AutoPharmaV2 / app.py
MohammedSameerSyed's picture
Initial commit
20dcaab verified
import os
import gc
import threading
import time
import torch
import numpy as np
from PIL import Image
from datetime import datetime
import gradio as gr
# Import utility modules
from utils.text_model import generate_text_with_transformers, generate_text_with_llamacpp, check_llamacpp_available
from utils.vision_model import process_medical_image, load_vision_model
# Define models
TEXT_MODEL = "microsoft/Phi-3-mini-4k-instruct" # Smaller model for better speed
VISION_MODEL = "flaviagiammarino/medsam-vit-base"
# Initialize threading event for cancellation
cancel_event = threading.Event()
# Cache for models
vision_model_cache = {"model": None, "processor": None}
transformers_model_cache = {"model": None, "tokenizer": None}
# Check if llamacpp is available
llamacpp_available = check_llamacpp_available()
# Function for text generation
def generate_pharmaceutical_response(query, use_llamacpp=False, progress=gr.Progress()):
cancel_event.clear()
if not query.strip():
return "Please enter a question about medications or medical conditions."
# Choose generation method based on user preference and availability
if use_llamacpp and llamacpp_available:
progress(0.1, desc="Loading llama.cpp model...")
try:
result = generate_text_with_llamacpp(
query=query,
max_tokens=512,
temperature=0.7,
top_p=0.9,
cancel_event=cancel_event,
progress_callback=lambda p, d: progress(0.1 + 0.8 * p, desc=d)
)
progress(1.0, desc="Done!")
return result
except Exception as e:
return f"Error generating response with llama.cpp: {e}"
else:
# Fallback to transformers if llamacpp is not available or not chosen
progress(0.1, desc="Loading transformers model...")
try:
# Get or load model and tokenizer
if transformers_model_cache["model"] is None or transformers_model_cache["tokenizer"] is None:
from utils.text_model import load_text_model
model, tokenizer = load_text_model(TEXT_MODEL, quantize=torch.cuda.is_available())
transformers_model_cache["model"] = model
transformers_model_cache["tokenizer"] = tokenizer
else:
model = transformers_model_cache["model"]
tokenizer = transformers_model_cache["tokenizer"]
# Prepare the input with the correct format for Phi-3
inputs = tokenizer(query, return_tensors="pt", padding=True)
if torch.cuda.is_available():
inputs = {k: v.cuda() for k, v in inputs.items()}
model = model.cuda()
# Generate with updated parameters and progress tracking
progress(0.2, desc="Generating response...")
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
use_cache=False,
callback=lambda x: progress(0.2 + 0.7 * (x / 512), desc="Generating response...")
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
progress(1.0, desc="Done!")
return result
except Exception as e:
return f"Error generating response with transformers: {e}"
# Function for image analysis
def analyze_medical_image_gradio(image, progress=gr.Progress()):
if image is None:
return None, "Please upload a medical image to analyze."
progress(0.1, desc="Loading vision model...")
try:
# Get or load vision model
if vision_model_cache["model"] is None or vision_model_cache["processor"] is None:
model, processor = load_vision_model(VISION_MODEL)
vision_model_cache["model"] = model
vision_model_cache["processor"] = processor
else:
model = vision_model_cache["model"]
processor = vision_model_cache["processor"]
except Exception as e:
return None, f"Error loading vision model: {e}"
progress(0.3, desc="Processing image...")
try:
# FIX: Handle the return values correctly
result_image, metadata, analysis_text = process_medical_image(
image,
model=model,
processor=processor
)
progress(0.9, desc="Finalizing results...")
# Format the analysis text for Gradio
analysis_html = analysis_text.replace("##", "<h3>").replace("#", "</h3>")
analysis_html = analysis_html.replace("**", "<b>").replace("**", "</b>")
analysis_html = analysis_html.replace("\n\n", "<br><br>").replace("\n- ", "<br>β€’ ")
progress(1.0, desc="Done!")
return result_image, analysis_html
except Exception as e:
import traceback
error_details = traceback.format_exc()
print(f"Error analyzing image: {e}\n{error_details}")
return None, f"Error analyzing image: {e}"
# Function for clinical interpretation
def generate_clinical_interpretation(image, analysis_html, use_llamacpp=False, progress=gr.Progress()):
if image is None or not analysis_html:
return "Please analyze an image first."
# Extract information from the analysis HTML
import re
image_type = re.search(r"<b>Image Type</b>: ([^<]+)", analysis_html)
region = re.search(r"<b>Region</b>: ([^<]+)", analysis_html)
laterality = re.search(r"<b>Laterality</b>: ([^<]+)", analysis_html)
findings = re.search(r"<b>Findings</b>:[^β€’]*β€’ ([^<]+)", analysis_html)
image_type = image_type.group(1) if image_type else "Medical X-ray"
region = region.group(1) if region else "Unknown region"
laterality = laterality.group(1) if laterality else "Unknown laterality"
findings = findings.group(1) if findings else "No findings detected"
# Create a detailed prompt
prompt = f"""
Provide a detailed clinical interpretation of a {image_type} with the following characteristics:
- Segmented region: {region}
- Laterality: {laterality}
- Findings: {findings}
Describe potential clinical significance, differential diagnoses, and recommendations. Include educational information about normal anatomy in this region and common pathologies that might be found. Be thorough but concise.
"""
# Choose generation method based on user preference and availability
if use_llamacpp and llamacpp_available:
progress(0.1, desc="Loading llama.cpp model...")
try:
result = generate_text_with_llamacpp(
query=prompt,
max_tokens=768,
temperature=0.7,
top_p=0.9,
cancel_event=cancel_event,
progress_callback=lambda p, d: progress(0.1 + 0.8 * p, desc=d)
)
progress(1.0, desc="Done!")
return result
except Exception as e:
return f"Error generating interpretation with llama.cpp: {e}"
else:
# Fallback to transformers if llamacpp is not available or not chosen
progress(0.1, desc="Loading transformers model...")
try:
# Get or load model and tokenizer
if transformers_model_cache["model"] is None or transformers_model_cache["tokenizer"] is None:
from utils.text_model import load_text_model
model, tokenizer = load_text_model(TEXT_MODEL, quantize=torch.cuda.is_available())
transformers_model_cache["model"] = model
transformers_model_cache["tokenizer"] = tokenizer
else:
model = transformers_model_cache["model"]
tokenizer = transformers_model_cache["tokenizer"]
result = generate_text_with_transformers(
model=model,
tokenizer=tokenizer,
query=prompt,
max_tokens=768,
temperature=0.7,
cancel_event=cancel_event,
progress_callback=lambda p, d: progress(0.1 + 0.8 * p, desc=d)
)
progress(1.0, desc="Done!")
return result
except Exception as e:
return f"Error generating interpretation with transformers: {e}"
# Function to cancel generation
def cancel_generation():
cancel_event.set()
return "Generation cancelled."
# Create Gradio Interface
with gr.Blocks(title="AI Pharma App", theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ’Š AI Pharma Assistant")
gr.Markdown("This AI-powered application helps you access pharmaceutical information and analyze medical images.")
# Set up model choice
with gr.Accordion("Model Settings", open=False):
use_llamacpp = gr.Checkbox(
label="Use Llama.cpp for faster inference",
value=llamacpp_available,
interactive=llamacpp_available
)
if not llamacpp_available:
gr.Markdown("⚠️ Llama.cpp is not available. Using transformers backend.")
gr.Markdown("To enable llama.cpp, run: pip install llama-cpp-python --no-cache-dir")
gr.Markdown("Then run: python download_model.py")
with gr.Tab("Drug Information"):
gr.Markdown("### πŸ“‹ Drug Information Assistant")
gr.Markdown("Ask questions about medications, treatments, side effects, drug interactions, or any other pharmaceutical information.")
with gr.Row():
with gr.Column():
drug_query = gr.Textbox(
label="Type your question about medications here:",
placeholder="Example: What are the common side effects of Lisinopril? How does Metformin work?",
lines=4
)
with gr.Row():
drug_submit = gr.Button("Ask AI", variant="primary")
drug_cancel = gr.Button("Cancel", variant="secondary")
drug_response = gr.Markdown(label="AI Response")
drug_submit.click(
generate_pharmaceutical_response,
inputs=[drug_query, use_llamacpp],
outputs=drug_response
)
drug_cancel.click(
cancel_generation,
inputs=[],
outputs=drug_response
)
with gr.Tab("Medical Image Analysis"):
gr.Markdown("### πŸ” Medical Image Analyzer")
gr.Markdown("Upload medical images such as X-rays, CT scans, MRIs, ultrasound images, or other diagnostic visuals. The AI will automatically analyze important structures.")
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(
label="Upload a medical image",
type="pil"
)
image_submit = gr.Button("Analyze Image", variant="primary")
with gr.Column(scale=3):
with gr.Tabs():
with gr.TabItem("Visualization"):
image_output = gr.Image(label="Segmentation Result")
with gr.TabItem("Analysis"):
analysis_output = gr.HTML(label="Analysis Results")
with gr.Accordion("Clinical Interpretation", open=False):
interpret_button = gr.Button("Generate Clinical Interpretation")
interpretation_output = gr.Markdown()
image_submit.click(
analyze_medical_image_gradio,
inputs=[image_input],
outputs=[image_output, analysis_output]
)
interpret_button.click(
generate_clinical_interpretation,
inputs=[image_input, analysis_output, use_llamacpp],
outputs=interpretation_output
)
with gr.Accordion("System Information", open=False):
gr.Markdown(f"**Date:** {datetime.now().strftime('%Y-%m-%d')}")
gr.Markdown(f"**Device:** {'GPU' if torch.cuda.is_available() else 'CPU'}")
if torch.cuda.is_available():
gr.Markdown(f"**GPU:** {torch.cuda.get_device_name(0)}")
gr.Markdown(f"**Text Model:** {TEXT_MODEL}")
gr.Markdown(f"**Vision Model:** {VISION_MODEL}")
gr.Markdown("**Llama.cpp:** " + ("Available" if llamacpp_available else "Not available"))
gr.Markdown("""
**Note:** This application is for educational purposes only and should not be used for medical diagnosis.
The analysis provided is automated and should be reviewed by a qualified healthcare professional.
""")
gr.Markdown("""
<div style="text-align: center; margin-top: 20px; padding: 10px; border-top: 1px solid #ddd;">
<p>AI Pharma Assistant β€” Built with open-source models</p>
<p>Powered by Phi-3 and MedSAM | Β© 2025</p>
</div>
""", elem_id="footer")
# Launch the app with customization for Hugging Face Spaces
if __name__ == "__main__":
# Check if running on HF Spaces
if os.environ.get('SPACE_ID'):
demo.launch(server_name="0.0.0.0", share=False)
else:
# Local development
demo.launch(share=False)