Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import deepdanbooru as dd | |
import huggingface_hub | |
import numpy as np | |
import PIL.Image | |
import tensorflow as tf | |
def load_model() -> tf.keras.Model: | |
path = huggingface_hub.hf_hub_download('public-data/DeepDanbooru', | |
'model-resnet_custom_v3.h5') | |
model = tf.keras.models.load_model(path) | |
return model | |
def load_labels() -> list[str]: | |
path = huggingface_hub.hf_hub_download('public-data/DeepDanbooru', | |
'tags.txt') | |
with open(path) as f: | |
labels = [line.strip() for line in f.readlines()] | |
return labels | |
model = load_model() | |
labels = load_labels() | |
def genTag(image: PIL.Image.Image, score_threshold: float): | |
_, height, width, _ = model.input_shape | |
image = np.asarray(image) | |
image = tf.image.resize(image, | |
size=(height, width), | |
method=tf.image.ResizeMethod.AREA, | |
preserve_aspect_ratio=True) | |
image = image.numpy() | |
image = dd.image.transform_and_pad_image(image, width, height) | |
image = image / 255. | |
probs = model.predict(image[None, ...])[0] | |
probs = probs.astype(float) | |
indices = np.argsort(probs)[::-1] | |
result_all = dict() | |
result_threshold = dict() | |
result_html = '' | |
for index in indices: | |
label = labels[index] | |
prob = probs[index] | |
result_all[label] = prob | |
if prob < score_threshold: | |
break | |
result_threshold[label] = prob | |
return result_threshold | |