Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import gradio as gr | |
import PIL.Image | |
import zipfile | |
from genTag import genTag | |
from checkIgnore import is_ignore | |
from createTagDom import create_tag_dom | |
def predict(image: PIL.Image.Image): | |
result_threshold = genTag(image, 0.5) | |
result_html = '' | |
for label, prob in result_threshold.items(): | |
result_html += create_tag_dom(label, is_ignore(label, 1), prob) | |
result_html = '<div>' + result_html + '</div>' | |
result_filter = {key: value for key, value in result_threshold.items() if not is_ignore(key, 1)} | |
result_text = '<div id="m5dd_result">' + ', '.join(result_filter.keys()) + '</div>' | |
return result_html, result_text | |
def predict_batch(zip_file, progress=gr.Progress()): | |
result = '' | |
with zipfile.ZipFile(zip_file) as zf: | |
for file in progress.tqdm(zf.namelist()): | |
print(file) | |
if file.endswith(".png") or file.endswith(".jpg") or file.endswith(".jpeg") or file.endswith(".webp"): | |
image_file = zf.open(file) | |
image = PIL.Image.open(image_file) | |
image = image.convert("RGBA") | |
result_threshold = genTag(image, 0.5) | |
result_filter = {key: value for key, value in result_threshold.items() if not is_ignore(key, 2)} | |
tag = ', '.join(result_filter.keys()) | |
result = result + str(file) + '\n' + str(tag) + '\n\n' | |
return result | |
with gr.Blocks(head_paths="head.html") as demo: | |
with gr.Tab(label='Single'): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image = gr.Image(label='Upload a image', | |
type='pil', | |
elem_classes='m5dd_image', | |
image_mode="RGBA", | |
show_fullscreen_button=False, | |
sources=["upload", "clipboard"]) | |
result_text = gr.HTML(value="", elem_classes='m5dd_html', padding=False) | |
with gr.Column(scale=2): | |
result_html = gr.HTML(value="", elem_classes='m5dd_html', padding=False) | |
with gr.Tab(label='Batch'): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
batch_file = gr.File(label="Upload a ZIP file containing images", | |
file_types=['.zip']) | |
run_button2 = gr.Button('Run') | |
with gr.Column(scale=2): | |
result_text2 = gr.Textbox(lines=20, | |
max_lines=20, | |
label='Result', | |
show_copy_button=True, | |
autoscroll=False) | |
image.upload( | |
fn=predict, | |
inputs=[image], | |
outputs=[result_html, result_text], | |
api_name='predict', | |
) | |
run_button2.click( | |
fn=predict_batch, | |
inputs=[batch_file], | |
outputs=[result_text2], | |
api_name='predict_batch', | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |