Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
from typing import Iterable | |
import gradio as gr | |
from gradio.themes.base import Base | |
from gradio.themes.utils import colors, fonts, sizes | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download | |
hf_hub_download(repo_id="Pi3141/alpaca-lora-7B-ggml", filename="ggml-model-q4_1.bin", local_dir=".") | |
llm = Llama(model_path="./ggml-model-q4_1.bin") | |
ins = '''Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction: | |
{} | |
### Response: | |
''' | |
ins_inp = '''Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction: | |
{} | |
### Input: | |
{} | |
### Response: | |
''' | |
theme = gr.themes.Monochrome( | |
primary_hue="indigo", | |
secondary_hue="blue", | |
neutral_hue="slate", | |
radius_size=gr.themes.sizes.radius_sm, | |
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"], | |
) | |
def generate( | |
instruction, | |
input=None, | |
temperature=0.1, | |
top_p=0.75, | |
top_k=40): | |
result = "" | |
if input: | |
instruction = ins_inp.format(instruction, input) | |
else: | |
instruction = ins.format(instruction) | |
for x in llm(instruction, stop=['### Instruction:', '### End'], stream=True, temperature=temperature, top_p=top_p, top_k=top_k): | |
result += x['choices'][0]['text'] | |
yield result | |
examples = [ | |
"Instead of making a peanut butter and jelly sandwich, what else could I combine peanut butter with in a sandwich? Give five ideas", | |
"How do I make a campfire?", | |
"Explain to me the difference between nuclear fission and fusion.", | |
"Write an ad for sale Nikon D750." | |
] | |
def process_example(args): | |
for x in generate(args): | |
pass | |
return x | |
css = ".generating {visibility: hidden}" | |
# Based on the gradio theming guide and borrowed from https://huggingface.co/spaces/shivi/dolly-v2-demo | |
class SeafoamCustom(Base): | |
def __init__( | |
self, | |
*, | |
primary_hue: colors.Color | str = colors.emerald, | |
secondary_hue: colors.Color | str = colors.blue, | |
neutral_hue: colors.Color | str = colors.blue, | |
spacing_size: sizes.Size | str = sizes.spacing_md, | |
radius_size: sizes.Size | str = sizes.radius_md, | |
font: fonts.Font | |
| str | |
| Iterable[fonts.Font | str] = ( | |
fonts.GoogleFont("Quicksand"), | |
"ui-sans-serif", | |
"sans-serif", | |
), | |
font_mono: fonts.Font | |
| str | |
| Iterable[fonts.Font | str] = ( | |
fonts.GoogleFont("IBM Plex Mono"), | |
"ui-monospace", | |
"monospace", | |
), | |
): | |
super().__init__( | |
primary_hue=primary_hue, | |
secondary_hue=secondary_hue, | |
neutral_hue=neutral_hue, | |
spacing_size=spacing_size, | |
radius_size=radius_size, | |
font=font, | |
font_mono=font_mono, | |
) | |
super().set( | |
button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)", | |
button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)", | |
button_primary_text_color="white", | |
button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)", | |
block_shadow="*shadow_drop_lg", | |
button_shadow="*shadow_drop_lg", | |
input_background_fill="zinc", | |
input_border_color="*secondary_300", | |
input_shadow="*shadow_drop", | |
input_shadow_focus="*shadow_drop_lg", | |
) | |
seafoam = SeafoamCustom() | |
with gr.Blocks(theme=seafoam, analytics_enabled=False, css=css) as demo: | |
with gr.Column(): | |
gr.Markdown( | |
""" ## Alpaca-LoRa | |
7b quantized 4bit (q4_1) | |
Type in the box below and click the button to generate answers to your most pressing questions! | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
instruction = gr.Textbox(lines=2, placeholder="Tell me more about alpacas.", label="Instruction", elem_id="q-input") | |
with gr.Accordion("Advanced setting", open=False): | |
input = gr.components.Textbox(lines=2, label="Input", placeholder="none") | |
temperature = gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature") | |
top_p = gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p") | |
top_k = gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k") | |
with gr.Box(): | |
gr.Markdown("**Output**") | |
output = gr.Markdown(elem_id="q-output") | |
submit = gr.Button("Generate", variant="primary") | |
gr.Examples( | |
examples=examples, | |
inputs=[instruction], | |
cache_examples=False, | |
fn=process_example, | |
outputs=[output], | |
) | |
submit.click(generate, inputs=[instruction, input, temperature, top_p, top_k], outputs=[output]) | |
instruction.submit(generate, inputs=[instruction], outputs=[output]) | |
demo.queue(concurrency_count=1).launch(debug=True) |