Spaces:
Runtime error
Runtime error
import matplotlib.pyplot as plt | |
from urlextract import URLExtract | |
from collections import Counter | |
from wordcloud import WordCloud, STOPWORDS ,ImageColorGenerator | |
import pandas as pd | |
import matplotlib.pylab as plt | |
import PIL.Image | |
import numpy as np | |
import emoji | |
extract=URLExtract() | |
def fetch_stats(selected_user,df): | |
if selected_user!= "Group analysis": | |
df=df[df['users']==selected_user] | |
num_messages = df.shape[0] | |
words = [] | |
for message in df['message']: | |
words.extend(message.split()) | |
links=[] | |
for message in df['message']: | |
links.extend(extract.find_urls(message)) | |
return num_messages, len(words),len(links) | |
def most_busy_users(df): | |
x = df['users'].value_counts().head() | |
df=round((df['users'].value_counts() / df.shape[0]) * 100, 2).reset_index().rename( | |
columns={'index': 'name', 'user': 'percent'}) | |
return x,df | |
def most_common_words(selected_user,df): | |
f = open('stop_hinglish.txt', 'r') | |
stop_words = f.read() | |
if selected_user != "Group analysis": | |
df = df[df['users'] == selected_user] | |
temp = df[df['users'] != 'group_notification'] | |
temp = temp[temp['message'] != '<Media omitted>\n'] | |
words = [] | |
for message in temp['message']: | |
for word in message.lower().split(): | |
if word not in stop_words: | |
words.append(word) | |
most_common_df=pd.DataFrame(Counter(words).most_common(30)) | |
return most_common_df | |
def word_cloud(selected_user,df): | |
if selected_user != "Group analysis": | |
df = df[df['users'] == selected_user] | |
stopwords = set('STOPWORDS') | |
# wordcloud | |
wordcloud = WordCloud(stopwords=stopwords, background_color="Black").generate(''.join(df['message'])) | |
plt.figure(figsize=(10, 8), facecolor='k') | |
plt.imshow(wordcloud, interpolation='bilinear') | |
plt.show() | |
return wordcloud | |
def emoji_helper(selected_user,df): | |
if selected_user != "Group analysis": | |
df = df[df['users'] == selected_user] | |
emojis = [] | |
for message in df['message']: | |
emojis.extend([c for c in message if c in emoji.EMOJI_DATA.keys()]) | |
emoji_df=pd.DataFrame(Counter(emojis).most_common(len(Counter(emojis)))) | |
return emoji_df | |
def monthly_timeline(selected_user,df): | |
if selected_user != "Group analysis": | |
df = df[df['users'] == selected_user] | |
timeline = df.groupby(['year', 'Month_name', 'Month']).count()['message'].reset_index() | |
time = [] | |
for i in range(timeline.shape[0]): | |
time.append(timeline['Month_name'][i] + "-" + str(timeline['year'][i])) | |
timeline['time'] = time | |
return timeline | |
def Daily_timeline(selected_user,df): | |
if selected_user != "Group analysis": | |
df = df[df['users'] == selected_user] | |
daily_timeline = df.groupby('Date').count()['message'].reset_index() | |
return daily_timeline | |
def week_activity_map(selected_user,df): | |
if selected_user != "Group analysis": | |
df = df[df['users'] == selected_user] | |
return df['Day_name'].value_counts() | |
def month_activity_map(selected_user,df): | |
if selected_user != "Group analysis": | |
df = df[df['users'] == selected_user] | |
return df['Month_name'].value_counts() | |
def activity_heatmap(selected_user,df): | |
if selected_user != "Group analysis": | |
df = df[df['users'] == selected_user] | |
Activity_heatmap= df.pivot_table(index='Day_name', columns='period', values='message', aggfunc='count').fillna(0) | |
return Activity_heatmap | |
def pos_words(selected_user,df): | |
if selected_user != "Group analysis": | |
df = df[df['users'] == selected_user] | |
pos_word = df[df['vader_Analysis'] == 'Positive'] | |
pos_word = pos_word.pop('message') | |
return pos_word | |
def neg_words(selected_user,df): | |
if selected_user != "Group analysis": | |
df = df[df['users'] == selected_user] | |
neg_word = df[df['Analysis'] == 'Negative'] | |
neg_word = neg_word.pop('message') | |
return neg_word | |
def neu_words(selected_user,df): | |
if selected_user != "Group analysis": | |
df = df[df['users'] == selected_user] | |
neu_word = df[df['vader_Analysis'] == 'Neutral'] | |
neu_word = neu_word.pop('message') | |
return neu_word |