Spaces:
Sleeping
Sleeping
from functools import partial | |
import torch | |
from torch import nn, einsum | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
try: | |
import xformers | |
import xformers.ops | |
XFORMERS_IS_AVAILBLE = True | |
except: | |
XFORMERS_IS_AVAILBLE = False | |
from lvdm.common import ( | |
checkpoint, | |
exists, | |
default, | |
) | |
from lvdm.basics import ( | |
zero_module, | |
) | |
from utils.utils_freetraj import get_path, plan_path | |
import math | |
def gaussian_2d(x=0, y=0, mx=0, my=0, sx=1, sy=1): | |
""" 2d Gaussian weight function | |
""" | |
gaussian_map = ( | |
1 | |
/ (2 * math.pi * sx * sy) | |
* torch.exp(-((x - mx) ** 2 / (2 * sx**2) + (y - my) ** 2 / (2 * sy**2))) | |
) | |
gaussian_map.div_(gaussian_map.max()) | |
return gaussian_map | |
def gaussian_weight(height=32, width=32, KERNEL_DIVISION=3.0): | |
x = torch.linspace(0, height, height) | |
y = torch.linspace(0, width, width) | |
x, y = torch.meshgrid(x, y, indexing="ij") | |
noise_patch = ( | |
gaussian_2d( | |
x, | |
y, | |
mx=int(height / 2), | |
my=int(width / 2), | |
sx=float(height / KERNEL_DIVISION), | |
sy=float(width / KERNEL_DIVISION), | |
) | |
).half() | |
return noise_patch | |
class RelativePosition(nn.Module): | |
""" https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py """ | |
def __init__(self, num_units, max_relative_position): | |
super().__init__() | |
self.num_units = num_units | |
self.max_relative_position = max_relative_position | |
self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units)) | |
nn.init.xavier_uniform_(self.embeddings_table) | |
def forward(self, length_q, length_k): | |
device = self.embeddings_table.device | |
range_vec_q = torch.arange(length_q, device=device) | |
range_vec_k = torch.arange(length_k, device=device) | |
distance_mat = range_vec_k[None, :] - range_vec_q[:, None] | |
distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position) | |
final_mat = distance_mat_clipped + self.max_relative_position | |
final_mat = final_mat.long() | |
embeddings = self.embeddings_table[final_mat] | |
return embeddings | |
class CrossAttention(nn.Module): | |
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., | |
relative_position=False, temporal_length=None, img_cross_attention=False): | |
super().__init__() | |
inner_dim = dim_head * heads | |
context_dim = default(context_dim, query_dim) | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
self.dim_head = dim_head | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) | |
self.image_cross_attention_scale = 1.0 | |
self.text_context_len = 77 | |
self.img_cross_attention = img_cross_attention | |
if self.img_cross_attention: | |
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False) | |
self.relative_position = relative_position | |
if self.relative_position: | |
assert(temporal_length is not None) | |
self.relative_position_k = RelativePosition(num_units=dim_head, max_relative_position=temporal_length) | |
self.relative_position_v = RelativePosition(num_units=dim_head, max_relative_position=temporal_length) | |
else: | |
## only used for spatial attention, while NOT for temporal attention | |
if XFORMERS_IS_AVAILBLE and temporal_length is None: | |
self.forward = self.space_forward | |
def forward(self, x, context=None, mask=None, use_freetraj=False, idx_list=[], input_traj=[]): | |
h = self.heads | |
q = self.to_q(x) | |
context = default(context, x) | |
## considering image token additionally | |
if context is not None and self.img_cross_attention: | |
context, context_img = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:] | |
k = self.to_k(context) | |
v = self.to_v(context) | |
k_ip = self.to_k_ip(context_img) | |
v_ip = self.to_v_ip(context_img) | |
else: | |
k = self.to_k(context) | |
v = self.to_v(context) | |
hw = q.shape[0] | |
w_base = 64 | |
h_base = 40 | |
w_len = int((hw / w_base / h_base) ** 0.5 * h_base) | |
h_len = int(hw / w_len) | |
BOX_SIZE_H = input_traj[0][2] - input_traj[0][1] | |
BOX_SIZE_W = input_traj[0][4] - input_traj[0][3] | |
PATHS = plan_path(input_traj) | |
sub_h = int(BOX_SIZE_H * h_len) | |
sub_w = int(BOX_SIZE_W * w_len) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) | |
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale | |
if self.relative_position: | |
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1] | |
k2 = self.relative_position_k(len_q, len_k) | |
sim2 = einsum('b t d, t s d -> b t s', q, k2) * self.scale # TODO check | |
sim += sim2 | |
del k | |
if use_freetraj: | |
sim = rearrange(sim, '(y x h) i j -> y x h i j', h=h, y=h_len) | |
sim_mask = torch.zeros_like(sim) | |
for i in range(sim.shape[3]): | |
h_start1 = int(PATHS[i][0] * h_len) | |
h_end1 = h_start1 + sub_h | |
w_start1 = int(PATHS[i][2] * w_len) | |
w_end1 = w_start1 + sub_w | |
h_fg1 = list(range(h_start1, h_end1)) | |
h_fg_tensor1 = torch.zeros(h_len, device=sim.device) | |
h_fg_tensor1[h_fg1] = 1 | |
w_fg1 = list(range(w_start1, w_end1)) | |
w_fg_tensor1 = torch.zeros(w_len, device=sim.device) | |
w_fg_tensor1[w_fg1] = 1 | |
fg_tensor1 = h_fg_tensor1.view(-1, 1) * w_fg_tensor1.view(1, -1) | |
bg_tensor1 = 1 - fg_tensor1 | |
for j in range(sim.shape[4]): | |
h_start2 = int(PATHS[j][0] * h_len) | |
h_end2 = h_start2 + sub_h | |
w_start2 = int(PATHS[j][2] * w_len) | |
w_end2 = w_start2 + sub_w | |
h_fg2 = list(range(h_start2, h_end2)) | |
h_fg_tensor2 = torch.zeros(h_len, device=sim.device) | |
h_fg_tensor2[h_fg2] = 1 | |
w_fg2 = list(range(w_start2, w_end2)) | |
w_fg_tensor2 = torch.zeros(w_len, device=sim.device) | |
w_fg_tensor2[w_fg2] = 1 | |
fg_tensor2 = h_fg_tensor2.view(-1, 1) * w_fg_tensor2.view(1, -1) | |
bg_tensor2 = 1 - fg_tensor2 | |
fg_tensor = fg_tensor1 * fg_tensor2 | |
bg_tensor = bg_tensor1 * bg_tensor2 | |
coef = 0.01 | |
sim_mask[:, :, :, i, j] = coef * torch.ones_like(sim_mask[:, :, :, i, j]) | |
sim_mask[:, :, :, i, j] += (1 - coef) * torch.ones_like(sim_mask[:, :, :, i, j]) * (fg_tensor.view(h_len, w_len, 1) + bg_tensor.view(h_len, w_len, 1)) | |
sim *= sim_mask | |
sim = rearrange(sim, 'y x h i j -> (y x h) i j') | |
del sim_mask | |
if exists(mask): | |
## feasible for causal attention mask only | |
max_neg_value = -torch.finfo(sim.dtype).max | |
mask = repeat(mask, 'b i j -> (b h) i j', h=h) | |
sim.masked_fill_(~(mask>0.5), max_neg_value) | |
# attention, what we cannot get enough of | |
sim = sim.softmax(dim=-1) | |
out = torch.einsum('b i j, b j d -> b i d', sim, v) | |
if self.relative_position: | |
v2 = self.relative_position_v(len_q, len_v) | |
out2 = einsum('b t s, t s d -> b t d', sim, v2) # TODO check | |
out += out2 | |
out = rearrange(out, '(b h) n d -> b n (h d)', h=h) | |
## considering image token additionally | |
if context is not None and self.img_cross_attention: | |
k_ip, v_ip = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_ip, v_ip)) | |
sim_ip = torch.einsum('b i d, b j d -> b i j', q, k_ip) * self.scale | |
del k_ip | |
sim_ip = sim_ip.softmax(dim=-1) | |
out_ip = torch.einsum('b i j, b j d -> b i d', sim_ip, v_ip) | |
out_ip = rearrange(out_ip, '(b h) n d -> b n (h d)', h=h) | |
out = out + self.image_cross_attention_scale * out_ip | |
del q | |
return self.to_out(out) | |
def space_forward(self, x, context=None, mask=None, use_freetraj=False, idx_list=[], input_traj=[]): | |
if context is None: | |
SA_flag = True | |
else: | |
SA_flag = False | |
h = self.heads | |
q = self.to_q(x) | |
context = default(context, x) | |
## considering image token additionally | |
if context is not None and self.img_cross_attention: | |
context, context_img = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:] | |
k = self.to_k(context) | |
v = self.to_v(context) | |
k_ip = self.to_k_ip(context_img) | |
v_ip = self.to_v_ip(context_img) | |
else: | |
k = self.to_k(context) | |
v = self.to_v(context) | |
hw = q.shape[1] | |
w_base = 64 | |
h_base = 40 | |
w_len = int((hw / h_base / w_base) ** 0.5 * w_base) | |
h_len = int(hw / w_len) | |
BOX_SIZE_H = input_traj[0][2] - input_traj[0][1] | |
BOX_SIZE_W = input_traj[0][4] - input_traj[0][3] | |
PATHS = plan_path(input_traj) | |
sub_h = int(BOX_SIZE_H * h_len) | |
sub_w = int(BOX_SIZE_W * w_len) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) | |
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale | |
if self.relative_position: | |
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1] | |
k2 = self.relative_position_k(len_q, len_k) | |
sim2 = einsum('b t d, t s d -> b t s', q, k2) * self.scale # TODO check | |
sim += sim2 | |
del k | |
if use_freetraj: | |
coef_a = 0.25 / (BOX_SIZE_H * BOX_SIZE_W) / len(idx_list) | |
weight = gaussian_weight(sub_h, sub_w).to(x.device) | |
if SA_flag: | |
weight_add = 0 | |
sim = rearrange(sim, '(t h) (y x) (y0 x0) -> t h y x y0 x0', h=h, y=h_len, y0=h_len) | |
sim_mask = torch.zeros_like(sim) | |
for i in range(sim.shape[0]): | |
h_start = int(PATHS[i][0] * h_len) | |
h_end = h_start + sub_h | |
w_start = int(PATHS[i][2] * w_len) | |
w_end = w_start + sub_w | |
h_fg = list(range(h_start, h_end)) | |
h_fg_tensor = torch.zeros(h_len, device=sim.device) | |
h_fg_tensor[h_fg] = 1 | |
w_fg = list(range(w_start, w_end)) | |
w_fg_tensor = torch.zeros(w_len, device=sim.device) | |
w_fg_tensor[w_fg] = 1 | |
fg_tensor = h_fg_tensor.view(-1, 1) * w_fg_tensor.view(1, -1) | |
bg_tensor = 1 - fg_tensor | |
coef = 0.01 | |
sim_mask[i] = coef * torch.ones_like(sim_mask[i]) | |
sim_mask[i] += (1-coef) * (torch.ones_like(sim_mask[i]) * fg_tensor.view(1, h_len, w_len, 1, 1) * fg_tensor.view(1, 1, 1, h_len, w_len) + torch.ones_like(sim_mask[i]) * bg_tensor.view(1, h_len, w_len, 1, 1) * bg_tensor.view(1, 1, 1, h_len, w_len)) | |
sim *= sim_mask | |
sim = rearrange(sim, 't h y x y0 x0 -> (t h) (y x) (y0 x0)') | |
else: | |
sim = rearrange(sim, '(t h) (y x) d -> t h y x d', h=h, y=h_len) | |
sim_mask = torch.zeros_like(sim) | |
weight_add = torch.zeros_like(sim) | |
weight_map = torch.zeros([sim.shape[0], h_len, w_len], device=sim.device) | |
for i in range(sim.shape[0]): | |
h_start = int(PATHS[i][0] * h_len) | |
h_end = h_start + sub_h | |
w_start = int(PATHS[i][2] * w_len) | |
w_end = w_start + sub_w | |
h_fg = list(range(h_start, h_end)) | |
h_fg_tensor = torch.zeros(h_len, device=sim.device) | |
h_fg_tensor[h_fg] = 1 | |
w_fg = list(range(w_start, w_end)) | |
w_fg_tensor = torch.zeros(w_len, device=sim.device) | |
w_fg_tensor[w_fg] = 1 | |
fg_tensor = h_fg_tensor.view(-1, 1) * w_fg_tensor.view(1, -1) | |
bg_tensor = 1 - fg_tensor | |
if idx_list == []: | |
p_fg = [2] | |
else: | |
p_fg = idx_list | |
p_bg = list(range(77)) | |
for j in p_fg: | |
p_bg.remove(j) | |
weight_map[i, h_start:h_end, w_start:w_end] = weight * coef_a | |
sim_mask[i, :, :, :, p_bg] = torch.ones_like(sim_mask[i, :, :, :, p_bg]) * bg_tensor.view(1, h_len, w_len, 1) | |
weight_add[i, :, :, :, p_fg] = torch.ones_like(sim_mask[i, :, :, :, p_fg]) * weight_map[i].view(1, h_len, w_len, 1) | |
max_neg_value = -torch.finfo(sim.dtype).max | |
sim.masked_fill_(~(sim_mask>0.5), max_neg_value) | |
sim = rearrange(sim, 't h y x d -> (t h) (y x) d') | |
weight_add = rearrange(weight_add, 't h y x d -> (t h) (y x) d') | |
del sim_mask | |
if exists(mask): | |
## feasible for causal attention mask only | |
max_neg_value = -torch.finfo(sim.dtype).max | |
mask = repeat(mask, 'b i j -> (b h) i j', h=h) | |
sim.masked_fill_(~(mask>0.5), max_neg_value) | |
# attention, what we cannot get enough of | |
sim = sim.softmax(dim=-1) | |
if use_freetraj: | |
sim += weight_add | |
out = torch.einsum('b i j, b j d -> b i d', sim, v) | |
if self.relative_position: | |
v2 = self.relative_position_v(len_q, len_v) | |
out2 = einsum('b t s, t s d -> b t d', sim, v2) # TODO check | |
out += out2 | |
out = rearrange(out, '(b h) n d -> b n (h d)', h=h) | |
## considering image token additionally | |
if context is not None and self.img_cross_attention: | |
k_ip, v_ip = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_ip, v_ip)) | |
sim_ip = torch.einsum('b i d, b j d -> b i j', q, k_ip) * self.scale | |
del k_ip | |
sim_ip = sim_ip.softmax(dim=-1) | |
out_ip = torch.einsum('b i j, b j d -> b i d', sim_ip, v_ip) | |
out_ip = rearrange(out_ip, '(b h) n d -> b n (h d)', h=h) | |
out = out + self.image_cross_attention_scale * out_ip | |
del q | |
return self.to_out(out) | |
class BasicTransformerBlock(nn.Module): | |
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, | |
disable_self_attn=False, attention_cls=None, img_cross_attention=False): | |
super().__init__() | |
attn_cls = CrossAttention if attention_cls is None else attention_cls | |
self.disable_self_attn = disable_self_attn | |
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, | |
context_dim=context_dim if self.disable_self_attn else None) | |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout, | |
img_cross_attention=img_cross_attention) | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.norm3 = nn.LayerNorm(dim) | |
self.checkpoint = checkpoint | |
def forward(self, x, context=None, mask=None, use_freetraj=False, idx_list=[], input_traj=[], **kwargs): | |
## implementation tricks: because checkpointing doesn't support non-tensor (e.g. None or scalar) arguments | |
input_tuple = (x,) ## should not be (x), otherwise *input_tuple will decouple x into multiple arguments | |
if context is not None: | |
input_tuple = (x, context) | |
if mask is not None: | |
forward_mask = partial(self._forward, mask=mask) | |
return checkpoint(forward_mask, (x,), self.parameters(), self.checkpoint) | |
if context is not None and mask is not None: | |
input_tuple = (x, context, mask) | |
input_tuple = (x, context, mask, use_freetraj, idx_list, input_traj) | |
return checkpoint(self._forward, input_tuple, self.parameters(), self.checkpoint) | |
def _forward(self, x, context=None, mask=None, use_freetraj=False, idx_list=[], input_traj=[]): | |
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None, mask=mask, use_freetraj=use_freetraj, idx_list=idx_list, input_traj=input_traj) + x | |
x = self.attn2(self.norm2(x), context=context, mask=mask, use_freetraj=use_freetraj, idx_list=idx_list, input_traj=input_traj) + x | |
x = self.ff(self.norm3(x)) + x | |
return x | |
class SpatialTransformer(nn.Module): | |
""" | |
Transformer block for image-like data in spatial axis. | |
First, project the input (aka embedding) | |
and reshape to b, t, d. | |
Then apply standard transformer action. | |
Finally, reshape to image | |
NEW: use_linear for more efficiency instead of the 1x1 convs | |
""" | |
def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None, | |
use_checkpoint=True, disable_self_attn=False, use_linear=False, img_cross_attention=False): | |
super().__init__() | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
if not use_linear: | |
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
else: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
self.transformer_blocks = nn.ModuleList([ | |
BasicTransformerBlock( | |
inner_dim, | |
n_heads, | |
d_head, | |
dropout=dropout, | |
context_dim=context_dim, | |
img_cross_attention=img_cross_attention, | |
disable_self_attn=disable_self_attn, | |
checkpoint=use_checkpoint) for d in range(depth) | |
]) | |
if not use_linear: | |
self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) | |
else: | |
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) | |
self.use_linear = use_linear | |
def forward(self, x, context=None, **kwargs): | |
b, c, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
if not self.use_linear: | |
x = self.proj_in(x) | |
x = rearrange(x, 'b c h w -> b (h w) c').contiguous() | |
if self.use_linear: | |
x = self.proj_in(x) | |
for i, block in enumerate(self.transformer_blocks): | |
x = block(x, context=context, **kwargs) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() | |
if not self.use_linear: | |
x = self.proj_out(x) | |
return x + x_in | |
class TemporalTransformer(nn.Module): | |
""" | |
Transformer block for image-like data in temporal axis. | |
First, reshape to b, t, d. | |
Then apply standard transformer action. | |
Finally, reshape to image | |
""" | |
def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None, | |
use_checkpoint=True, use_linear=False, only_self_att=True, causal_attention=False, | |
relative_position=False, temporal_length=None): | |
super().__init__() | |
self.only_self_att = only_self_att | |
self.relative_position = relative_position | |
self.causal_attention = causal_attention | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
if not use_linear: | |
self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
else: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
if relative_position: | |
assert(temporal_length is not None) | |
attention_cls = partial(CrossAttention, relative_position=True, temporal_length=temporal_length) | |
else: | |
attention_cls = partial(CrossAttention, temporal_length=temporal_length) | |
# attention_cls = None | |
if self.causal_attention: | |
assert(temporal_length is not None) | |
self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length])) | |
if self.only_self_att: | |
context_dim = None | |
self.transformer_blocks = nn.ModuleList([ | |
BasicTransformerBlock( | |
inner_dim, | |
n_heads, | |
d_head, | |
dropout=dropout, | |
context_dim=context_dim, | |
attention_cls=attention_cls, | |
checkpoint=use_checkpoint) for d in range(depth) | |
]) | |
if not use_linear: | |
self.proj_out = zero_module(nn.Conv1d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) | |
else: | |
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) | |
self.use_linear = use_linear | |
def forward(self, x, context=None, **kwargs): | |
b, c, t, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
x = rearrange(x, 'b c t h w -> (b h w) c t').contiguous() | |
if not self.use_linear: | |
x = self.proj_in(x) | |
x = rearrange(x, 'bhw c t -> bhw t c').contiguous() | |
if self.use_linear: | |
x = self.proj_in(x) | |
if self.causal_attention: | |
mask = self.mask.to(x.device) | |
mask = repeat(mask, 'l i j -> (l bhw) i j', bhw=b*h*w) | |
else: | |
mask = None | |
if self.only_self_att: | |
## note: if no context is given, cross-attention defaults to self-attention | |
for i, block in enumerate(self.transformer_blocks): | |
x = block(x, mask=mask, **kwargs) | |
x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous() | |
else: | |
x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous() | |
context = rearrange(context, '(b t) l con -> b t l con', t=t).contiguous() | |
for i, block in enumerate(self.transformer_blocks): | |
# calculate each batch one by one (since number in shape could not greater then 65,535 for some package) | |
for j in range(b): | |
context_j = repeat( | |
context[j], | |
't l con -> (t r) l con', r=(h * w) // t, t=t).contiguous() | |
## note: causal mask will not applied in cross-attention case | |
x[j] = block(x[j], context=context_j, **kwargs) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = rearrange(x, 'b (h w) t c -> b c t h w', h=h, w=w).contiguous() | |
if not self.use_linear: | |
x = rearrange(x, 'b hw t c -> (b hw) c t').contiguous() | |
x = self.proj_out(x) | |
x = rearrange(x, '(b h w) c t -> b c t h w', b=b, h=h, w=w).contiguous() | |
return x + x_in | |
class GEGLU(nn.Module): | |
def __init__(self, dim_in, dim_out): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim=-1) | |
return x * F.gelu(gate) | |
class FeedForward(nn.Module): | |
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = default(dim_out, dim) | |
project_in = nn.Sequential( | |
nn.Linear(dim, inner_dim), | |
nn.GELU() | |
) if not glu else GEGLU(dim, inner_dim) | |
self.net = nn.Sequential( | |
project_in, | |
nn.Dropout(dropout), | |
nn.Linear(inner_dim, dim_out) | |
) | |
def forward(self, x): | |
return self.net(x) | |
class LinearAttention(nn.Module): | |
def __init__(self, dim, heads=4, dim_head=32): | |
super().__init__() | |
self.heads = heads | |
hidden_dim = dim_head * heads | |
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) | |
self.to_out = nn.Conv2d(hidden_dim, dim, 1) | |
def forward(self, x): | |
b, c, h, w = x.shape | |
qkv = self.to_qkv(x) | |
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) | |
k = k.softmax(dim=-1) | |
context = torch.einsum('bhdn,bhen->bhde', k, v) | |
out = torch.einsum('bhde,bhdn->bhen', context, q) | |
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) | |
return self.to_out(out) | |
class SpatialSelfAttention(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
self.q = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.k = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.v = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.proj_out = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
def forward(self, x, **kwargs): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b,c,h,w = q.shape | |
q = rearrange(q, 'b c h w -> b (h w) c') | |
k = rearrange(k, 'b c h w -> b c (h w)') | |
w_ = torch.einsum('bij,bjk->bik', q, k) | |
w_ = w_ * (int(c)**(-0.5)) | |
w_ = torch.nn.functional.softmax(w_, dim=2) | |
# attend to values | |
v = rearrange(v, 'b c h w -> b c (h w)') | |
w_ = rearrange(w_, 'b i j -> b j i') | |
h_ = torch.einsum('bij,bjk->bik', v, w_) | |
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) | |
h_ = self.proj_out(h_) | |
return x+h_ | |