MonkeyJuice commited on
Commit
8ff99b5
1 Parent(s): 1d1ef92

remove crop image

Browse files
Files changed (2) hide show
  1. app.py +2 -10
  2. cropImage.py +0 -32
app.py CHANGED
@@ -6,7 +6,6 @@ import gradio as gr
6
  import PIL.Image
7
  import zipfile
8
  from genTag import genTag
9
- from cropImage import cropImage
10
  from checkIgnore import is_ignore
11
  from createTagDom import create_tag_dom
12
 
@@ -18,8 +17,7 @@ def predict(image: PIL.Image.Image):
18
  result_html = '<div>' + result_html + '</div>'
19
  result_filter = {key: value for key, value in result_threshold.items() if not is_ignore(key, 1)}
20
  result_text = '<div id="m5dd_result">' + ', '.join(result_filter.keys()) + '</div>'
21
- crop_image = cropImage(image)
22
- return result_html, result_text, crop_image
23
 
24
  def predict_batch(zip_file, progress=gr.Progress()):
25
  result = ''
@@ -46,12 +44,6 @@ with gr.Blocks(css="style.css", js="script.js") as demo:
46
  image_mode="RGBA",
47
  sources=["upload", "clipboard"])
48
  run_button = gr.Button('Run')
49
- with gr.Accordion(label="Crop Image", open=False):
50
- crop_image = gr.Image(elem_classes='m5dd_image2',
51
- format='jpg',
52
- show_label=False,
53
- show_share_button=False,
54
- container=False)
55
  result_text = gr.HTML(value="")
56
  with gr.Column(scale=2):
57
  result_html = gr.HTML(value="")
@@ -71,7 +63,7 @@ with gr.Blocks(css="style.css", js="script.js") as demo:
71
  run_button.click(
72
  fn=predict,
73
  inputs=[image],
74
- outputs=[result_html, result_text, crop_image],
75
  api_name='predict',
76
  )
77
  run_button2.click(
 
6
  import PIL.Image
7
  import zipfile
8
  from genTag import genTag
 
9
  from checkIgnore import is_ignore
10
  from createTagDom import create_tag_dom
11
 
 
17
  result_html = '<div>' + result_html + '</div>'
18
  result_filter = {key: value for key, value in result_threshold.items() if not is_ignore(key, 1)}
19
  result_text = '<div id="m5dd_result">' + ', '.join(result_filter.keys()) + '</div>'
20
+ return result_html, result_text
 
21
 
22
  def predict_batch(zip_file, progress=gr.Progress()):
23
  result = ''
 
44
  image_mode="RGBA",
45
  sources=["upload", "clipboard"])
46
  run_button = gr.Button('Run')
 
 
 
 
 
 
47
  result_text = gr.HTML(value="")
48
  with gr.Column(scale=2):
49
  result_html = gr.HTML(value="")
 
63
  run_button.click(
64
  fn=predict,
65
  inputs=[image],
66
+ outputs=[result_html, result_text],
67
  api_name='predict',
68
  )
69
  run_button2.click(
cropImage.py DELETED
@@ -1,32 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- from __future__ import annotations
4
-
5
- import PIL.Image
6
-
7
- def cropImage(image: PIL.Image.Image):
8
- original_width, original_height = image.size
9
- scale = max(original_width, original_height) / min(original_width, original_height)
10
-
11
- target_width = 512
12
- target_height = 768
13
-
14
- if scale < 1.1:
15
- target_width = 640
16
- target_height = 640
17
- elif original_width > original_height:
18
- target_width = 768
19
- target_height = 512
20
-
21
- if original_width / original_height > target_width / target_height:
22
- new_width = int(original_height * (target_width / target_height))
23
- crop_box = ((original_width - new_width) // 2, 0, (original_width + new_width) // 2, original_height)
24
- else:
25
- new_height = int(original_width * (target_height / target_width))
26
- crop_box = (0, (original_height - new_height) // 2, original_width, (original_height + new_height) // 2)
27
-
28
- cropped_image = image.convert("RGB")
29
- cropped_image = cropped_image.crop(crop_box)
30
- cropped_image = cropped_image.resize((target_width, target_height))
31
-
32
- return cropped_image