_size: |
|
chunk_size = 100 |
|
text_chunks = split_text_into_chunks(result_text, chunk_size) |
|
|
|
segments_chunks = [] |
|
for num, chunk in enumerate(text_chunks): |
|
chunk_dict = { |
|
"text": chunk, |
|
"start": (1.0 + num), |
|
"end": (2.0 + num), |
|
"speaker": "SPEAKER_00", |
|
} |
|
segments_chunks.append(chunk_dict) |
|
|
|
result_diarize = {"segments": segments_chunks} |
|
|
|
return result_diarize |
|
|
|
|
|
def segments_to_plain_text(result_diarize): |
|
complete_text = "" |
|
for seg in result_diarize["segments"]: |
|
complete_text += seg["text"] + " " |
|
|
|
|
|
|
|
txt_file_path = "./text_translation.txt" |
|
|
|
with open( |
|
txt_file_path, "w", encoding='utf-8', errors='replace' |
|
) as txt_file: |
|
txt_file.write(complete_text) |
|
|
|
return txt_file_path, complete_text |
|
|
|
|
|
|
|
|
|
COLORS = { |
|
"black": (0, 0, 0), |
|
"white": (255, 255, 255), |
|
"red": (255, 0, 0), |
|
"green": (0, 255, 0), |
|
"blue": (0, 0, 255), |
|
"yellow": (255, 255, 0), |
|
"light_gray": (200, 200, 200), |
|
"light_blue": (173, 216, 230), |
|
"light_green": (144, 238, 144), |
|
"light_yellow": (255, 255, 224), |
|
"light_pink": (255, 182, 193), |
|
"lavender": (230, 230, 250), |
|
"peach": (255, 218, 185), |
|
"light_cyan": (224, 255, 255), |
|
"light_salmon": (255, 160, 122), |
|
"light_green_yellow": (173, 255, 47), |
|
} |
|
|
|
BORDER_COLORS = ["dynamic"] + list(COLORS.keys()) |
|
|
|
|
|
def calculate_average_color(img): |
|
|
|
img_small = img.resize((50, 50)) |
|
|
|
average_color = img_small.convert("RGB").resize((1, 1)).getpixel((0, 0)) |
|
return average_color |
|
|
|
|
|
def add_border_to_image( |
|
image_path, |
|
target_width, |
|
target_height, |
|
border_color=None |
|
): |
|
|
|
img = Image.open(image_path) |
|
|
|
|
|
original_width, original_height = img.size |
|
original_aspect_ratio = original_width / original_height |
|
target_aspect_ratio = target_width / target_height |
|
|
|
|
|
if original_aspect_ratio > target_aspect_ratio: |
|
|
|
new_height = int(target_width / original_aspect_ratio) |
|
resized_img = img.resize((target_width, new_height)) |
|
else: |
|
|
|
new_width = int(target_height * original_aspect_ratio) |
|
resized_img = img.resize((new_width, target_height)) |
|
|
|
|
|
padding = (0, 0, 0, 0) |
|
if resized_img.size[0] != target_width or resized_img.size[1] != target_height: |
|
if original_aspect_ratio > target_aspect_ratio: |
|
|
|
padding = (0, (target_height - resized_img.size[1]) // 2, 0, (target_height - resized_img.size[1]) // 2) |
|
else: |
|
|
|
padding = ((target_width - resized_img.size[0]) // 2, 0, (target_width - resized_img.size[0]) // 2, 0) |
|
|
|
|
|
if not border_color or border_color == "dynamic": |
|
border_color = calculate_average_color(resized_img) |
|
else: |
|
border_color = COLORS.get(border_color, (0, 0, 0)) |
|
|
|
bordered_img = ImageOps.expand(resized_img, padding, fill=border_color) |
|
|
|
bordered_img.save(image_path) |
|
|
|
return image_path |
|
|
|
|
|
def resize_and_position_subimage( |
|
subimage, |
|
max_width, |
|
max_height, |
|
subimage_position, |
|
main_width, |
|
main_height |
|
): |
|
subimage_width, subimage_height = subimage.size |
|
|
|
|
|
if subimage_width > max_width or subimage_height > max_height: |
|
|
|
width_scale = max_width / subimage_width |
|
height_scale = max_height / subimage_height |
|
scale = min(width_scale, height_scale) |
|
|
|
|
|
subimage = subimage.resize( |
|
(int(subimage_width * scale), int(subimage_height * scale)) |
|
) |
|
|
|
|
|
if subimage_position == "top-left": |
|
subimage_x = 0 |
|
subimage_y = 0 |
|
elif subimage_position == "top-right": |
|
subimage_x = main_width - subimage.width |
|
subimage_y = 0 |
|
elif subimage_position == "bottom-left": |
|
subimage_x = 0 |
|
subimage_y = main_height - subimage.height |
|
elif subimage_position == "bottom-right": |
|
subimage_x = main_width - subimage.width |
|
subimage_y = main_height - subimage.height |
|
else: |
|
raise ValueError( |
|
"Invalid subimage_position. Choose from 'top-left', 'top-right'," |
|
" 'bottom-left', or 'bottom-right'." |
|
) |
|
|
|
return subimage, subimage_x, subimage_y |
|
|
|
|
|
def create_image_with_text_and_subimages( |
|
text, |
|
subimages, |
|
width, |
|
height, |
|
text_color, |
|
background_color, |
|
output_file |
|
): |
|
|
|
image = Image.new('RGB', (width, height), color=background_color) |
|
|
|
|
|
draw = ImageDraw.Draw(image) |
|
|
|
|
|
font = ImageFont.load_default() |
|
|
|
|
|
text_bbox = draw.textbbox((0, 0), text, font=font) |
|
text_width = text_bbox[2] - text_bbox[0] |
|
text_height = text_bbox[3] - text_bbox[1] |
|
text_x = (width - text_width) / 2 |
|
text_y = (height - text_height) / 2 |
|
|
|
|
|
draw.text((text_x, text_y), text, fill=text_color, font=font) |
|
|
|
|
|
for subimage_path, subimage_position in subimages: |
|
|
|
subimage = Image.open(subimage_path) |
|
|
|
|
|
if subimage.mode != 'RGBA': |
|
subimage = subimage.convert('RGBA') |
|
|
|
|
|
subimage, subimage_x, subimage_y = resize_and_position_subimage( |
|
subimage, width / 4, height / 4, subimage_position, width, height |
|
) |
|
|
|
|
|
image.paste(subimage, (int(subimage_x), int(subimage_y)), subimage) |
|
|
|
image.save(output_file) |
|
|
|
return output_file |
|
|
|
|
|
def doc_to_txtximg_pages( |
|
document, |
|
width, |
|
height, |
|
start_page, |
|
end_page, |
|
bcolor |
|
): |
|
from pypdf import PdfReader |
|
|
|
images_folder = "pdf_images/" |
|
os.makedirs(images_folder, exist_ok=True) |
|
remove_directory_contents(images_folder) |
|
|
|
|
|
text_image = os.path.basename(document)[:-4] |
|
subimages = [("./assets/logo.jpeg", "top-left")] |
|
text_color = (255, 255, 255) if bcolor == "black" else (0, 0, 0) |
|
background_color = COLORS.get(bcolor, (255, 255, 255)) |
|
first_image = "pdf_images/0000_00_aaa.png" |
|
|
|
create_image_with_text_and_subimages( |
|
text_image, |
|
subimages, |
|
width, |
|
height, |
|
text_color, |
|
background_color, |
|
first_image |
|
) |
|
|
|
reader = PdfReader(document) |
|
logger.debug(f"Total pages: {reader.get_num_pages()}") |
|
|
|
start_page_idx = max((start_page-1), 0) |
|
end_page_inx = min((end_page), (reader.get_num_pages())) |
|
document_pages = reader.pages[start_page_idx:end_page_inx] |
|
|
|
logger.info( |
|
f"Selected pages from {start_page_idx} to {end_page_inx}: " |
|
f"{len(document_pages)}" |
|
) |
|
|
|
data_doc = {} |
|
for i, page in enumerate(document_pages): |
|
|
|
count = 0 |
|
images = [] |
|
for image_file_object in page.images: |
|
img_name = f"{images_folder}{i:04d}_{count:02d}_{image_file_object.name}" |
|
images.append(img_name) |
|
with open(img_name, "wb") as fp: |
|
fp.write(image_file_object.data) |
|
count += 1 |
|
img_name = add_border_to_image(img_name, width, height, bcolor) |
|
|
|
data_doc[i] = { |
|
"text": remove_hyphens(page.extract_text()), |
|
"images": images |
|
} |
|
|
|
return data_doc |
|
|
|
|
|
def page_data_to_segments(result_text=None, chunk_size=None): |
|
|
|
if not chunk_size: |
|
chunk_size = 100 |
|
|
|
segments_chunks = [] |
|
time_global = 0 |
|
for page, result_data in result_text.items(): |
|
|
|
result_text = result_data["text"] |
|
text_chunks = split_text_into_chunks(result_text, chunk_size) |
|
if not text_chunks: |
|
text_chunks = [" "] |
|
|
|
for chunk in text_chunks: |
|
chunk_dict = { |
|
"text": chunk, |
|
"start": (1.0 + time_global), |
|
"end": (2.0 + time_global), |
|
"speaker": "SPEAKER_00", |
|
"page": page, |
|
} |
|
segments_chunks.append(chunk_dict) |
|
time_global += 1 |
|
|
|
result_diarize = {"segments": segments_chunks} |
|
|
|
return result_diarize |
|
|
|
|
|
def update_page_data(result_diarize, doc_data): |
|
complete_text = "" |
|
current_page = result_diarize["segments"][0]["page"] |
|
text_page = "" |
|
|
|
for seg in result_diarize["segments"]: |
|
text = seg["text"] + " " |
|
complete_text += text |
|
|
|
page = seg["page"] |
|
|
|
if page == current_page: |
|
text_page += text |
|
else: |
|
doc_data[current_page]["text"] = text_page |
|
|
|
|
|
text_page = text |
|
current_page = page |
|
|
|
if doc_data[current_page]["text"] != text_page: |
|
doc_data[current_page]["text"] = text_page |
|
|
|
return doc_data |
|
|
|
|
|
def fix_timestamps_docs(result_diarize, audio_files): |
|
current_start = 0.0 |
|
|
|
for seg, audio in zip(result_diarize["segments"], audio_files): |
|
duration = round(sf.info(audio).duration, 2) |
|
|
|
seg["start"] = current_start |
|
current_start += duration |
|
seg["end"] = current_start |
|
|
|
return result_diarize |
|
|
|
|
|
def create_video_from_images( |
|
doc_data, |
|
result_diarize |
|
): |
|
|
|
|
|
first_image = "pdf_images/0000_00_aaa.png" |
|
|
|
|
|
max_pages_idx = len(doc_data) - 1 |
|
current_page = result_diarize["segments"][0]["page"] |
|
duration_page = 0.0 |
|
last_image = None |
|
|
|
for seg in result_diarize["segments"]: |
|
start = seg["start"] |
|
end = seg["end"] |
|
duration_seg = end - start |
|
|
|
page = seg["page"] |
|
|
|
if page == current_page: |
|
duration_page += duration_seg |
|
else: |
|
|
|
images = doc_data[current_page]["images"] |
|
|
|
if first_image: |
|
images = [first_image] + images |
|
first_image = None |
|
if not doc_data[min(max_pages_idx, (current_page+1))]["text"].strip(): |
|
images = images + doc_data[min(max_pages_idx, (current_page+1))]["images"] |
|
if not images and last_image: |
|
images = [last_image] |
|
|
|
|
|
time_duration_per_image = round((duration_page / len(images)), 2) |
|
doc_data[current_page]["time_per_image"] = time_duration_per_image |
|
|
|
|
|
doc_data[current_page]["images"] = images |
|
last_image = images[-1] |
|
duration_page = duration_seg |
|
current_page = page |
|
|
|
if "time_per_image" not in doc_data[current_page].keys(): |
|
images = doc_data[current_page]["images"] |
|
if first_image: |
|
images = [first_image] + images |
|
if not images: |
|
images = [last_image] |
|
time_duration_per_image = round((duration_page / len(images)), 2) |
|
doc_data[current_page]["time_per_image"] = time_duration_per_image |
|
|
|
|
|
with open("list.txt", "w") as file: |
|
|
|
for i, page in enumerate(doc_data.values()): |
|
|
|
duration = page["time_per_image"] |
|
for img in page["images"]: |
|
if i == len(doc_data) - 1 and img == page["images"][-1]: |
|
file.write(f"file {img}\n") |
|
file.write(f"outpoint {duration}") |
|
else: |
|
file.write(f"file {img}\n") |
|
file.write(f"outpoint {duration}\n") |
|
|
|
out_video = "video_from_images.mp4" |
|
remove_files(out_video) |
|
|
|
cm = f"ffmpeg -y -f concat -i list.txt -c:v libx264 -preset veryfast -crf 18 -pix_fmt yuv420p {out_video}" |
|
cm_alt = f"ffmpeg -f concat -i list.txt -c:v libx264 -r 30 -pix_fmt yuv420p -y {out_video}" |
|
try: |
|
run_command(cm) |
|
except Exception as error: |
|
logger.error(str(error)) |
|
remove_files(out_video) |
|
run_command(cm_alt) |
|
|
|
return out_video |
|
|
|
|
|
def merge_video_and_audio(video_doc, final_wav_file): |
|
|
|
fixed_audio = "fixed_audio.mp3" |
|
remove_files(fixed_audio) |
|
cm = f"ffmpeg -i {final_wav_file} -c:a libmp3lame {fixed_audio}" |
|
run_command(cm) |
|
|
|
vid_out = "video_book.mp4" |
|
remove_files(vid_out) |
|
cm = f"ffmpeg -i {video_doc} -i {fixed_audio} -c:v copy -c:a copy -map 0:v -map 1:a -shortest {vid_out}" |
|
run_command(cm) |
|
|
|
return vid_out |
|
|
|
|
|
|
|
|
|
|
|
def get_subtitle( |
|
language, |
|
segments_data, |
|
extension, |
|
filename=None, |
|
highlight_words=False, |
|
): |
|
if not filename: |
|
filename = "task_subtitle" |
|
|
|
is_ass_extension = False |
|
if extension == "ass": |
|
is_ass_extension = True |
|
extension = "srt" |
|
|
|
sub_file = filename + "." + extension |
|
support_name = filename + ".mp3" |
|
remove_files(sub_file) |
|
|
|
writer = get_writer(extension, output_dir=".") |
|
word_options = { |
|
"highlight_words": highlight_words, |
|
"max_line_count": None, |
|
"max_line_width": None, |
|
} |
|
|
|
|
|
subtitle_data = copy.deepcopy(segments_data) |
|
subtitle_data["language"] = ( |
|
"ja" if language in ["ja", "zh", "zh-TW"] else language |
|
) |
|
|
|
|
|
if not highlight_words: |
|
subtitle_data.pop("word_segments", None) |
|
for segment in subtitle_data["segments"]: |
|
for key in ["speaker", "chars", "words"]: |
|
segment.pop(key, None) |
|
|
|
writer( |
|
subtitle_data, |
|
support_name, |
|
word_options, |
|
) |
|
|
|
if is_ass_extension: |
|
temp_name = filename + ".ass" |
|
remove_files(temp_name) |
|
convert_sub = f'ffmpeg -i "{sub_file}" "{temp_name}" -y' |
|
run_command(convert_sub) |
|
sub_file = temp_name |
|
|
|
return sub_file |
|
|
|
|
|
def process_subtitles( |
|
deep_copied_result, |
|
align_language, |
|
result_diarize, |
|
output_format_subtitle, |
|
TRANSLATE_AUDIO_TO, |
|
): |
|
name_ori = "sub_ori." |
|
name_tra = "sub_tra." |
|
remove_files( |
|
[name_ori + output_format_subtitle, name_tra + output_format_subtitle] |
|
) |
|
|
|
writer = get_writer(output_format_subtitle, output_dir=".") |
|
word_options = { |
|
"highlight_words": False, |
|
"max_line_count": None, |
|
"max_line_width": None, |
|
} |
|
|
|
|
|
subs_copy_result = copy.deepcopy(deep_copied_result) |
|
subs_copy_result["language"] = ( |
|
"zh" if align_language == "zh-TW" else align_language |
|
) |
|
for segment in subs_copy_result["segments"]: |
|
segment.pop("speaker", None) |
|
|
|
try: |
|
writer( |
|
subs_copy_result, |
|
name_ori[:-1] + ".mp3", |
|
word_options, |
|
) |
|
except Exception as error: |
|
logger.error(str(error)) |
|
if str(error) == "list indices must be integers or slices, not str": |
|
logger.error( |
|
"Related to poor word segmentation" |
|
" in segments after alignment." |
|
) |
|
subs_copy_result["segments"][0].pop("words") |
|
writer( |
|
subs_copy_result, |
|
name_ori[:-1] + ".mp3", |
|
word_options, |
|
) |
|
|
|
|
|
subs_tra_copy_result = copy.deepcopy(result_diarize) |
|
subs_tra_copy_result["language"] = ( |
|
"ja" if TRANSLATE_AUDIO_TO in ["ja", "zh", "zh-TW"] else align_language |
|
) |
|
subs_tra_copy_result.pop("word_segments", None) |
|
for segment in subs_tra_copy_result["segments"]: |
|
for key in ["speaker", "chars", "words"]: |
|
segment.pop(key, None) |
|
|
|
writer( |
|
subs_tra_copy_result, |
|
name_tra[:-1] + ".mp3", |
|
word_options, |
|
) |
|
|
|
return name_tra + output_format_subtitle |
|
|
|
|
|
def linguistic_level_segments( |
|
result_base, |
|
linguistic_unit="word", |
|
): |
|
linguistic_unit = linguistic_unit[:4] |
|
linguistic_unit_key = linguistic_unit + "s" |
|
result = copy.deepcopy(result_base) |
|
|
|
if linguistic_unit_key not in result["segments"][0].keys(): |
|
raise ValueError("No alignment detected, can't process") |
|
|
|
segments_by_unit = [] |
|
for segment in result["segments"]: |
|
segment_units = segment[linguistic_unit_key] |
|
|
|
|
|
for unit in segment_units: |
|
|
|
text = unit[linguistic_unit] |
|
|
|
if "start" in unit.keys(): |
|
segments_by_unit.append( |
|
{ |
|
"start": unit["start"], |
|
"end": unit["end"], |
|
"text": text, |
|
|
|
} |
|
) |
|
elif not segments_by_unit: |
|
pass |
|
else: |
|
segments_by_unit[-1]["text"] += text |
|
|
|
return {"segments": segments_by_unit} |
|
|
|
|
|
def break_aling_segments( |
|
result: dict, |
|
break_characters: str = "", |
|
): |
|
result_align = copy.deepcopy(result) |
|
|
|
break_characters_list = break_characters.split("|") |
|
break_characters_list = [i for i in break_characters_list if i != ''] |
|
|
|
if not break_characters_list: |
|
logger.info("No valid break characters were specified.") |
|
return result |
|
|
|
logger.info(f"Redivide text segments by: {str(break_characters_list)}") |
|
|
|
|
|
normal = [] |
|
|
|
def process_chars(chars, letter_new_start, num, text): |
|
start_key, end_key = "start", "end" |
|
start_value = end_value = None |
|
|
|
for char in chars: |
|
if start_key in char: |
|
start_value = char[start_key] |
|
break |
|
|
|
for char in reversed(chars): |
|
if end_key in char: |
|
end_value = char[end_key] |
|
break |
|
|
|
if not start_value or not end_value: |
|
raise Exception( |
|
f"Unable to obtain a valid timestamp for chars: {str(chars)}" |
|
) |
|
|
|
return { |
|
"start": start_value, |
|
"end": end_value, |
|
"text": text, |
|
"words": chars, |
|
} |
|
|
|
for i, segment in enumerate(result_align['segments']): |
|
|
|
logger.debug(f"- Process segment: {i}, text: {segment['text']}") |
|
|
|
letter_new_start = 0 |
|
for num, char in enumerate(segment['chars']): |
|
|
|
if char["char"] is None: |
|
continue |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if char['char'] in break_characters_list: |
|
|
|
text = segment['text'][letter_new_start:num+1] |
|
|
|
logger.debug( |
|
f"Break in: {char['char']}, position: {num}, text: {text}" |
|
) |
|
|
|
chars = segment['chars'][letter_new_start:num+1] |
|
|
|
if not text: |
|
logger.debug("No text") |
|
continue |
|
|
|
if num == 0 and not text.strip(): |
|
logger.debug("blank space in start") |
|
continue |
|
|
|
if len(text) == 1: |
|
logger.debug(f"Short char append, num: {num}") |
|
normal[-1]["text"] += text |
|
normal[-1]["words"].append(chars) |
|
continue |
|
|
|
|
|
normal_dict = process_chars(chars, letter_new_start, num, text) |
|
|
|
letter_new_start = num+1 |
|
|
|
normal.append(normal_dict) |
|
|
|
|
|
if num == len(segment["chars"]) - 1: |
|
|
|
text = segment['text'][letter_new_start:num+1] |
|
|
|
|
|
if num not in [len(text)-1, len(text)] and text: |
|
logger.debug(f'Remaining text: {text}') |
|
|
|
if not text: |
|
logger.debug("No remaining text.") |
|
continue |
|
|
|
if len(text) == 1: |
|
logger.debug(f"Short char append, num: {num}") |
|
normal[-1]["text"] += text |
|
normal[-1]["words"].append(chars) |
|
continue |
|
|
|
chars = segment['chars'][letter_new_start:num+1] |
|
|
|
normal_dict = process_chars(chars, letter_new_start, num, text) |
|
|
|
letter_new_start = num+1 |
|
|
|
normal.append(normal_dict) |
|
|
|
|
|
for item in normal: |
|
words_list = item['words'] |
|
for word_item in words_list: |
|
if 'char' in word_item: |
|
word_item['word'] = word_item.pop('char') |
|
|
|
|
|
break_segments = {"segments": normal} |
|
|
|
msg_count = ( |
|
f"Segment count before: {len(result['segments'])}, " |
|
f"after: {len(break_segments['segments'])}." |
|
) |
|
logger.info(msg_count) |
|
|
|
return break_segments |
|
|