Pash1986 commited on
Commit
dbef01a
·
verified ·
1 Parent(s): 199e228

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -1
README.md CHANGED
@@ -10,4 +10,37 @@ pinned: false
10
  license: apache-2.0
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  license: apache-2.0
11
  ---
12
 
13
+
14
+ This simple restaurant planner is designed to communicate with MongoDB Atlas Vector Search with the loaded Restaurant data set.
15
+
16
+ It uses OpenAI small text embeddings (256 dimesnsions) to query the database for semantic similarity search.
17
+
18
+ ## How to setup your own
19
+
20
+ 1. [Create an Atlas cluter](https://www.mongodb.com/docs/atlas/tutorial/deploy-free-tier-cluster/) (free clusters are available)
21
+ 2. Load the [dataset](https://huggingface.co/datasets/AIatMongoDB/whatscooking.restaurants) using the `ingest/ingest.py` with your connection string.
22
+ 3. Deploy the relevant [Vector Index](https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-tutorial/#create-the-atlas-vector-search-index) on `whatscooking.smart_trips` aggregated collection "name" : `vector_index`.
23
+ ```
24
+ {
25
+ "fields": [
26
+ {
27
+ "numDimensions": 256,
28
+ "path": "embedding",
29
+ "similarity": "cosine",
30
+ "type": "vector"
31
+ },
32
+ {
33
+ "path": "searchTrip",
34
+ "type": "filter"
35
+ }
36
+ ]
37
+ }
38
+ ```
39
+ - [Whitelist](https://www.mongodb.com/docs/atlas/security/ip-access-list/#std-label-access-list) access from everywhere (`0.0.0.0/0`)
40
+ - Locate your [cluster connection](https://www.mongodb.com/docs/atlas/tutorial/connect-to-your-cluster/) URI
41
+ 5. Obtain your Open AI api key
42
+ 6. "Duplicate" this space and input
43
+ - `MONGODB_ATLAS_CLUSTER_URI` - Your Atlas Cluster connection string
44
+ - `OPENAI_API_KEY`- Open AI API key
45
+
46
+ Build and use the planner!