|
from transformers import pipeline |
|
from datasets import load_dataset |
|
import soundfile as sf |
|
import torch |
|
|
|
synthesiser = pipeline(task="text-to-speech", model="microsoft/speecht5_tts") |
|
|
|
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") |
|
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) |
|
|
|
|
|
speech = synthesiser("Hello, my dog is cooler than you!", forward_params={"speaker_embeddings": speaker_embedding}) |
|
|
|
sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"]) |
|
|