Spaces:
Running
Running
import torch | |
import torchvision | |
from torchvision.models.detection import FasterRCNN | |
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor | |
from torchvision.transforms import functional as F | |
from PIL import Image, ImageDraw, ImageFont | |
import gradio as gr | |
# Force CPU | |
device = torch.device('cpu') | |
# COCO-style class map | |
COCO_CLASSES = { | |
0: "Background", | |
1: "Stand", | |
2: "Sit", | |
3: "Ruku", | |
4: "Sijdah" | |
} | |
# Load model | |
def get_model(num_classes): | |
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False) | |
in_features = model.roi_heads.box_predictor.cls_score.in_features | |
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) | |
return model | |
model = get_model(num_classes=5) | |
model.load_state_dict(torch.load("Salatfasterrcnn_resnet50_epoch_3.pth", map_location=device)) | |
model.to(device) | |
model.eval() | |
# Prediction function | |
def predict(image): | |
image = image.convert("RGB") | |
image_tensor = F.to_tensor(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
prediction = model(image_tensor) | |
draw = ImageDraw.Draw(image) | |
boxes = prediction[0]["boxes"].cpu().numpy() | |
labels = prediction[0]["labels"].cpu().numpy() | |
scores = prediction[0]["scores"].cpu().numpy() | |
for box, label, score in zip(boxes, labels, scores): | |
if score > 0.5: | |
x_min, y_min, x_max, y_max = box | |
class_name = COCO_CLASSES.get(label, "Unknown") | |
draw.rectangle([x_min, y_min, x_max, y_max], outline="red", width=3) | |
draw.text((x_min, y_min), f"{class_name} ({score:.2f})", fill="red") | |
return image | |
# Gradio interface | |
gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Image(type="pil"), | |
title="Salat Posture Detection", | |
description="Upload an image to detect salat postures (stand, sit, ruku, sijdah)." | |
).launch() | |