Spaces:
Runtime error
Runtime error
Upload 5 files
Browse files- app.py +209 -0
- helper.py +68 -0
- language.xlsx +0 -0
- preprocessor.py +127 -0
- stop_hinglish.txt +1055 -0
app.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from transformers import AutoModelForSequenceClassification
|
5 |
+
import warnings
|
6 |
+
warnings.filterwarnings("ignore")
|
7 |
+
import nltk
|
8 |
+
nltk.download('all')
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import helper
|
11 |
+
import preprocessor
|
12 |
+
from mtranslate import translate
|
13 |
+
import pandas as pd
|
14 |
+
import os
|
15 |
+
from gtts import gTTS
|
16 |
+
import base64
|
17 |
+
import torch
|
18 |
+
st.sidebar.title("Whatsapp Chat analyzer")
|
19 |
+
|
20 |
+
uploaded_file= st.sidebar.file_uploader("Choose a file")
|
21 |
+
|
22 |
+
if uploaded_file is not None:
|
23 |
+
|
24 |
+
bytes_data = uploaded_file.getvalue()
|
25 |
+
data=bytes_data.decode("utf-8")
|
26 |
+
df_new= preprocessor.preprocess(data)
|
27 |
+
st.dataframe(df_new)
|
28 |
+
|
29 |
+
user_list= df_new['users'].unique().tolist()
|
30 |
+
user_list.sort()
|
31 |
+
user_list.insert(0,"Group analysis")
|
32 |
+
selected_user=st.sidebar.selectbox("show analysis wrt",user_list)
|
33 |
+
if st.sidebar.button("Show Analysis"):
|
34 |
+
num_messages,words,num_links=helper.fetch_stats(selected_user,df_new)
|
35 |
+
col1,col2,col3=st.columns(3)
|
36 |
+
|
37 |
+
with col1:
|
38 |
+
st.header("Total Messages")
|
39 |
+
st.title(num_messages)
|
40 |
+
with col2:
|
41 |
+
st.header("Total Words")
|
42 |
+
st.title(words)
|
43 |
+
with col3:
|
44 |
+
st.header("Links Shared")
|
45 |
+
st.title(num_links)
|
46 |
+
|
47 |
+
if selected_user == "Group analysis":
|
48 |
+
st.title("Most busy users")
|
49 |
+
x,new_df=helper.most_busy_users(df_new)
|
50 |
+
fig,ax=plt.subplots()
|
51 |
+
col1,col2=st.columns(2)
|
52 |
+
|
53 |
+
with col1:
|
54 |
+
ax.bar(x.index, x.values)
|
55 |
+
plt.xticks(rotation='vertical')
|
56 |
+
st.pyplot(fig)
|
57 |
+
with col2:
|
58 |
+
st.dataframe(new_df)
|
59 |
+
|
60 |
+
st.title("Positive Word cloud")
|
61 |
+
df_wc = helper.create_word_cloud(selected_user, df_new)
|
62 |
+
fig, ax = plt.subplots()
|
63 |
+
ax.imshow(df_wc)
|
64 |
+
plt.axis('off')
|
65 |
+
st.pyplot(fig)
|
66 |
+
|
67 |
+
st.title("Most Common Words")
|
68 |
+
most_common_df=helper.most_common_words(selected_user,df_new)
|
69 |
+
fig,ax=plt.subplots()
|
70 |
+
ax.barh(most_common_df[0],most_common_df[1])
|
71 |
+
st.pyplot(fig)
|
72 |
+
st.dataframe(most_common_df)
|
73 |
+
|
74 |
+
if selected_user == "Group analysis":
|
75 |
+
st.title("Sentiment Analysis")
|
76 |
+
x = helper.sentiment_analysis(df_new)
|
77 |
+
fig, ax = plt.subplots()
|
78 |
+
ax.bar(x[0],x[1])
|
79 |
+
st.pyplot(fig)
|
80 |
+
|
81 |
+
st.title("Sentiment Analysis")
|
82 |
+
@st.cache(allow_output_mutation=True)
|
83 |
+
def get_model():
|
84 |
+
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment"
|
85 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
86 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
87 |
+
return tokenizer,model
|
88 |
+
|
89 |
+
|
90 |
+
tokenizer, model = get_model()
|
91 |
+
|
92 |
+
user_input = st.text_area('Enter Text to Analyze')
|
93 |
+
button = st.button("Analyze")
|
94 |
+
|
95 |
+
sent_pipeline = pipeline("sentiment-analysis")
|
96 |
+
if user_input and button:
|
97 |
+
test_sample = tokenizer([user_input], padding=True, truncation=True, max_length=512, return_tensors='pt')
|
98 |
+
# test_sample
|
99 |
+
output = model(**test_sample)
|
100 |
+
st.write("Prediction: ", sent_pipeline(user_input))
|
101 |
+
showWarningOnDirectExecution = False
|
102 |
+
|
103 |
+
df = pd.read_excel(os.path.join( 'language.xlsx'),sheet_name='wiki')
|
104 |
+
df.dropna(inplace=True)
|
105 |
+
lang = df['name'].to_list()
|
106 |
+
langlist=tuple(lang)
|
107 |
+
langcode = df['iso'].to_list()
|
108 |
+
|
109 |
+
# create dictionary of language and 2 letter langcode
|
110 |
+
lang_array = {lang[i]: langcode[i] for i in range(len(langcode))}
|
111 |
+
|
112 |
+
# layout
|
113 |
+
st.title("Language-Translation + Text-To-Speech")
|
114 |
+
st.markdown("In Python 🐍 with Streamlit ! (https://www.streamlit.io/)")
|
115 |
+
st.markdown("Languages are pulled from language.xlsx dynamically. If translation is available it will be displayed in TRANSLATED TEXT window.\n In addition if text-to-Speech is supported it will display audio file to play and download." )
|
116 |
+
inputtext = st.text_area("INPUT",height=200)
|
117 |
+
|
118 |
+
choice = st.sidebar.radio('SELECT LANGUAGE',langlist)
|
119 |
+
|
120 |
+
speech_langs = {
|
121 |
+
"af": "Afrikaans",
|
122 |
+
"ar": "Arabic",
|
123 |
+
"bg": "Bulgarian",
|
124 |
+
"bn": "Bengali",
|
125 |
+
"bs": "Bosnian",
|
126 |
+
"ca": "Catalan",
|
127 |
+
"cs": "Czech",
|
128 |
+
"cy": "Welsh",
|
129 |
+
"da": "Danish",
|
130 |
+
"de": "German",
|
131 |
+
"el": "Greek",
|
132 |
+
"en": "English",
|
133 |
+
"eo": "Esperanto",
|
134 |
+
"es": "Spanish",
|
135 |
+
"et": "Estonian",
|
136 |
+
"fi": "Finnish",
|
137 |
+
"fr": "French",
|
138 |
+
"gu": "Gujarati",
|
139 |
+
"hi": "Hindi",
|
140 |
+
"hr": "Croatian",
|
141 |
+
"hu": "Hungarian",
|
142 |
+
"hy": "Armenian",
|
143 |
+
"id": "Indonesian",
|
144 |
+
"is": "Icelandic",
|
145 |
+
"it": "Italian",
|
146 |
+
"ja": "Japanese",
|
147 |
+
"jw": "Javanese",
|
148 |
+
"km": "Khmer",
|
149 |
+
"kn": "Kannada",
|
150 |
+
"ko": "Korean",
|
151 |
+
"la": "Latin",
|
152 |
+
"lv": "Latvian",
|
153 |
+
"mk": "Macedonian",
|
154 |
+
"ml": "Malayalam",
|
155 |
+
"mr": "Marathi",
|
156 |
+
"my": "Myanmar (Burmese)",
|
157 |
+
"ne": "Nepali",
|
158 |
+
"nl": "Dutch",
|
159 |
+
"no": "Norwegian",
|
160 |
+
"pl": "Polish",
|
161 |
+
"pt": "Portuguese",
|
162 |
+
"ro": "Romanian",
|
163 |
+
"ru": "Russian",
|
164 |
+
"si": "Sinhala",
|
165 |
+
"sk": "Slovak",
|
166 |
+
"sq": "Albanian",
|
167 |
+
"sr": "Serbian",
|
168 |
+
"su": "Sundanese",
|
169 |
+
"sv": "Swedish",
|
170 |
+
"sw": "Swahili",
|
171 |
+
"ta": "Tamil",
|
172 |
+
"te": "Telugu",
|
173 |
+
"th": "Thai",
|
174 |
+
"tl": "Filipino",
|
175 |
+
"tr": "Turkish",
|
176 |
+
"uk": "Ukrainian",
|
177 |
+
"ur": "Urdu",
|
178 |
+
"vi": "Vietnamese",
|
179 |
+
"zh-CN": "Chinese"
|
180 |
+
}
|
181 |
+
|
182 |
+
# function to decode audio file for download
|
183 |
+
def get_binary_file_downloader_html(bin_file, file_label='File'):
|
184 |
+
with open(bin_file, 'rb') as f:
|
185 |
+
data = f.read()
|
186 |
+
bin_str = base64.b64encode(data).decode()
|
187 |
+
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">Download {file_label}</a>'
|
188 |
+
return href
|
189 |
+
|
190 |
+
c1,c2 = st.columns([4,3])
|
191 |
+
|
192 |
+
# I/O
|
193 |
+
if len(inputtext) > 0 :
|
194 |
+
try:
|
195 |
+
output = translate(inputtext,lang_array[choice])
|
196 |
+
with c1:
|
197 |
+
st.text_area("TRANSLATED TEXT",output,height=200)
|
198 |
+
# if speech support is available will render autio file
|
199 |
+
if choice in speech_langs.values():
|
200 |
+
with c2:
|
201 |
+
aud_file = gTTS(text=output, lang=lang_array[choice], slow=False)
|
202 |
+
aud_file.save("lang.mp3")
|
203 |
+
audio_file_read = open('lang.mp3', 'rb')
|
204 |
+
audio_bytes = audio_file_read.read()
|
205 |
+
bin_str = base64.b64encode(audio_bytes).decode()
|
206 |
+
st.audio(audio_bytes, format='audio/mp3')
|
207 |
+
st.markdown(get_binary_file_downloader_html("lang.mp3", 'Audio File'), unsafe_allow_html=True)
|
208 |
+
except Exception as e:
|
209 |
+
st.error(e)
|
helper.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
from urlextract import URLExtract
|
3 |
+
from collections import Counter
|
4 |
+
from wordcloud import WordCloud, STOPWORDS ,ImageColorGenerator
|
5 |
+
import pandas as pd
|
6 |
+
import matplotlib.pylab as plt
|
7 |
+
import PIL.Image
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
extract=URLExtract()
|
11 |
+
def fetch_stats(selected_user,df):
|
12 |
+
|
13 |
+
if selected_user!= "Group analysis":
|
14 |
+
df=df[df['users']==selected_user]
|
15 |
+
num_messages = df.shape[0]
|
16 |
+
words = []
|
17 |
+
for message in df['message']:
|
18 |
+
words.extend(message.split())
|
19 |
+
|
20 |
+
|
21 |
+
links=[]
|
22 |
+
for message in df['message']:
|
23 |
+
links.extend(extract.find_urls(message))
|
24 |
+
|
25 |
+
return num_messages, len(words),len(links)
|
26 |
+
|
27 |
+
def most_busy_users(df):
|
28 |
+
x = df['users'].value_counts().head()
|
29 |
+
df=round((df['users'].value_counts() / df.shape[0]) * 100, 2).reset_index().rename(
|
30 |
+
columns={'index': 'name', 'user': 'percent'})
|
31 |
+
return x,df
|
32 |
+
|
33 |
+
def most_common_words(selected_user,df):
|
34 |
+
f = open('stop_hinglish.txt', 'r')
|
35 |
+
stop_words = f.read()
|
36 |
+
|
37 |
+
if selected_user != "Group analysis":
|
38 |
+
df = df[df['users'] == selected_user]
|
39 |
+
temp = df[df['users'] != 'group_notification']
|
40 |
+
temp = temp[temp['message'] != '<Media omitted>\n']
|
41 |
+
|
42 |
+
words = []
|
43 |
+
|
44 |
+
for message in temp['message']:
|
45 |
+
for word in message.lower().split():
|
46 |
+
if word not in stop_words:
|
47 |
+
words.append(word)
|
48 |
+
most_common_df=pd.DataFrame(Counter(words).most_common(30))
|
49 |
+
return most_common_df
|
50 |
+
|
51 |
+
def positive_word_cloud(selected_user,df):
|
52 |
+
if selected_user != "Group analysis":
|
53 |
+
df = df[df['users'] == selected_user]
|
54 |
+
|
55 |
+
pos_word = df[df['roberta_pos'] > 0.5]
|
56 |
+
pos_word = pos_word.pop('message')
|
57 |
+
pos_word_df = pd.DataFrame(pos_word)
|
58 |
+
stopwords = set(STOPWORDS)
|
59 |
+
mask = np.array(PIL.Image.open('wcc.png'))
|
60 |
+
|
61 |
+
# wordcloud
|
62 |
+
wordcloud = WordCloud(stopwords=stopwords, mask=mask, background_color="White").generate(
|
63 |
+
''.join(pos_word_df['message']))
|
64 |
+
plt.figure(figsize=(20, 10), facecolor='k')
|
65 |
+
plt.imshow(wordcloud, interpolation='bilinear')
|
66 |
+
plt.show()
|
67 |
+
|
68 |
+
return wordcloud
|
language.xlsx
ADDED
Binary file (28.4 kB). View file
|
|
preprocessor.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import re
|
3 |
+
from textblob import TextBlob
|
4 |
+
import numpy as np
|
5 |
+
import nltk
|
6 |
+
import nltk.data
|
7 |
+
from nltk.sentiment.vader import SentimentIntensityAnalyzer
|
8 |
+
from transformers import AutoTokenizer
|
9 |
+
from transformers import AutoModelForSequenceClassification
|
10 |
+
from scipy.special import softmax
|
11 |
+
from tqdm.notebook import tqdm
|
12 |
+
sia=SentimentIntensityAnalyzer()
|
13 |
+
nltk.download('vader_lexicon')
|
14 |
+
|
15 |
+
def preprocess(data):
|
16 |
+
pattern ='\d{1,2}/\d{1,2}/\d{2,4},\s\d{1,2}:\d{2}\s-\s'
|
17 |
+
|
18 |
+
messages = re.split(pattern, data)[1:]
|
19 |
+
dates = re.findall(pattern, data)
|
20 |
+
df = pd.DataFrame({'user_message': messages, 'message_date': dates})
|
21 |
+
df['message_date'] = pd.to_datetime(df['message_date'], format='%m/%d/%y, %H:%M - ')
|
22 |
+
df.rename(columns={'message_date': 'date'}, inplace=True)
|
23 |
+
users = []
|
24 |
+
messages = []
|
25 |
+
for message in df['user_message']:
|
26 |
+
entry = re.split('([\w\W]+?):\s', message)
|
27 |
+
|
28 |
+
if entry[1:]:
|
29 |
+
users.append(entry[1])
|
30 |
+
messages.append(entry[2])
|
31 |
+
|
32 |
+
else:
|
33 |
+
users.append('group_notification')
|
34 |
+
messages.append(entry[0])
|
35 |
+
df['users'] = users
|
36 |
+
df['message'] = messages
|
37 |
+
df.drop(columns=['user_message'], inplace=True)
|
38 |
+
df['year'] = df['date'].dt.year
|
39 |
+
df['day'] = df['date'].dt.day
|
40 |
+
df['hour'] = df['date'].dt.hour
|
41 |
+
df['minute'] = df['date'].dt.minute
|
42 |
+
df['Day_name'] = df['date'].dt.day_name()
|
43 |
+
df['Month_name'] = df['date'].dt.month_name()
|
44 |
+
|
45 |
+
temp = df[df['users'] != 'group_notification']
|
46 |
+
temp = temp[temp['message'] != '<Media omitted>\n']
|
47 |
+
temp.replace("", np.nan, inplace=True)
|
48 |
+
temp = temp.dropna()
|
49 |
+
|
50 |
+
def cleanTxt(text):
|
51 |
+
text = re.sub(r'@[A-Za-z0-9]+', '', text)
|
52 |
+
text = re.sub(r'#', '', text)
|
53 |
+
text = text.replace('\n', "")
|
54 |
+
return text
|
55 |
+
|
56 |
+
temp['message'] = temp['message'].apply(cleanTxt)
|
57 |
+
temp['users'] = temp['users'].apply(cleanTxt)
|
58 |
+
|
59 |
+
res = {}
|
60 |
+
for i, row in tqdm(temp.iterrows(), total=len(temp)):
|
61 |
+
text = row['message']
|
62 |
+
myid = row['users']
|
63 |
+
res[myid] = sia.polarity_scores(text)
|
64 |
+
|
65 |
+
vaders = pd.DataFrame(res).T
|
66 |
+
vaders = vaders.reset_index().rename(columns={'index': 'users'})
|
67 |
+
vaders = vaders.merge(temp, how="right")
|
68 |
+
|
69 |
+
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment"
|
70 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
71 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
72 |
+
|
73 |
+
def polarity_scores_roberts(example):
|
74 |
+
encoded_text = tokenizer(example, return_tensors="pt")
|
75 |
+
output = model(**encoded_text)
|
76 |
+
scores = output[0][0].detach().numpy()
|
77 |
+
scores = softmax(scores)
|
78 |
+
scores_dict = {
|
79 |
+
'roberta_neg': scores[0],
|
80 |
+
'roberta_neu': scores[1],
|
81 |
+
'roberta_pos': scores[2]
|
82 |
+
|
83 |
+
}
|
84 |
+
return scores_dict
|
85 |
+
|
86 |
+
res = {}
|
87 |
+
for i, row in tqdm(vaders.iterrows(), total=len(vaders)):
|
88 |
+
try:
|
89 |
+
text = row['message']
|
90 |
+
myid = row['users']
|
91 |
+
vader_result = sia.polarity_scores(text)
|
92 |
+
vader_result_rename = {}
|
93 |
+
for key, value in vader_result.items():
|
94 |
+
vader_result_rename[f"vader_{key}"] = value
|
95 |
+
roberta_result = polarity_scores_roberts(text)
|
96 |
+
both = {**vader_result, **roberta_result}
|
97 |
+
res[myid] = both
|
98 |
+
except RuntimeError:
|
99 |
+
print(f"Broke for id {myid}")
|
100 |
+
|
101 |
+
results_df = pd.DataFrame(res).T
|
102 |
+
results_df = results_df.reset_index().rename(columns={'index': 'users'})
|
103 |
+
results_df = results_df.merge(vaders, how="right")
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
def getSubjectivity(text):
|
108 |
+
return TextBlob(text).sentiment.subjectivity
|
109 |
+
|
110 |
+
def getPolarity(text):
|
111 |
+
return TextBlob(text).sentiment.polarity
|
112 |
+
|
113 |
+
results_df['Subjectivity'] = results_df['message'].apply(getSubjectivity)
|
114 |
+
results_df['Polarity'] = results_df['message'].apply(getPolarity)
|
115 |
+
|
116 |
+
def getAnalysis(score):
|
117 |
+
if score < 0:
|
118 |
+
return 'Negative'
|
119 |
+
if score == 0:
|
120 |
+
return 'Neutral'
|
121 |
+
else:
|
122 |
+
return 'Positive'
|
123 |
+
|
124 |
+
results_df['Analysis'] = results_df['Polarity'].apply(getAnalysis)
|
125 |
+
|
126 |
+
|
127 |
+
return results_df
|
stop_hinglish.txt
ADDED
@@ -0,0 +1,1055 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.
|
2 |
+
..
|
3 |
+
...
|
4 |
+
?
|
5 |
+
-
|
6 |
+
--
|
7 |
+
1
|
8 |
+
2
|
9 |
+
3
|
10 |
+
4
|
11 |
+
5
|
12 |
+
6
|
13 |
+
7
|
14 |
+
8
|
15 |
+
9
|
16 |
+
0
|
17 |
+
a
|
18 |
+
aadi
|
19 |
+
aaj
|
20 |
+
aap
|
21 |
+
aapne
|
22 |
+
aata
|
23 |
+
aati
|
24 |
+
aaya
|
25 |
+
aaye
|
26 |
+
ab
|
27 |
+
abbe
|
28 |
+
abbey
|
29 |
+
abe
|
30 |
+
abhi
|
31 |
+
able
|
32 |
+
about
|
33 |
+
above
|
34 |
+
accha
|
35 |
+
according
|
36 |
+
accordingly
|
37 |
+
acha
|
38 |
+
achcha
|
39 |
+
across
|
40 |
+
actually
|
41 |
+
after
|
42 |
+
afterwards
|
43 |
+
again
|
44 |
+
against
|
45 |
+
agar
|
46 |
+
ain
|
47 |
+
aint
|
48 |
+
ain't
|
49 |
+
aisa
|
50 |
+
aise
|
51 |
+
aisi
|
52 |
+
alag
|
53 |
+
all
|
54 |
+
allow
|
55 |
+
allows
|
56 |
+
almost
|
57 |
+
alone
|
58 |
+
along
|
59 |
+
already
|
60 |
+
also
|
61 |
+
although
|
62 |
+
always
|
63 |
+
am
|
64 |
+
among
|
65 |
+
amongst
|
66 |
+
an
|
67 |
+
and
|
68 |
+
andar
|
69 |
+
another
|
70 |
+
any
|
71 |
+
anybody
|
72 |
+
anyhow
|
73 |
+
anyone
|
74 |
+
anything
|
75 |
+
anyway
|
76 |
+
anyways
|
77 |
+
anywhere
|
78 |
+
ap
|
79 |
+
apan
|
80 |
+
apart
|
81 |
+
apna
|
82 |
+
apnaa
|
83 |
+
apne
|
84 |
+
apni
|
85 |
+
appear
|
86 |
+
are
|
87 |
+
aren
|
88 |
+
arent
|
89 |
+
aren't
|
90 |
+
around
|
91 |
+
arre
|
92 |
+
as
|
93 |
+
aside
|
94 |
+
ask
|
95 |
+
asking
|
96 |
+
at
|
97 |
+
aur
|
98 |
+
avum
|
99 |
+
aya
|
100 |
+
aye
|
101 |
+
baad
|
102 |
+
baar
|
103 |
+
bad
|
104 |
+
bahut
|
105 |
+
bana
|
106 |
+
banae
|
107 |
+
banai
|
108 |
+
banao
|
109 |
+
banaya
|
110 |
+
banaye
|
111 |
+
banayi
|
112 |
+
banda
|
113 |
+
bande
|
114 |
+
bandi
|
115 |
+
bane
|
116 |
+
bani
|
117 |
+
bas
|
118 |
+
bata
|
119 |
+
batao
|
120 |
+
bc
|
121 |
+
be
|
122 |
+
became
|
123 |
+
because
|
124 |
+
become
|
125 |
+
becomes
|
126 |
+
becoming
|
127 |
+
been
|
128 |
+
before
|
129 |
+
beforehand
|
130 |
+
behind
|
131 |
+
being
|
132 |
+
below
|
133 |
+
beside
|
134 |
+
besides
|
135 |
+
best
|
136 |
+
better
|
137 |
+
between
|
138 |
+
beyond
|
139 |
+
bhai
|
140 |
+
bheetar
|
141 |
+
bhi
|
142 |
+
bhitar
|
143 |
+
bht
|
144 |
+
bilkul
|
145 |
+
bohot
|
146 |
+
bol
|
147 |
+
bola
|
148 |
+
bole
|
149 |
+
boli
|
150 |
+
bolo
|
151 |
+
bolta
|
152 |
+
bolte
|
153 |
+
bolti
|
154 |
+
both
|
155 |
+
brief
|
156 |
+
bro
|
157 |
+
btw
|
158 |
+
but
|
159 |
+
by
|
160 |
+
came
|
161 |
+
can
|
162 |
+
cannot
|
163 |
+
cant
|
164 |
+
can't
|
165 |
+
cause
|
166 |
+
causes
|
167 |
+
certain
|
168 |
+
certainly
|
169 |
+
chahiye
|
170 |
+
chaiye
|
171 |
+
chal
|
172 |
+
chalega
|
173 |
+
chhaiye
|
174 |
+
clearly
|
175 |
+
c'mon
|
176 |
+
com
|
177 |
+
come
|
178 |
+
comes
|
179 |
+
could
|
180 |
+
couldn
|
181 |
+
couldnt
|
182 |
+
couldn't
|
183 |
+
d
|
184 |
+
de
|
185 |
+
dede
|
186 |
+
dega
|
187 |
+
degi
|
188 |
+
dekh
|
189 |
+
dekha
|
190 |
+
dekhe
|
191 |
+
dekhi
|
192 |
+
dekho
|
193 |
+
denge
|
194 |
+
dhang
|
195 |
+
di
|
196 |
+
did
|
197 |
+
didn
|
198 |
+
didnt
|
199 |
+
didn't
|
200 |
+
dijiye
|
201 |
+
diya
|
202 |
+
diyaa
|
203 |
+
diye
|
204 |
+
diyo
|
205 |
+
do
|
206 |
+
does
|
207 |
+
doesn
|
208 |
+
doesnt
|
209 |
+
doesn't
|
210 |
+
doing
|
211 |
+
done
|
212 |
+
dono
|
213 |
+
dont
|
214 |
+
don't
|
215 |
+
doosra
|
216 |
+
doosre
|
217 |
+
down
|
218 |
+
downwards
|
219 |
+
dude
|
220 |
+
dunga
|
221 |
+
dungi
|
222 |
+
during
|
223 |
+
dusra
|
224 |
+
dusre
|
225 |
+
dusri
|
226 |
+
dvaara
|
227 |
+
dvara
|
228 |
+
dwaara
|
229 |
+
dwara
|
230 |
+
each
|
231 |
+
edu
|
232 |
+
eg
|
233 |
+
eight
|
234 |
+
either
|
235 |
+
ek
|
236 |
+
else
|
237 |
+
elsewhere
|
238 |
+
enough
|
239 |
+
etc
|
240 |
+
even
|
241 |
+
ever
|
242 |
+
every
|
243 |
+
everybody
|
244 |
+
everyone
|
245 |
+
everything
|
246 |
+
everywhere
|
247 |
+
ex
|
248 |
+
exactly
|
249 |
+
example
|
250 |
+
except
|
251 |
+
far
|
252 |
+
few
|
253 |
+
fifth
|
254 |
+
fir
|
255 |
+
first
|
256 |
+
five
|
257 |
+
followed
|
258 |
+
following
|
259 |
+
follows
|
260 |
+
for
|
261 |
+
forth
|
262 |
+
four
|
263 |
+
from
|
264 |
+
further
|
265 |
+
furthermore
|
266 |
+
gaya
|
267 |
+
gaye
|
268 |
+
gayi
|
269 |
+
get
|
270 |
+
gets
|
271 |
+
getting
|
272 |
+
ghar
|
273 |
+
given
|
274 |
+
gives
|
275 |
+
go
|
276 |
+
goes
|
277 |
+
going
|
278 |
+
gone
|
279 |
+
good
|
280 |
+
got
|
281 |
+
gotten
|
282 |
+
greetings
|
283 |
+
guys
|
284 |
+
haan
|
285 |
+
had
|
286 |
+
hadd
|
287 |
+
hadn
|
288 |
+
hadnt
|
289 |
+
hadn't
|
290 |
+
hai
|
291 |
+
hain
|
292 |
+
hamara
|
293 |
+
hamare
|
294 |
+
hamari
|
295 |
+
hamne
|
296 |
+
han
|
297 |
+
happens
|
298 |
+
har
|
299 |
+
hardly
|
300 |
+
has
|
301 |
+
hasn
|
302 |
+
hasnt
|
303 |
+
hasn't
|
304 |
+
have
|
305 |
+
haven
|
306 |
+
havent
|
307 |
+
haven't
|
308 |
+
having
|
309 |
+
he
|
310 |
+
hello
|
311 |
+
help
|
312 |
+
hence
|
313 |
+
her
|
314 |
+
here
|
315 |
+
hereafter
|
316 |
+
hereby
|
317 |
+
herein
|
318 |
+
here's
|
319 |
+
hereupon
|
320 |
+
hers
|
321 |
+
herself
|
322 |
+
he's
|
323 |
+
hi
|
324 |
+
him
|
325 |
+
himself
|
326 |
+
his
|
327 |
+
hither
|
328 |
+
hm
|
329 |
+
hmm
|
330 |
+
ho
|
331 |
+
hoga
|
332 |
+
hoge
|
333 |
+
hogi
|
334 |
+
hona
|
335 |
+
honaa
|
336 |
+
hone
|
337 |
+
honge
|
338 |
+
hongi
|
339 |
+
honi
|
340 |
+
hopefully
|
341 |
+
hota
|
342 |
+
hotaa
|
343 |
+
hote
|
344 |
+
hoti
|
345 |
+
how
|
346 |
+
howbeit
|
347 |
+
however
|
348 |
+
hoyenge
|
349 |
+
hoyengi
|
350 |
+
hu
|
351 |
+
hua
|
352 |
+
hue
|
353 |
+
huh
|
354 |
+
hui
|
355 |
+
hum
|
356 |
+
humein
|
357 |
+
humne
|
358 |
+
hun
|
359 |
+
huye
|
360 |
+
huyi
|
361 |
+
i
|
362 |
+
i'd
|
363 |
+
idk
|
364 |
+
ie
|
365 |
+
if
|
366 |
+
i'll
|
367 |
+
i'm
|
368 |
+
imo
|
369 |
+
in
|
370 |
+
inasmuch
|
371 |
+
inc
|
372 |
+
inhe
|
373 |
+
inhi
|
374 |
+
inho
|
375 |
+
inka
|
376 |
+
inkaa
|
377 |
+
inke
|
378 |
+
inki
|
379 |
+
inn
|
380 |
+
inner
|
381 |
+
inse
|
382 |
+
insofar
|
383 |
+
into
|
384 |
+
inward
|
385 |
+
is
|
386 |
+
ise
|
387 |
+
isi
|
388 |
+
iska
|
389 |
+
iskaa
|
390 |
+
iske
|
391 |
+
iski
|
392 |
+
isme
|
393 |
+
isn
|
394 |
+
isne
|
395 |
+
isnt
|
396 |
+
isn't
|
397 |
+
iss
|
398 |
+
isse
|
399 |
+
issi
|
400 |
+
isski
|
401 |
+
it
|
402 |
+
it'd
|
403 |
+
it'll
|
404 |
+
itna
|
405 |
+
itne
|
406 |
+
itni
|
407 |
+
itno
|
408 |
+
its
|
409 |
+
it's
|
410 |
+
itself
|
411 |
+
ityaadi
|
412 |
+
ityadi
|
413 |
+
i've
|
414 |
+
ja
|
415 |
+
jaa
|
416 |
+
jab
|
417 |
+
jabh
|
418 |
+
jaha
|
419 |
+
jahaan
|
420 |
+
jahan
|
421 |
+
jaisa
|
422 |
+
jaise
|
423 |
+
jaisi
|
424 |
+
jata
|
425 |
+
jayega
|
426 |
+
jidhar
|
427 |
+
jin
|
428 |
+
jinhe
|
429 |
+
jinhi
|
430 |
+
jinho
|
431 |
+
jinhone
|
432 |
+
jinka
|
433 |
+
jinke
|
434 |
+
jinki
|
435 |
+
jinn
|
436 |
+
jis
|
437 |
+
jise
|
438 |
+
jiska
|
439 |
+
jiske
|
440 |
+
jiski
|
441 |
+
jisme
|
442 |
+
jiss
|
443 |
+
jisse
|
444 |
+
jitna
|
445 |
+
jitne
|
446 |
+
jitni
|
447 |
+
jo
|
448 |
+
just
|
449 |
+
jyaada
|
450 |
+
jyada
|
451 |
+
k
|
452 |
+
ka
|
453 |
+
kaafi
|
454 |
+
kab
|
455 |
+
kabhi
|
456 |
+
kafi
|
457 |
+
kaha
|
458 |
+
kahaa
|
459 |
+
kahaan
|
460 |
+
kahan
|
461 |
+
kahi
|
462 |
+
kahin
|
463 |
+
kahte
|
464 |
+
kaisa
|
465 |
+
kaise
|
466 |
+
kaisi
|
467 |
+
kal
|
468 |
+
kam
|
469 |
+
kar
|
470 |
+
kara
|
471 |
+
kare
|
472 |
+
karega
|
473 |
+
karegi
|
474 |
+
karen
|
475 |
+
karenge
|
476 |
+
kari
|
477 |
+
karke
|
478 |
+
karna
|
479 |
+
karne
|
480 |
+
karni
|
481 |
+
karo
|
482 |
+
karta
|
483 |
+
karte
|
484 |
+
karti
|
485 |
+
karu
|
486 |
+
karun
|
487 |
+
karunga
|
488 |
+
karungi
|
489 |
+
kaun
|
490 |
+
kaunsa
|
491 |
+
kayi
|
492 |
+
kch
|
493 |
+
ke
|
494 |
+
keep
|
495 |
+
keeps
|
496 |
+
keh
|
497 |
+
kehte
|
498 |
+
kept
|
499 |
+
khud
|
500 |
+
ki
|
501 |
+
kin
|
502 |
+
kine
|
503 |
+
kinhe
|
504 |
+
kinho
|
505 |
+
kinka
|
506 |
+
kinke
|
507 |
+
kinki
|
508 |
+
kinko
|
509 |
+
kinn
|
510 |
+
kino
|
511 |
+
kis
|
512 |
+
kise
|
513 |
+
kisi
|
514 |
+
kiska
|
515 |
+
kiske
|
516 |
+
kiski
|
517 |
+
kisko
|
518 |
+
kisliye
|
519 |
+
kisne
|
520 |
+
kitna
|
521 |
+
kitne
|
522 |
+
kitni
|
523 |
+
kitno
|
524 |
+
kiya
|
525 |
+
kiye
|
526 |
+
know
|
527 |
+
known
|
528 |
+
knows
|
529 |
+
ko
|
530 |
+
koi
|
531 |
+
kon
|
532 |
+
konsa
|
533 |
+
koyi
|
534 |
+
krna
|
535 |
+
krne
|
536 |
+
kuch
|
537 |
+
kuchch
|
538 |
+
kuchh
|
539 |
+
kul
|
540 |
+
kull
|
541 |
+
kya
|
542 |
+
kyaa
|
543 |
+
kyu
|
544 |
+
kyuki
|
545 |
+
kyun
|
546 |
+
kyunki
|
547 |
+
lagta
|
548 |
+
lagte
|
549 |
+
lagti
|
550 |
+
last
|
551 |
+
lately
|
552 |
+
later
|
553 |
+
le
|
554 |
+
least
|
555 |
+
lekar
|
556 |
+
lekin
|
557 |
+
less
|
558 |
+
lest
|
559 |
+
let
|
560 |
+
let's
|
561 |
+
li
|
562 |
+
like
|
563 |
+
liked
|
564 |
+
likely
|
565 |
+
little
|
566 |
+
liya
|
567 |
+
liye
|
568 |
+
ll
|
569 |
+
lo
|
570 |
+
log
|
571 |
+
logon
|
572 |
+
lol
|
573 |
+
look
|
574 |
+
looking
|
575 |
+
looks
|
576 |
+
ltd
|
577 |
+
lunga
|
578 |
+
m
|
579 |
+
maan
|
580 |
+
maana
|
581 |
+
maane
|
582 |
+
maani
|
583 |
+
maano
|
584 |
+
magar
|
585 |
+
mai
|
586 |
+
main
|
587 |
+
maine
|
588 |
+
mainly
|
589 |
+
mana
|
590 |
+
mane
|
591 |
+
mani
|
592 |
+
mano
|
593 |
+
many
|
594 |
+
mat
|
595 |
+
may
|
596 |
+
maybe
|
597 |
+
me
|
598 |
+
mean
|
599 |
+
meanwhile
|
600 |
+
mein
|
601 |
+
mera
|
602 |
+
mere
|
603 |
+
merely
|
604 |
+
meri
|
605 |
+
might
|
606 |
+
mightn
|
607 |
+
mightnt
|
608 |
+
mightn't
|
609 |
+
mil
|
610 |
+
mjhe
|
611 |
+
more
|
612 |
+
moreover
|
613 |
+
most
|
614 |
+
mostly
|
615 |
+
much
|
616 |
+
mujhe
|
617 |
+
must
|
618 |
+
mustn
|
619 |
+
mustnt
|
620 |
+
mustn't
|
621 |
+
my
|
622 |
+
myself
|
623 |
+
na
|
624 |
+
naa
|
625 |
+
naah
|
626 |
+
nahi
|
627 |
+
nahin
|
628 |
+
nai
|
629 |
+
name
|
630 |
+
namely
|
631 |
+
nd
|
632 |
+
ne
|
633 |
+
near
|
634 |
+
nearly
|
635 |
+
necessary
|
636 |
+
neeche
|
637 |
+
need
|
638 |
+
needn
|
639 |
+
neednt
|
640 |
+
needn't
|
641 |
+
needs
|
642 |
+
neither
|
643 |
+
never
|
644 |
+
nevertheless
|
645 |
+
new
|
646 |
+
next
|
647 |
+
nhi
|
648 |
+
nine
|
649 |
+
no
|
650 |
+
nobody
|
651 |
+
non
|
652 |
+
none
|
653 |
+
noone
|
654 |
+
nope
|
655 |
+
nor
|
656 |
+
normally
|
657 |
+
not
|
658 |
+
nothing
|
659 |
+
novel
|
660 |
+
now
|
661 |
+
nowhere
|
662 |
+
o
|
663 |
+
obviously
|
664 |
+
of
|
665 |
+
off
|
666 |
+
often
|
667 |
+
oh
|
668 |
+
ok
|
669 |
+
okay
|
670 |
+
old
|
671 |
+
on
|
672 |
+
once
|
673 |
+
one
|
674 |
+
ones
|
675 |
+
only
|
676 |
+
onto
|
677 |
+
or
|
678 |
+
other
|
679 |
+
others
|
680 |
+
otherwise
|
681 |
+
ought
|
682 |
+
our
|
683 |
+
ours
|
684 |
+
ourselves
|
685 |
+
out
|
686 |
+
outside
|
687 |
+
over
|
688 |
+
overall
|
689 |
+
own
|
690 |
+
par
|
691 |
+
pata
|
692 |
+
pe
|
693 |
+
pehla
|
694 |
+
pehle
|
695 |
+
pehli
|
696 |
+
people
|
697 |
+
per
|
698 |
+
perhaps
|
699 |
+
phla
|
700 |
+
phle
|
701 |
+
phli
|
702 |
+
placed
|
703 |
+
please
|
704 |
+
plus
|
705 |
+
poora
|
706 |
+
poori
|
707 |
+
provides
|
708 |
+
pura
|
709 |
+
puri
|
710 |
+
q
|
711 |
+
que
|
712 |
+
quite
|
713 |
+
raha
|
714 |
+
rahaa
|
715 |
+
rahe
|
716 |
+
rahi
|
717 |
+
rakh
|
718 |
+
rakha
|
719 |
+
rakhe
|
720 |
+
rakhen
|
721 |
+
rakhi
|
722 |
+
rakho
|
723 |
+
rather
|
724 |
+
re
|
725 |
+
really
|
726 |
+
reasonably
|
727 |
+
regarding
|
728 |
+
regardless
|
729 |
+
regards
|
730 |
+
rehte
|
731 |
+
rha
|
732 |
+
rhaa
|
733 |
+
rhe
|
734 |
+
rhi
|
735 |
+
ri
|
736 |
+
right
|
737 |
+
s
|
738 |
+
sa
|
739 |
+
saara
|
740 |
+
saare
|
741 |
+
saath
|
742 |
+
sab
|
743 |
+
sabhi
|
744 |
+
sabse
|
745 |
+
sahi
|
746 |
+
said
|
747 |
+
sakta
|
748 |
+
saktaa
|
749 |
+
sakte
|
750 |
+
sakti
|
751 |
+
same
|
752 |
+
sang
|
753 |
+
sara
|
754 |
+
sath
|
755 |
+
saw
|
756 |
+
say
|
757 |
+
saying
|
758 |
+
says
|
759 |
+
se
|
760 |
+
second
|
761 |
+
secondly
|
762 |
+
see
|
763 |
+
seeing
|
764 |
+
seem
|
765 |
+
seemed
|
766 |
+
seeming
|
767 |
+
seems
|
768 |
+
seen
|
769 |
+
self
|
770 |
+
selves
|
771 |
+
sensible
|
772 |
+
sent
|
773 |
+
serious
|
774 |
+
seriously
|
775 |
+
seven
|
776 |
+
several
|
777 |
+
shall
|
778 |
+
shan
|
779 |
+
shant
|
780 |
+
shan't
|
781 |
+
she
|
782 |
+
she's
|
783 |
+
should
|
784 |
+
shouldn
|
785 |
+
shouldnt
|
786 |
+
shouldn't
|
787 |
+
should've
|
788 |
+
si
|
789 |
+
sir
|
790 |
+
sir.
|
791 |
+
since
|
792 |
+
six
|
793 |
+
so
|
794 |
+
soch
|
795 |
+
some
|
796 |
+
somebody
|
797 |
+
somehow
|
798 |
+
someone
|
799 |
+
something
|
800 |
+
sometime
|
801 |
+
sometimes
|
802 |
+
somewhat
|
803 |
+
somewhere
|
804 |
+
soon
|
805 |
+
still
|
806 |
+
sub
|
807 |
+
such
|
808 |
+
sup
|
809 |
+
sure
|
810 |
+
t
|
811 |
+
tab
|
812 |
+
tabh
|
813 |
+
tak
|
814 |
+
take
|
815 |
+
taken
|
816 |
+
tarah
|
817 |
+
teen
|
818 |
+
teeno
|
819 |
+
teesra
|
820 |
+
teesre
|
821 |
+
teesri
|
822 |
+
tell
|
823 |
+
tends
|
824 |
+
tera
|
825 |
+
tere
|
826 |
+
teri
|
827 |
+
th
|
828 |
+
tha
|
829 |
+
than
|
830 |
+
thank
|
831 |
+
thanks
|
832 |
+
thanx
|
833 |
+
that
|
834 |
+
that'll
|
835 |
+
thats
|
836 |
+
that's
|
837 |
+
the
|
838 |
+
theek
|
839 |
+
their
|
840 |
+
theirs
|
841 |
+
them
|
842 |
+
themselves
|
843 |
+
then
|
844 |
+
thence
|
845 |
+
there
|
846 |
+
thereafter
|
847 |
+
thereby
|
848 |
+
therefore
|
849 |
+
therein
|
850 |
+
theres
|
851 |
+
there's
|
852 |
+
thereupon
|
853 |
+
these
|
854 |
+
they
|
855 |
+
they'd
|
856 |
+
they'll
|
857 |
+
they're
|
858 |
+
they've
|
859 |
+
thi
|
860 |
+
thik
|
861 |
+
thing
|
862 |
+
think
|
863 |
+
thinking
|
864 |
+
third
|
865 |
+
this
|
866 |
+
tho
|
867 |
+
thoda
|
868 |
+
thodi
|
869 |
+
thorough
|
870 |
+
thoroughly
|
871 |
+
those
|
872 |
+
though
|
873 |
+
thought
|
874 |
+
three
|
875 |
+
through
|
876 |
+
throughout
|
877 |
+
thru
|
878 |
+
thus
|
879 |
+
tjhe
|
880 |
+
to
|
881 |
+
together
|
882 |
+
toh
|
883 |
+
too
|
884 |
+
took
|
885 |
+
toward
|
886 |
+
towards
|
887 |
+
tried
|
888 |
+
tries
|
889 |
+
true
|
890 |
+
truly
|
891 |
+
try
|
892 |
+
trying
|
893 |
+
tu
|
894 |
+
tujhe
|
895 |
+
tum
|
896 |
+
tumhara
|
897 |
+
tumhare
|
898 |
+
tumhari
|
899 |
+
tune
|
900 |
+
twice
|
901 |
+
two
|
902 |
+
um
|
903 |
+
umm
|
904 |
+
un
|
905 |
+
under
|
906 |
+
unhe
|
907 |
+
unhi
|
908 |
+
unho
|
909 |
+
unhone
|
910 |
+
unka
|
911 |
+
unkaa
|
912 |
+
unke
|
913 |
+
unki
|
914 |
+
unko
|
915 |
+
unless
|
916 |
+
unlikely
|
917 |
+
unn
|
918 |
+
unse
|
919 |
+
until
|
920 |
+
unto
|
921 |
+
up
|
922 |
+
upar
|
923 |
+
upon
|
924 |
+
us
|
925 |
+
use
|
926 |
+
used
|
927 |
+
useful
|
928 |
+
uses
|
929 |
+
usi
|
930 |
+
using
|
931 |
+
uska
|
932 |
+
uske
|
933 |
+
usne
|
934 |
+
uss
|
935 |
+
usse
|
936 |
+
ussi
|
937 |
+
usually
|
938 |
+
vaala
|
939 |
+
vaale
|
940 |
+
vaali
|
941 |
+
vahaan
|
942 |
+
vahan
|
943 |
+
vahi
|
944 |
+
vahin
|
945 |
+
vaisa
|
946 |
+
vaise
|
947 |
+
vaisi
|
948 |
+
vala
|
949 |
+
vale
|
950 |
+
vali
|
951 |
+
various
|
952 |
+
ve
|
953 |
+
very
|
954 |
+
via
|
955 |
+
viz
|
956 |
+
vo
|
957 |
+
waala
|
958 |
+
waale
|
959 |
+
waali
|
960 |
+
wagaira
|
961 |
+
wagairah
|
962 |
+
wagerah
|
963 |
+
waha
|
964 |
+
wahaan
|
965 |
+
wahan
|
966 |
+
wahi
|
967 |
+
wahin
|
968 |
+
waisa
|
969 |
+
waise
|
970 |
+
waisi
|
971 |
+
wala
|
972 |
+
wale
|
973 |
+
wali
|
974 |
+
want
|
975 |
+
wants
|
976 |
+
was
|
977 |
+
wasn
|
978 |
+
wasnt
|
979 |
+
wasn't
|
980 |
+
way
|
981 |
+
we
|
982 |
+
we'd
|
983 |
+
well
|
984 |
+
we'll
|
985 |
+
went
|
986 |
+
were
|
987 |
+
we're
|
988 |
+
weren
|
989 |
+
werent
|
990 |
+
weren't
|
991 |
+
we've
|
992 |
+
what
|
993 |
+
whatever
|
994 |
+
what's
|
995 |
+
when
|
996 |
+
whence
|
997 |
+
whenever
|
998 |
+
where
|
999 |
+
whereafter
|
1000 |
+
whereas
|
1001 |
+
whereby
|
1002 |
+
wherein
|
1003 |
+
where's
|
1004 |
+
whereupon
|
1005 |
+
wherever
|
1006 |
+
whether
|
1007 |
+
which
|
1008 |
+
while
|
1009 |
+
who
|
1010 |
+
whoever
|
1011 |
+
whole
|
1012 |
+
whom
|
1013 |
+
who's
|
1014 |
+
whose
|
1015 |
+
why
|
1016 |
+
will
|
1017 |
+
willing
|
1018 |
+
with
|
1019 |
+
within
|
1020 |
+
without
|
1021 |
+
wo
|
1022 |
+
woh
|
1023 |
+
wohi
|
1024 |
+
won
|
1025 |
+
wont
|
1026 |
+
won't
|
1027 |
+
would
|
1028 |
+
wouldn
|
1029 |
+
wouldnt
|
1030 |
+
wouldn't
|
1031 |
+
y
|
1032 |
+
ya
|
1033 |
+
yadi
|
1034 |
+
yah
|
1035 |
+
yaha
|
1036 |
+
yahaan
|
1037 |
+
yahan
|
1038 |
+
yahi
|
1039 |
+
yahin
|
1040 |
+
ye
|
1041 |
+
yeah
|
1042 |
+
yeh
|
1043 |
+
yehi
|
1044 |
+
yes
|
1045 |
+
yet
|
1046 |
+
you
|
1047 |
+
you'd
|
1048 |
+
you'll
|
1049 |
+
your
|
1050 |
+
you're
|
1051 |
+
yours
|
1052 |
+
yourself
|
1053 |
+
yourselves
|
1054 |
+
you've
|
1055 |
+
yup
|