Upload 2 files
Browse files- app.py +105 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from pymongo import MongoClient
|
3 |
+
from PIL import Image
|
4 |
+
import base64
|
5 |
+
import os
|
6 |
+
import io
|
7 |
+
import boto3
|
8 |
+
import json
|
9 |
+
|
10 |
+
bedrock_runtime = boto3.client('bedrock-runtime',
|
11 |
+
aws_access_key_id=os.environ.get('AWS_ACCESS_KEY'),
|
12 |
+
aws_secret_access_key=os.environ.get('AWS_SECRET_KEY'),
|
13 |
+
region_name="us-east-1"
|
14 |
+
)
|
15 |
+
|
16 |
+
def construct_bedrock_body(base64_string, text):
|
17 |
+
if text:
|
18 |
+
return json.dumps(
|
19 |
+
{
|
20 |
+
"inputImage": base64_string,
|
21 |
+
"embeddingConfig": {"outputEmbeddingLength": 1024},
|
22 |
+
"inputText": text
|
23 |
+
}
|
24 |
+
)
|
25 |
+
|
26 |
+
return json.dumps(
|
27 |
+
{
|
28 |
+
"inputImage": base64_string,
|
29 |
+
"embeddingConfig": {"outputEmbeddingLength": 1024},
|
30 |
+
}
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
def get_embedding_from_titan_multimodal(body):
|
35 |
+
|
36 |
+
|
37 |
+
response = bedrock_runtime.invoke_model(
|
38 |
+
body=body,
|
39 |
+
modelId="amazon.titan-embed-image-v1",
|
40 |
+
accept="application/json",
|
41 |
+
contentType="application/json",
|
42 |
+
)
|
43 |
+
|
44 |
+
response_body = json.loads(response.get("body").read())
|
45 |
+
return response_body["embedding"]
|
46 |
+
|
47 |
+
uri = os.environ.get('MONGODB_ATLAS_URI')
|
48 |
+
client = MongoClient(uri)
|
49 |
+
db_name = 'celebrity_1000_embeddings'
|
50 |
+
collection_name = 'celeb_images'
|
51 |
+
|
52 |
+
celeb_images = client[db_name][collection_name]
|
53 |
+
|
54 |
+
def start_image_search(image, text):
|
55 |
+
if not image:
|
56 |
+
## Alert the user to upload an image
|
57 |
+
raise gr.Error("Please upload an image first, make sure to press the 'Submit' button after selecting the image.")
|
58 |
+
buffered = io.BytesIO()
|
59 |
+
image.save(buffered, format="JPEG")
|
60 |
+
img_byte = buffered.getvalue()
|
61 |
+
# Encode this byte array to Base64
|
62 |
+
img_base64 = base64.b64encode(img_byte)
|
63 |
+
|
64 |
+
# Convert Base64 bytes to string for JSON serialization
|
65 |
+
img_base64_str = img_base64.decode('utf-8')
|
66 |
+
body = construct_bedrock_body(img_base64_str, text)
|
67 |
+
embedding = get_embedding_from_titan_multimodal(body)
|
68 |
+
|
69 |
+
doc = list(celeb_images.aggregate([{
|
70 |
+
"$vectorSearch": {
|
71 |
+
"index": "vector_index",
|
72 |
+
"path" : "embeddings",
|
73 |
+
"queryVector": embedding,
|
74 |
+
"numCandidates" : 15,
|
75 |
+
"limit" : 3
|
76 |
+
}}, {"$project": {"image":1}}]))
|
77 |
+
|
78 |
+
images = []
|
79 |
+
for image in doc:
|
80 |
+
images.append(Image.open(io.BytesIO(base64.b64decode(image['image']))))
|
81 |
+
|
82 |
+
return images
|
83 |
+
|
84 |
+
with gr.Blocks() as demo:
|
85 |
+
gr.Markdown(
|
86 |
+
"""
|
87 |
+
# MongoDB's Vector Celeb Image matcher
|
88 |
+
|
89 |
+
Upload an image and find the most similar celeb image from the database.
|
90 |
+
|
91 |
+
💪 Make a great pose to impact the search! 🤯
|
92 |
+
|
93 |
+
""")
|
94 |
+
|
95 |
+
### Image gradio input
|
96 |
+
gr.Interface(
|
97 |
+
fn=start_image_search,
|
98 |
+
inputs=[gr.Image(type="pil", label="Upload an image"),gr.Textbox(label="Enter an adjusment to the image")],
|
99 |
+
## outputs=gr.Image(type="pil")
|
100 |
+
outputs=gr.Gallery(
|
101 |
+
label="Generated images", show_label=True, elem_id="gallery"
|
102 |
+
, columns=[3], rows=[1], object_fit="contain", height="auto")
|
103 |
+
)
|
104 |
+
|
105 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
pymongo
|
2 |
+
boto3
|
3 |
+
gradio
|