Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +147 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pymongo import MongoClient
|
| 2 |
+
import os
|
| 3 |
+
import time
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import requests
|
| 6 |
+
import traceback
|
| 7 |
+
import google.generativeai as genai
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
|
| 13 |
+
try:
|
| 14 |
+
# Initialize MongoDB python client
|
| 15 |
+
MONGODB_URI = os.getenv("MONGODB_ATLAS_URI")
|
| 16 |
+
client = MongoClient(MONGODB_URI, appname="devrel.content.python")
|
| 17 |
+
|
| 18 |
+
DB_NAME = "google-ai"
|
| 19 |
+
COLLECTION_NAME = "embedded_docs"
|
| 20 |
+
ATLAS_VECTOR_SEARCH_INDEX_NAME = "vector_index"
|
| 21 |
+
collection = client[DB_NAME][COLLECTION_NAME]
|
| 22 |
+
|
| 23 |
+
### Insert data about 5 individual employees
|
| 24 |
+
collection.delete_many({})
|
| 25 |
+
collection.insert_many([
|
| 26 |
+
{
|
| 27 |
+
'_id' : '54633',
|
| 28 |
+
'content' : 'Employee number 54633, name John Doe, department Sales, location New York, salary 100000'
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
'_id' : '54634',
|
| 32 |
+
'content' : 'Employee number 54634, name Jane Doe, department Marketing, location Los Angeles, salary 120000',
|
| 33 |
+
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
'_id' : '54635',
|
| 37 |
+
'content' : 'Employee number 54635, name John Smith, department Engineering, location San Francisco, salary 150000'
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
'_id' : '54636',
|
| 41 |
+
'content' : 'Employee number 54636, name Jane Smith, department Finance, location Chicago, salary 130000'
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
'_id' : '54637',
|
| 45 |
+
'content' : 'Employee number 54637, name John Johnson, department HR, location Miami, salary 110000'
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
'_id' : '54638',
|
| 49 |
+
'content' : 'Employee number 54638, name Jane Johnson, department Operations, location Seattle, salary 140000'
|
| 50 |
+
}
|
| 51 |
+
])
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# Exception handling to catch and display errors during the pipeline execution.
|
| 55 |
+
except Exception as erorr_message:
|
| 56 |
+
print("An error occurred: \n" + erorr_message)
|
| 57 |
+
|
| 58 |
+
gemini_pro = genai.GenerativeModel('gemini-pro')
|
| 59 |
+
|
| 60 |
+
def embed_text(text):
|
| 61 |
+
result = genai.embed_content(
|
| 62 |
+
model="models/embedding-001",
|
| 63 |
+
content=text,
|
| 64 |
+
task_type="retrieval_document",
|
| 65 |
+
title="Embedding of single string")
|
| 66 |
+
|
| 67 |
+
return result['embedding']
|
| 68 |
+
|
| 69 |
+
def get_rag_output(context, question):
|
| 70 |
+
|
| 71 |
+
template = f""" You are an hr assistant, answer in detail. Answer the question based only on the following context:
|
| 72 |
+
```
|
| 73 |
+
{context}
|
| 74 |
+
```
|
| 75 |
+
Question: {question}
|
| 76 |
+
"""
|
| 77 |
+
response = gemini_pro.generate_content([template], stream=False)
|
| 78 |
+
return response.text
|
| 79 |
+
|
| 80 |
+
def mongodb_vector_query(message):
|
| 81 |
+
docs = collection.aggregate([
|
| 82 |
+
{
|
| 83 |
+
'$vectorSearch' : {
|
| 84 |
+
'index' : 'vector_index',
|
| 85 |
+
'queryVector' : embed_text(message),
|
| 86 |
+
'path' : 'embedding',
|
| 87 |
+
'numCandidates' : 10,
|
| 88 |
+
'limit' : 5
|
| 89 |
+
}
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
'$project': {
|
| 93 |
+
'embedding': 0
|
| 94 |
+
}
|
| 95 |
+
}
|
| 96 |
+
])
|
| 97 |
+
|
| 98 |
+
return list(docs)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def get_rag(message, history):
|
| 104 |
+
|
| 105 |
+
try:
|
| 106 |
+
context = mongodb_vector_query(message)
|
| 107 |
+
result = get_rag_output(context, message)
|
| 108 |
+
|
| 109 |
+
# print(result)
|
| 110 |
+
print_llm_text = result
|
| 111 |
+
for i in range(len(print_llm_text)):
|
| 112 |
+
time.sleep(0.03)
|
| 113 |
+
yield print_llm_text[: i+1]
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
except Exception as e:
|
| 117 |
+
error_message = traceback.format_exc()
|
| 118 |
+
print("An error occurred: \n" + error_message)
|
| 119 |
+
yield error_message
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def fetch_url_data(url):
|
| 125 |
+
try:
|
| 126 |
+
response = requests.get(url)
|
| 127 |
+
response.raise_for_status() # Raises an HTTPError if the HTTP request returned an unsuccessful status code
|
| 128 |
+
return response.text
|
| 129 |
+
except requests.RequestException as e:
|
| 130 |
+
return f"Error: {e}"
|
| 131 |
+
|
| 132 |
+
# Setup Gradio interface
|
| 133 |
+
with gr.Blocks() as demo:
|
| 134 |
+
with gr.Tab("Demo"):
|
| 135 |
+
|
| 136 |
+
## value=[(None, "Hi, I'm a MongoDB and Heystack based question and answer bot 🤖, I can help you answer on the knowledge base above…")]
|
| 137 |
+
gr.ChatInterface(get_rag,examples=["List all employees", "Where does jane work?", "Who has the highest salary? List it"], title="Atlas Vector Search Chat",description="This small chat uses a similarity search to find relevant plots as listed above, it uses MongoDB Atlas and Google Gemini.",submit_btn="Search").queue()
|
| 138 |
+
|
| 139 |
+
with gr.Tab("Code"):
|
| 140 |
+
gr.Code(label="Code", language="python", value=fetch_url_data('https://huggingface.co/spaces/MongoDB/Haystack-MongoDB-Integration-Chat/raw/main/app.py'))
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
if __name__ == "__main__":
|
| 147 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
google-generativeai
|
| 2 |
+
pymongo
|
| 3 |
+
requests
|