Mohit8219 commited on
Commit
d0ecead
·
verified ·
1 Parent(s): 69cd41d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -0
app.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from sklearn.datasets import load_iris
3
+ from sklearn.ensemble import RandomForestClassifier
4
+
5
+ # Load the Iris dataset and train a model
6
+ iris = load_iris()
7
+ X, y = iris.data, iris.target
8
+ clf = RandomForestClassifier()
9
+ clf.fit(X, y)
10
+
11
+ # Define the prediction function
12
+ def predict_iris(sepal_length, sepal_width, petal_length, petal_width):
13
+ prediction = clf.predict([[sepal_length, sepal_width, petal_length, petal_width]])
14
+ return iris.target_names[prediction[0]]
15
+
16
+ # Create the Gradio interface
17
+ iface = gr.Interface(
18
+ fn=predict_iris,
19
+ inputs=[
20
+ gr.components.Number(label="Sepal Length (cm)"),
21
+ gr.components.Number(label="Sepal Width (cm)"),
22
+ gr.components.Number(label="Petal Length (cm)"),
23
+ gr.components.Number(label="Petal Width (cm)")
24
+ ],
25
+ outputs="text"
26
+ )
27
+
28
+ iface.launch()