Spaces:
Sleeping
Sleeping
import math | |
from inspect import isfunction | |
import torch | |
from torch import nn | |
import torch.distributed as dist | |
def gather_data(data, return_np=True): | |
''' gather data from multiple processes to one list ''' | |
data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())] | |
dist.all_gather(data_list, data) # gather not supported with NCCL | |
if return_np: | |
data_list = [data.cpu().numpy() for data in data_list] | |
return data_list | |
def autocast(f): | |
def do_autocast(*args, **kwargs): | |
with torch.cuda.amp.autocast(enabled=True, | |
dtype=torch.get_autocast_gpu_dtype(), | |
cache_enabled=torch.is_autocast_cache_enabled()): | |
return f(*args, **kwargs) | |
return do_autocast | |
def extract_into_tensor(a, t, x_shape): | |
b, *_ = t.shape | |
out = a.gather(-1, t) | |
return out.reshape(b, *((1,) * (len(x_shape) - 1))) | |
def noise_like(shape, device, repeat=False): | |
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) | |
noise = lambda: torch.randn(shape, device=device) | |
return repeat_noise() if repeat else noise() | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def exists(val): | |
return val is not None | |
def identity(*args, **kwargs): | |
return nn.Identity() | |
def uniq(arr): | |
return{el: True for el in arr}.keys() | |
def mean_flat(tensor): | |
""" | |
Take the mean over all non-batch dimensions. | |
""" | |
return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
def ismap(x): | |
if not isinstance(x, torch.Tensor): | |
return False | |
return (len(x.shape) == 4) and (x.shape[1] > 3) | |
def isimage(x): | |
if not isinstance(x,torch.Tensor): | |
return False | |
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) | |
def max_neg_value(t): | |
return -torch.finfo(t.dtype).max | |
def shape_to_str(x): | |
shape_str = "x".join([str(x) for x in x.shape]) | |
return shape_str | |
def init_(tensor): | |
dim = tensor.shape[-1] | |
std = 1 / math.sqrt(dim) | |
tensor.uniform_(-std, std) | |
return tensor | |
ckpt = torch.utils.checkpoint.checkpoint | |
def checkpoint(func, inputs, params, flag): | |
""" | |
Evaluate a function without caching intermediate activations, allowing for | |
reduced memory at the expense of extra compute in the backward pass. | |
:param func: the function to evaluate. | |
:param inputs: the argument sequence to pass to `func`. | |
:param params: a sequence of parameters `func` depends on but does not | |
explicitly take as arguments. | |
:param flag: if False, disable gradient checkpointing. | |
""" | |
if flag: | |
return ckpt(func, *inputs) | |
else: | |
return func(*inputs) | |