Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -147,11 +147,12 @@ def predict1(image_input, question):
|
|
147 |
with torch.no_grad():
|
148 |
# Get image embeddings
|
149 |
image_embeddings = image_encoder(image)
|
150 |
-
projected_image_embeddings = model.image_projection(image_embeddings)
|
151 |
|
152 |
# Reshape image embeddings to (batch_size, 1, phi3_embed_dim)
|
153 |
-
projected_image_embeddings = projected_image_embeddings.unsqueeze(1)
|
154 |
-
|
|
|
155 |
# Concatenate along the sequence dimension (dim=1)
|
156 |
extended_attention_mask = torch.cat([torch.ones(projected_image_embeddings.shape[:2], device=encoded["attention_mask"].device), encoded["attention_mask"]], dim=1)
|
157 |
extended_input_ids = torch.cat([torch.zeros(projected_image_embeddings.shape[:2], dtype=torch.long, device=encoded["input_ids"].device), encoded["input_ids"]], dim=1)
|
|
|
147 |
with torch.no_grad():
|
148 |
# Get image embeddings
|
149 |
image_embeddings = image_encoder(image)
|
150 |
+
#projected_image_embeddings = model.image_projection(image_embeddings)
|
151 |
|
152 |
# Reshape image embeddings to (batch_size, 1, phi3_embed_dim)
|
153 |
+
#projected_image_embeddings = projected_image_embeddings.unsqueeze(1)
|
154 |
+
projected_image_embeddings = image_embeddings.unsqueeze(1)
|
155 |
+
|
156 |
# Concatenate along the sequence dimension (dim=1)
|
157 |
extended_attention_mask = torch.cat([torch.ones(projected_image_embeddings.shape[:2], device=encoded["attention_mask"].device), encoded["attention_mask"]], dim=1)
|
158 |
extended_input_ids = torch.cat([torch.zeros(projected_image_embeddings.shape[:2], dtype=torch.long, device=encoded["input_ids"].device), encoded["input_ids"]], dim=1)
|