Spaces:
Sleeping
Sleeping
Mona-abdelazim
commited on
Commit
•
a8efc23
1
Parent(s):
18aae43
Upload 4 files
Browse files- RAG_GGUF.py +82 -0
- alzaheimer.pdf +0 -0
- app.py +86 -0
- start.py +17 -0
RAG_GGUF.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import time
|
3 |
+
import psutil
|
4 |
+
import glob
|
5 |
+
import PyPDF2
|
6 |
+
#import chromadb
|
7 |
+
from transformers import (
|
8 |
+
AutoTokenizer,
|
9 |
+
AutoModelForSeq2SeqLM,
|
10 |
+
AutoTokenizer, AutoModelForCausalLM,
|
11 |
+
pipeline
|
12 |
+
)
|
13 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM,BitsAndBytesConfig
|
14 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
15 |
+
from langchain_community.document_loaders import PyPDFLoader
|
16 |
+
from langchain_community.vectorstores import Chroma
|
17 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
18 |
+
from llama_cpp import Llama
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
def RAG_Chain(pdf_file,question,llama_model):
|
23 |
+
model_path = "/home/mona/Downloads/Pubmed_model_GGUF"
|
24 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
25 |
+
doc = ""
|
26 |
+
for page_num in range(len(pdf_reader.pages) ):
|
27 |
+
page = pdf_reader.pages[page_num]
|
28 |
+
doc += page.extract_text()
|
29 |
+
|
30 |
+
# Check if any documents were loaded
|
31 |
+
if not doc:
|
32 |
+
raise ValueError("No documents found. Please check the PDF directory path.")
|
33 |
+
|
34 |
+
# Split the loaded documents into chunks
|
35 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
36 |
+
chunk_size=1000, chunk_overlap=200)
|
37 |
+
splits = text_splitter.split_text(doc)
|
38 |
+
|
39 |
+
# Create HuggingFace embeddings and vector store
|
40 |
+
embedding_model_name = 'sentence-transformers/all-MiniLM-L6-v2' # Efficient model suitable for most tasks
|
41 |
+
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_name)
|
42 |
+
__import__('pysqlite3')
|
43 |
+
import sys
|
44 |
+
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
45 |
+
import chromadb
|
46 |
+
|
47 |
+
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
48 |
+
|
49 |
+
vectorstore = Chroma.from_texts(texts=splits, embedding=embeddings)
|
50 |
+
|
51 |
+
# Define the retriever using Chroma
|
52 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 4})
|
53 |
+
|
54 |
+
# Retrieve relevant documents
|
55 |
+
retrieved_docs = retriever.get_relevant_documents(question)
|
56 |
+
if not retrieved_docs:
|
57 |
+
return "No relevant information found in the documents."
|
58 |
+
|
59 |
+
# Format the context
|
60 |
+
formatted_context = "\n\n".join(doc.page_content for doc in retrieved_docs)
|
61 |
+
|
62 |
+
# Prepare the prompt for the LLM
|
63 |
+
formatted_prompt = (
|
64 |
+
f"Answer the question based on the context below.\n\n"
|
65 |
+
f"Context:\n{formatted_context}\n\nQuestion: {question}\n\nAnswer:"
|
66 |
+
)
|
67 |
+
answer = llama_model(formatted_prompt)
|
68 |
+
return answer["choices"][0]["text"]
|
69 |
+
|
70 |
+
# Instantiate the Llama model using the gguf file
|
71 |
+
'''
|
72 |
+
llama_model = Llama(
|
73 |
+
model_path,
|
74 |
+
n_ctx=2048, # Context length
|
75 |
+
#n_threads=8, # Number of CPU threads to use
|
76 |
+
temperature=0.7, # Sampling temperature
|
77 |
+
n_gpu_layers=2
|
78 |
+
)
|
79 |
+
'''
|
80 |
+
# Generate the answer
|
81 |
+
|
82 |
+
|
alzaheimer.pdf
ADDED
Binary file (14.3 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import PyPDF2
|
3 |
+
from io import StringIO
|
4 |
+
import PyPDF2
|
5 |
+
from RAG_GGUF import RAG_Chain
|
6 |
+
from llama_cpp import Llama
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
# Function to send pdf file to RAG pipeline
|
11 |
+
def read_pdf(file):
|
12 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
13 |
+
text = ""
|
14 |
+
for page_num in range(len(pdf_reader.pages) ):
|
15 |
+
page = pdf_reader.pages[page_num]
|
16 |
+
text += page.extract_text()
|
17 |
+
return text
|
18 |
+
|
19 |
+
st.title("Talk with Your PDF")
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
# PDF Upload
|
24 |
+
|
25 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
26 |
+
if uploaded_file is not None:
|
27 |
+
# Display the file name
|
28 |
+
st.write(f"File uploaded: {uploaded_file.name}")
|
29 |
+
# Read and display the content of the uploaded PDF file
|
30 |
+
try:
|
31 |
+
pdf_content = read_pdf(uploaded_file)
|
32 |
+
st.text_area("PDF Content", pdf_content, height=300)
|
33 |
+
except Exception as e:
|
34 |
+
st.error(f"Error reading PDF: {e}")
|
35 |
+
# Input field for user messages
|
36 |
+
user_input = st.text_input("You:", "")
|
37 |
+
else:
|
38 |
+
st.text_area("PDF Content","Please Upload File",height=300)
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
# Initialize a session state for chat history
|
43 |
+
if 'chat_history' not in st.session_state:
|
44 |
+
st.session_state.chat_history = []
|
45 |
+
model_path = "/home/mona/Downloads/Pubmed_model_GGUF"
|
46 |
+
llama_model = Llama(
|
47 |
+
model_path,
|
48 |
+
n_ctx=2048, # Context length
|
49 |
+
#n_threads=8, # Number of CPU threads to use
|
50 |
+
temperature=0.7, # Sampling temperature
|
51 |
+
n_gpu_layers=4
|
52 |
+
)
|
53 |
+
|
54 |
+
# Handle user input
|
55 |
+
if st.button("Send"):
|
56 |
+
#import chromadb.api
|
57 |
+
|
58 |
+
#chromadb.api.client.SharedSystemClient.clear_system_cache()
|
59 |
+
if user_input:
|
60 |
+
# Get the GPT response
|
61 |
+
gpt_response = RAG_Chain(uploaded_file,user_input,llama_model)
|
62 |
+
|
63 |
+
# Store the conversation
|
64 |
+
st.session_state.chat_history.append(("User", user_input))
|
65 |
+
st.session_state.chat_history.append(("BOT", gpt_response))
|
66 |
+
|
67 |
+
# Clear the input box
|
68 |
+
user_input = ""
|
69 |
+
|
70 |
+
# Display chat history
|
71 |
+
for speaker, message in st.session_state.chat_history:
|
72 |
+
if speaker == "User":
|
73 |
+
st.markdown(f"**{speaker}:** {message}")
|
74 |
+
else:
|
75 |
+
st.markdown(f"**{speaker}:** {message}")
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
start.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import subprocess
|
3 |
+
import os
|
4 |
+
def main():
|
5 |
+
print("Starting the app!")
|
6 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
7 |
+
result = subprocess.run(["streamlit run app.py"], shell=True, capture_output=False, text=True)
|
8 |
+
while True:
|
9 |
+
command = input("Type 'exit' to quit or anything else to continue: ").lower()
|
10 |
+
if command == 'exit':
|
11 |
+
print("Exiting the app. Goodbye!")
|
12 |
+
break
|
13 |
+
else:
|
14 |
+
print(f"You typed: {command}")
|
15 |
+
|
16 |
+
if __name__ == "__main__":
|
17 |
+
main()
|