Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,25 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
-
from transformers import pipeline
|
4 |
import torchaudio
|
5 |
import os
|
6 |
import re
|
7 |
-
from difflib import SequenceMatcher
|
8 |
import numpy as np
|
9 |
|
|
|
|
|
|
|
|
|
10 |
# Device setup
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
-
# Load Whisper model
|
14 |
MODEL_NAME = "alvanlii/whisper-small-cantonese"
|
15 |
language = "zh"
|
16 |
-
|
17 |
task="automatic-speech-recognition",
|
18 |
model=MODEL_NAME,
|
19 |
-
chunk_length_s=30, #
|
20 |
device=device,
|
21 |
generate_kwargs={
|
22 |
"no_repeat_ngram_size": 3,
|
@@ -24,14 +27,20 @@ pipe = pipeline(
|
|
24 |
"temperature": 0.7,
|
25 |
"top_p": 0.97,
|
26 |
"top_k": 40,
|
27 |
-
"max_new_tokens": 400,
|
28 |
-
"do_sample": True
|
29 |
}
|
30 |
)
|
31 |
-
|
|
|
|
|
32 |
|
33 |
-
#
|
34 |
def remove_repeated_phrases(text):
|
|
|
|
|
|
|
|
|
35 |
sentences = re.split(r'(?<=[。!?])', text)
|
36 |
cleaned_sentences = []
|
37 |
for sentence in sentences:
|
@@ -39,53 +48,68 @@ def remove_repeated_phrases(text):
|
|
39 |
cleaned_sentences.append(sentence.strip())
|
40 |
return " ".join(cleaned_sentences)
|
41 |
|
|
|
42 |
def remove_punctuation(text):
|
43 |
return re.sub(r'[^\w\s]', '', text)
|
44 |
|
|
|
45 |
def transcribe_audio(audio_path):
|
46 |
waveform, sample_rate = torchaudio.load(audio_path)
|
47 |
|
48 |
-
# Convert
|
49 |
-
if waveform.shape[0] > 1:
|
50 |
-
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
51 |
-
|
52 |
-
waveform = waveform.squeeze(0).numpy() # Convert to NumPy (1D array)
|
53 |
|
|
|
54 |
duration = waveform.shape[0] / sample_rate
|
|
|
|
|
55 |
if duration > 60:
|
56 |
-
chunk_size = sample_rate * 55
|
57 |
-
step_size = sample_rate * 50
|
58 |
results = []
|
59 |
-
|
60 |
for start in range(0, waveform.shape[0], step_size):
|
61 |
chunk = waveform[start:start + chunk_size]
|
62 |
if chunk.shape[0] == 0:
|
63 |
break
|
64 |
-
transcript =
|
65 |
results.append(remove_punctuation(transcript))
|
66 |
-
|
67 |
return remove_punctuation(remove_repeated_phrases(" ".join(results)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
# Sentiment analysis model
|
72 |
-
sentiment_pipe = pipeline("text-classification", model="MonkeyDLLLLLLuffy/CustomModel-multilingual-sentiment-analysis-enhanced", device=device)
|
73 |
-
|
74 |
-
# Rate sentiment with batch processing
|
75 |
def rate_quality(text):
|
76 |
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
|
77 |
results = sentiment_pipe(chunks, batch_size=4)
|
78 |
|
79 |
-
label_map = {
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
processed_results = [label_map.get(res["label"], "Unknown") for res in results]
|
81 |
|
|
|
82 |
return max(set(processed_results), key=processed_results.count)
|
83 |
|
84 |
-
#
|
|
|
|
|
85 |
def main():
|
86 |
st.set_page_config(page_title="Customer Service Analyzer", page_icon="🎙️")
|
87 |
|
88 |
-
#
|
89 |
st.markdown("""
|
90 |
<style>
|
91 |
.header {
|
@@ -107,28 +131,67 @@ def main():
|
|
107 |
</div>
|
108 |
""", unsafe_allow_html=True)
|
109 |
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
116 |
|
|
|
|
|
117 |
st.audio(uploaded_file, format="audio/wav")
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
if __name__ == "__main__":
|
134 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
+
from transformers import pipeline
|
4 |
import torchaudio
|
5 |
import os
|
6 |
import re
|
|
|
7 |
import numpy as np
|
8 |
|
9 |
+
# -----------------------------
|
10 |
+
# 1) Model loading and utility functions
|
11 |
+
# -----------------------------
|
12 |
+
|
13 |
# Device setup
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
|
16 |
+
# Load Whisper model for Cantonese ASR
|
17 |
MODEL_NAME = "alvanlii/whisper-small-cantonese"
|
18 |
language = "zh"
|
19 |
+
asr_pipe = pipeline(
|
20 |
task="automatic-speech-recognition",
|
21 |
model=MODEL_NAME,
|
22 |
+
chunk_length_s=30, # Adjust chunk size for memory handling
|
23 |
device=device,
|
24 |
generate_kwargs={
|
25 |
"no_repeat_ngram_size": 3,
|
|
|
27 |
"temperature": 0.7,
|
28 |
"top_p": 0.97,
|
29 |
"top_k": 40,
|
30 |
+
"max_new_tokens": 400,
|
31 |
+
"do_sample": True
|
32 |
}
|
33 |
)
|
34 |
+
asr_pipe.model.config.forced_decoder_ids = asr_pipe.tokenizer.get_decoder_prompt_ids(
|
35 |
+
language=language, task="transcribe"
|
36 |
+
)
|
37 |
|
38 |
+
# Remove repeated sentences that are highly similar
|
39 |
def remove_repeated_phrases(text):
|
40 |
+
def is_similar(a, b):
|
41 |
+
from difflib import SequenceMatcher
|
42 |
+
return SequenceMatcher(None, a, b).ratio() > 0.9
|
43 |
+
|
44 |
sentences = re.split(r'(?<=[。!?])', text)
|
45 |
cleaned_sentences = []
|
46 |
for sentence in sentences:
|
|
|
48 |
cleaned_sentences.append(sentence.strip())
|
49 |
return " ".join(cleaned_sentences)
|
50 |
|
51 |
+
# Remove punctuation from text
|
52 |
def remove_punctuation(text):
|
53 |
return re.sub(r'[^\w\s]', '', text)
|
54 |
|
55 |
+
# Transcribe the audio using Whisper
|
56 |
def transcribe_audio(audio_path):
|
57 |
waveform, sample_rate = torchaudio.load(audio_path)
|
58 |
|
59 |
+
# Convert multi-channel audio to mono if necessary
|
60 |
+
if waveform.shape[0] > 1:
|
61 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
|
|
|
|
62 |
|
63 |
+
waveform = waveform.squeeze(0).numpy()
|
64 |
duration = waveform.shape[0] / sample_rate
|
65 |
+
|
66 |
+
# For audio longer than 60 seconds, process in overlapping chunks
|
67 |
if duration > 60:
|
68 |
+
chunk_size = sample_rate * 55
|
69 |
+
step_size = sample_rate * 50
|
70 |
results = []
|
|
|
71 |
for start in range(0, waveform.shape[0], step_size):
|
72 |
chunk = waveform[start:start + chunk_size]
|
73 |
if chunk.shape[0] == 0:
|
74 |
break
|
75 |
+
transcript = asr_pipe({"sampling_rate": sample_rate, "raw": chunk})["text"]
|
76 |
results.append(remove_punctuation(transcript))
|
|
|
77 |
return remove_punctuation(remove_repeated_phrases(" ".join(results)))
|
78 |
+
else:
|
79 |
+
transcript = asr_pipe({"sampling_rate": sample_rate, "raw": waveform})["text"]
|
80 |
+
return remove_punctuation(remove_repeated_phrases(transcript))
|
81 |
+
|
82 |
+
# Load sentiment analysis model
|
83 |
+
sentiment_pipe = pipeline(
|
84 |
+
"text-classification",
|
85 |
+
model="MonkeyDLLLLLLuffy/CustomModel-multilingual-sentiment-analysis-enhanced",
|
86 |
+
device=device
|
87 |
+
)
|
88 |
|
89 |
+
# Perform sentiment analysis in chunks (max 512 tokens each)
|
|
|
|
|
|
|
|
|
|
|
90 |
def rate_quality(text):
|
91 |
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
|
92 |
results = sentiment_pipe(chunks, batch_size=4)
|
93 |
|
94 |
+
label_map = {
|
95 |
+
"Very Negative": "Very Poor",
|
96 |
+
"Negative": "Poor",
|
97 |
+
"Neutral": "Neutral",
|
98 |
+
"Positive": "Good",
|
99 |
+
"Very Positive": "Very Good"
|
100 |
+
}
|
101 |
processed_results = [label_map.get(res["label"], "Unknown") for res in results]
|
102 |
|
103 |
+
# Use majority voting to determine the final sentiment
|
104 |
return max(set(processed_results), key=processed_results.count)
|
105 |
|
106 |
+
# -----------------------------
|
107 |
+
# 2) Main Streamlit application
|
108 |
+
# -----------------------------
|
109 |
def main():
|
110 |
st.set_page_config(page_title="Customer Service Analyzer", page_icon="🎙️")
|
111 |
|
112 |
+
# Custom CSS styling
|
113 |
st.markdown("""
|
114 |
<style>
|
115 |
.header {
|
|
|
131 |
</div>
|
132 |
""", unsafe_allow_html=True)
|
133 |
|
134 |
+
# Initialize session state to store results
|
135 |
+
if "transcript" not in st.session_state:
|
136 |
+
st.session_state["transcript"] = ""
|
137 |
+
if "quality_rating" not in st.session_state:
|
138 |
+
st.session_state["quality_rating"] = ""
|
139 |
+
if "uploaded_filename" not in st.session_state:
|
140 |
+
st.session_state["uploaded_filename"] = ""
|
141 |
|
142 |
+
# File uploader
|
143 |
+
uploaded_file = st.file_uploader(
|
144 |
+
"📤 Please upload your Cantonese customer service audio file",
|
145 |
+
type=["wav", "mp3", "flac"]
|
146 |
+
)
|
147 |
|
148 |
+
if uploaded_file is not None:
|
149 |
+
# Display audio player
|
150 |
st.audio(uploaded_file, format="audio/wav")
|
151 |
|
152 |
+
# Only run the model again if a new file is uploaded
|
153 |
+
if st.session_state["uploaded_filename"] != uploaded_file.name:
|
154 |
+
st.session_state["uploaded_filename"] = uploaded_file.name
|
155 |
+
|
156 |
+
# Save uploaded file to a temporary path
|
157 |
+
temp_audio_path = "uploaded_audio.wav"
|
158 |
+
with open(temp_audio_path, "wb") as f:
|
159 |
+
f.write(uploaded_file.getbuffer())
|
160 |
+
|
161 |
+
# Process the audio
|
162 |
+
with st.spinner('🔄 Processing your audio, please wait...'):
|
163 |
+
transcript = transcribe_audio(temp_audio_path)
|
164 |
+
quality_rating = rate_quality(transcript)
|
165 |
+
|
166 |
+
# Store results in session state
|
167 |
+
st.session_state["transcript"] = transcript
|
168 |
+
st.session_state["quality_rating"] = quality_rating
|
169 |
+
|
170 |
+
# Remove the temporary file
|
171 |
+
if os.path.exists(temp_audio_path):
|
172 |
+
os.remove(temp_audio_path)
|
173 |
+
|
174 |
+
# Display results if available
|
175 |
+
if st.session_state["transcript"]:
|
176 |
+
st.write("**Transcript:**", st.session_state["transcript"])
|
177 |
+
st.write("**Sentiment Analysis Result:**", st.session_state["quality_rating"])
|
178 |
+
|
179 |
+
# Prepare download content
|
180 |
+
result_text = (
|
181 |
+
f"Transcript:\n{st.session_state['transcript']}\n\n"
|
182 |
+
f"Sentiment Analysis Result: {st.session_state['quality_rating']}"
|
183 |
+
)
|
184 |
+
# Download button for the analysis report
|
185 |
+
st.download_button(
|
186 |
+
label="📥 Download Analysis Report",
|
187 |
+
data=result_text,
|
188 |
+
file_name="analysis_report.txt"
|
189 |
+
)
|
190 |
+
|
191 |
+
st.markdown(
|
192 |
+
"❓If you encounter any issues, please contact customer support: "
|
193 |
+
"📧 **example@hellotoby.com**"
|
194 |
+
)
|
195 |
|
196 |
if __name__ == "__main__":
|
197 |
main()
|