Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| # Load the fine-tuned model and tokenizer | |
| model_name = "gpt2" | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| def generate_pixel_art(prompt): | |
| input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
| output = model.generate(input_ids, max_length=2304, num_return_sequences=1) | |
| generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
| return generated_text | |
| def hex_to_rgb(hex_string): | |
| return [int(hex_string[i:i+2], 16) for i in (0, 2, 4)] | |
| def visualize_pixel_art(hex_string): | |
| pixels = [hex_to_rgb(hex_string[i:i+6]) for i in range(0, len(hex_string), 6)] | |
| img = Image.new('RGB', (16, 16)) | |
| img.putdata(pixels) | |
| return img | |
| demo = gr.Interface( | |
| fn=generate_pixel_art, | |
| inputs=gr.Textbox(lines=2, placeholder="Enter a prompt for pixel art generation..."), | |
| outputs=[gr.Textbox(label="Generated Hex String"), gr.Image(label="Visualized Pixel Art")], | |
| title="LlamaSquint Pixel Art Generator", | |
| description="Generate pixel art using a fine-tuned LLaMa model" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |