Mohit-321 commited on
Commit
e57fc6b
·
1 Parent(s): a8fd495

Delete helper.py

Browse files
Files changed (1) hide show
  1. helper.py +0 -106
helper.py DELETED
@@ -1,106 +0,0 @@
1
- import matplotlib.pyplot as plt
2
- from urlextract import URLExtract
3
- from collections import Counter
4
- from wordcloud import WordCloud, STOPWORDS ,ImageColorGenerator
5
- import pandas as pd
6
- import matplotlib.pylab as plt
7
- import PIL.Image
8
- import numpy as np
9
-
10
- extract=URLExtract()
11
- def fetch_stats(selected_user,df):
12
-
13
- if selected_user!= "Group analysis":
14
- df=df[df['users']==selected_user]
15
- num_messages = df.shape[0]
16
- words = []
17
- for message in df['message']:
18
- words.extend(message.split())
19
-
20
-
21
- links=[]
22
- for message in df['message']:
23
- links.extend(extract.find_urls(message))
24
-
25
- return num_messages, len(words),len(links)
26
-
27
- def most_busy_users(df):
28
- x = df['users'].value_counts().head()
29
- df=round((df['users'].value_counts() / df.shape[0]) * 100, 2).reset_index().rename(
30
- columns={'index': 'name', 'user': 'percent'})
31
- return x,df
32
-
33
- def most_common_words(selected_user,df):
34
- f = open('stop_hinglish.txt', 'r')
35
- stop_words = f.read()
36
-
37
- if selected_user != "Group analysis":
38
- df = df[df['users'] == selected_user]
39
- temp = df[df['users'] != 'group_notification']
40
- temp = temp[temp['message'] != '<Media omitted>\n']
41
-
42
- words = []
43
-
44
- for message in temp['message']:
45
- for word in message.lower().split():
46
- if word not in stop_words:
47
- words.append(word)
48
- most_common_df=pd.DataFrame(Counter(words).most_common(30))
49
- return most_common_df
50
-
51
- def positive_word_cloud(selected_user,df):
52
- if selected_user != "Group analysis":
53
- df = df[df['users'] == selected_user]
54
-
55
- pos_word = df[df['roberta_pos'] > 0.5]
56
- pos_word = pos_word.pop('message')
57
- pos_word_df = pd.DataFrame(pos_word)
58
- stopwords = set(STOPWORDS)
59
- mask = np.array(PIL.Image.open('wcc.png'))
60
-
61
- # wordcloud
62
- wordcloud = WordCloud(stopwords=stopwords, mask=mask, background_color="White").generate(
63
- ''.join(pos_word_df['message']))
64
- plt.figure(figsize=(12,6), facecolor='k')
65
- plt.imshow(wordcloud, interpolation='bilinear')
66
- plt.show()
67
-
68
- return wordcloud
69
-
70
- def negative_word_cloud(selected_user,df):
71
- if selected_user != "Group analysis":
72
- df = df[df['users'] == selected_user]
73
-
74
- pos_word = df[df['roberta_neg'] > 0.5]
75
- pos_word = pos_word.pop('message')
76
- pos_word_df = pd.DataFrame(pos_word)
77
- stopwords = set(STOPWORDS)
78
- mask = np.array(PIL.Image.open('wcc.png'))
79
-
80
- # wordcloud
81
- wordcloud = WordCloud(stopwords=stopwords, mask=mask, background_color="White").generate(
82
- ''.join(pos_word_df['message']))
83
- plt.figure(figsize=(12,6), facecolor='k')
84
- plt.imshow(wordcloud, interpolation='bilinear')
85
- plt.show()
86
-
87
- return wordcloud
88
-
89
- def neutral_word_cloud(selected_user,df):
90
- if selected_user != "Group analysis":
91
- df = df[df['users'] == selected_user]
92
-
93
- pos_word = df[df['roberta_neu'] > 0.5]
94
- pos_word = pos_word.pop('message')
95
- pos_word_df = pd.DataFrame(pos_word)
96
- stopwords = set(STOPWORDS)
97
- mask = np.array(PIL.Image.open('wcc.png'))
98
-
99
- # wordcloud
100
- wordcloud = WordCloud(stopwords=stopwords, mask=mask, background_color="White").generate(
101
- ''.join(pos_word_df['message']))
102
- plt.figure(figsize=(12,6), facecolor='k')
103
- plt.imshow(wordcloud, interpolation='bilinear')
104
- plt.show()
105
-
106
- return wordcloud