monsterdog-bot / MONSTERDOG_ULTIME_FINAL.py
MonsterDo000's picture
Upload 17 files
00329f8 verified
#!/usr/bin/env python3
# =======================================================================
# MONSTERDOG_ULTIME_FINAL.py – Orchestrateur Titanesque v1.0.0
# -----------------------------------------------------------------------
# Fusionne et déclenche TOUS les modules dispos (Neural, Quantum, VR…)
# • Auto-détection des modules • Menu CLI interactif
# • Benchmarks & Alert Automator • Logs couleur + timestamps
# =======================================================================
import importlib
import inspect
import sys
import time
from pathlib import Path
from types import ModuleType
from datetime import datetime
from random import choice
# ---------- 1) UTILITAIRES GÉNÉRIQUES ------------------------------------
def safe_import(name: str) -> ModuleType | None:
try:
return importlib.import_module(name)
except ModuleNotFoundError:
print(f"[!] Module absent : {name} – stub activé.")
return None
def call_if_has(obj, func: str, *args, **kw):
if obj and hasattr(obj, func):
try:
return getattr(obj, func)(*args, **kw)
except Exception as e:
print(f"[x] Erreur dans {obj}.{func} : {e}")
# ---------- 2) IMPORTS DYNAMIQUES DES MODULES SACRÉS --------------------
mods = {
"NeuralFusion": safe_import("NeuralFusion"),
"SelfEvolutionEngine":safe_import("SelfEvolutionEngine"),
"QuantumOptimizer": safe_import("QuantumOptimizer"),
"ApocalypseSimulator":safe_import("ApocalypseSimulator"),
"MetricsUltimate": safe_import("MONSTERDOG_DECORTIFICUM_REALITY"),
"MetricsUltimateV2": safe_import("MONSTERDOG_DECORTIFICUM_REALITY._V2"),
"TotalitySummit": safe_import("MONSTERDOG_TOTALITY_SUMMIT"),
}
# ---------- 3) CLASSES FACADE POUR CHAQUE FONCTIONNALITÉ ---------------
class NeuralHub:
def __init__(self):
cls = getattr(mods["NeuralFusion"], "NeuralFusion", None)
self.engine = cls() if cls else None
def run(self):
call_if_has(self.engine, "fuse_networks")
class EvolutionHub:
def __init__(self):
cls = getattr(mods["SelfEvolutionEngine"], "SelfEvolutionEngine", None)
self.engine = cls() if cls else None
def run(self):
call_if_has(self.engine, "evolve")
class QuantumHub:
def __init__(self):
cls = getattr(mods["QuantumOptimizer"], "QuantumOptimizer", None)
self.engine = cls() if cls else None
def run(self):
call_if_has(self.engine, "optimize_server", "SERVER-ALPHA")
class ApocalypseHub:
def __init__(self):
cls = getattr(mods["ApocalypseSimulator"], "ApocalypseSimulator", None)
self.sim = cls() if cls else None
def run(self):
call_if_has(self.sim, "run_simulation")
class MetricsHub:
def run(self):
call_if_has(mods["MetricsUltimate"], "run_decortificum_analysis")
call_if_has(mods["MetricsUltimateV2"], "execute_fractal_scan")
call_if_has(mods["TotalitySummit"], "run_totality_benchmark")
# ---------- 4) ALERT AUTOMATOR + BENCHMARK HUNTER -----------------------
RESPONSES = [
"[ALERT] Protocole défensif engagé.",
"[ZORG-MASTER] Réalignement fractal en cours…",
"[OMNI🔱AEGIS] Analyse émotionnelle enclenchée.",
"[MONSTERDOG] Réponse cognitive boostée."
]
def alert_automator(message: str):
print(choice(RESPONSES), f"\n » {message}")
def bench_hunter():
hubs = [NeuralHub(), EvolutionHub(), QuantumHub(), ApocalypseHub(), MetricsHub()]
results = {}
for hub in hubs:
name = hub.__class__.__name__
t0 = time.perf_counter()
hub.run()
results[name] = (time.perf_counter() - t0) * 1000
print("\n== Benchmark Hunter – latence (ms) ==")
for k, v in results.items():
print(f" {k:<18}: {v:7.2f}")
# ---------- 5) MENU CLI PRINCIPAL ---------------------------------------
ACTIONS = {
"1": ("Fusion neuronale", NeuralHub().run),
"2": ("Auto-évolution", EvolutionHub().run),
"3": ("Optimisation quantique", QuantumHub().run),
"4": ("Simulation apocalypse", ApocalypseHub().run),
"5": ("Métriques & scans", MetricsHub().run),
"6": ("Benchmark Hunter", bench_hunter),
"7": ("Alert Automator test", lambda: alert_automator("Intrusion détectée sur le Nexus")),
"q": ("Quitter", lambda: sys.exit(0)),
}
def main():
print("\n♾️ MONSTERDOG ULTIME FINAL – Lancement", datetime.utcnow().isoformat(), "♾️")
while True:
print("\n--- Menu ---")
for k, (label, _) in ACTIONS.items():
print(f"[{k}] {label}")
choice_ = input("Choix : ").strip().lower()
ACTIONS.get(choice_, (None, lambda: print("Choix invalide.")))[1]()
if __name__ == "__main__":
main()