Spaces:
Runtime error
Runtime error
Delete helper.py
Browse files
helper.py
DELETED
@@ -1,106 +0,0 @@
|
|
1 |
-
import matplotlib.pyplot as plt
|
2 |
-
from urlextract import URLExtract
|
3 |
-
from collections import Counter
|
4 |
-
from wordcloud import WordCloud, STOPWORDS ,ImageColorGenerator
|
5 |
-
import pandas as pd
|
6 |
-
import matplotlib.pylab as plt
|
7 |
-
import PIL.Image
|
8 |
-
import numpy as np
|
9 |
-
|
10 |
-
extract=URLExtract()
|
11 |
-
def fetch_stats(selected_user,df):
|
12 |
-
|
13 |
-
if selected_user!= "Group analysis":
|
14 |
-
df=df[df['users']==selected_user]
|
15 |
-
num_messages = df.shape[0]
|
16 |
-
words = []
|
17 |
-
for message in df['message']:
|
18 |
-
words.extend(message.split())
|
19 |
-
|
20 |
-
|
21 |
-
links=[]
|
22 |
-
for message in df['message']:
|
23 |
-
links.extend(extract.find_urls(message))
|
24 |
-
|
25 |
-
return num_messages, len(words),len(links)
|
26 |
-
|
27 |
-
def most_busy_users(df):
|
28 |
-
x = df['users'].value_counts().head()
|
29 |
-
df=round((df['users'].value_counts() / df.shape[0]) * 100, 2).reset_index().rename(
|
30 |
-
columns={'index': 'name', 'user': 'percent'})
|
31 |
-
return x,df
|
32 |
-
|
33 |
-
def most_common_words(selected_user,df):
|
34 |
-
f = open('stop_hinglish.txt', 'r')
|
35 |
-
stop_words = f.read()
|
36 |
-
|
37 |
-
if selected_user != "Group analysis":
|
38 |
-
df = df[df['users'] == selected_user]
|
39 |
-
temp = df[df['users'] != 'group_notification']
|
40 |
-
temp = temp[temp['message'] != '<Media omitted>\n']
|
41 |
-
|
42 |
-
words = []
|
43 |
-
|
44 |
-
for message in temp['message']:
|
45 |
-
for word in message.lower().split():
|
46 |
-
if word not in stop_words:
|
47 |
-
words.append(word)
|
48 |
-
most_common_df=pd.DataFrame(Counter(words).most_common(30))
|
49 |
-
return most_common_df
|
50 |
-
|
51 |
-
def positive_word_cloud(selected_user,df):
|
52 |
-
if selected_user != "Group analysis":
|
53 |
-
df = df[df['users'] == selected_user]
|
54 |
-
|
55 |
-
pos_word = df[df['roberta_pos'] > 0.5]
|
56 |
-
pos_word = pos_word.pop('message')
|
57 |
-
pos_word_df = pd.DataFrame(pos_word)
|
58 |
-
stopwords = set(STOPWORDS)
|
59 |
-
mask = np.array(PIL.Image.open('wcc.png'))
|
60 |
-
|
61 |
-
# wordcloud
|
62 |
-
wordcloud = WordCloud(stopwords=stopwords, mask=mask, background_color="White").generate(
|
63 |
-
''.join(pos_word_df['message']))
|
64 |
-
plt.figure(figsize=(12,6), facecolor='k')
|
65 |
-
plt.imshow(wordcloud, interpolation='bilinear')
|
66 |
-
plt.show()
|
67 |
-
|
68 |
-
return wordcloud
|
69 |
-
|
70 |
-
def negative_word_cloud(selected_user,df):
|
71 |
-
if selected_user != "Group analysis":
|
72 |
-
df = df[df['users'] == selected_user]
|
73 |
-
|
74 |
-
pos_word = df[df['roberta_neg'] > 0.5]
|
75 |
-
pos_word = pos_word.pop('message')
|
76 |
-
pos_word_df = pd.DataFrame(pos_word)
|
77 |
-
stopwords = set(STOPWORDS)
|
78 |
-
mask = np.array(PIL.Image.open('wcc.png'))
|
79 |
-
|
80 |
-
# wordcloud
|
81 |
-
wordcloud = WordCloud(stopwords=stopwords, mask=mask, background_color="White").generate(
|
82 |
-
''.join(pos_word_df['message']))
|
83 |
-
plt.figure(figsize=(12,6), facecolor='k')
|
84 |
-
plt.imshow(wordcloud, interpolation='bilinear')
|
85 |
-
plt.show()
|
86 |
-
|
87 |
-
return wordcloud
|
88 |
-
|
89 |
-
def neutral_word_cloud(selected_user,df):
|
90 |
-
if selected_user != "Group analysis":
|
91 |
-
df = df[df['users'] == selected_user]
|
92 |
-
|
93 |
-
pos_word = df[df['roberta_neu'] > 0.5]
|
94 |
-
pos_word = pos_word.pop('message')
|
95 |
-
pos_word_df = pd.DataFrame(pos_word)
|
96 |
-
stopwords = set(STOPWORDS)
|
97 |
-
mask = np.array(PIL.Image.open('wcc.png'))
|
98 |
-
|
99 |
-
# wordcloud
|
100 |
-
wordcloud = WordCloud(stopwords=stopwords, mask=mask, background_color="White").generate(
|
101 |
-
''.join(pos_word_df['message']))
|
102 |
-
plt.figure(figsize=(12,6), facecolor='k')
|
103 |
-
plt.imshow(wordcloud, interpolation='bilinear')
|
104 |
-
plt.show()
|
105 |
-
|
106 |
-
return wordcloud
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|