Spaces:
Sleeping
Sleeping
import torch | |
from .feature_extraction import HRNet_FeatureExtractor | |
from .sequence_modeling import BidirectionalLSTM | |
from .dropout_layer import dropout_layer | |
from .prediction import Attention | |
import torch.nn as nn | |
# Other CNN Architectures | |
from .feature_extraction import DenseNet_FeatureExtractor, InceptionUNet_FeatureExtractor | |
from .feature_extraction import RCNN_FeatureExtractor, ResNet_FeatureExtractor | |
from .feature_extraction import ResUnet_FeatureExtractor, AttnUNet_FeatureExtractor | |
from .feature_extraction import UNet_FeatureExtractor, UNetPlusPlus_FeatureExtractor | |
from .feature_extraction import VGG_FeatureExtractor | |
# Other sequential models | |
from .sequence_modeling import LSTM, GRU, MDLSTM | |
class Text_recognization_model(nn.Module): | |
""" The constractor init the struture of the model """ | |
def __init__(self, opt): | |
super(Text_recognization_model, self).__init__() | |
# opt is the configration of the model | |
self.opt = opt | |
# The model consist of three stages | |
# FeatureExtraction, SequenceModeling and Prediction | |
self.stages = {'Feat': opt.FeatureExtraction, | |
'Seq': opt.SequenceModeling, | |
'Pred': opt.Prediction} | |
""" FeatureExtraction """ | |
# High-Resolution Network, it maintains high-resolution feature maps | |
if opt.FeatureExtraction == 'HRNet': | |
self.FeatureExtraction = HRNet_FeatureExtractor(opt.input_channel, opt.output_channel ) | |
elif opt.FeatureExtraction == 'Densenet': | |
self.FeatureExtraction = DenseNet_FeatureExtractor(opt.input_channel, opt.output_channel) | |
elif opt.FeatureExtraction == 'InceptionUnet': | |
self.FeatureExtraction = InceptionUNet_FeatureExtractor(opt.input_channel, opt.output_channel) | |
elif opt.FeatureExtraction == 'RCNN': | |
self.FeatureExtraction = RCNN_FeatureExtractor(opt.input_channel, opt.output_channel) | |
elif opt.FeatureExtraction == 'ResNet': | |
self.FeatureExtraction = ResNet_FeatureExtractor(opt.input_channel, opt.output_channel) | |
elif opt.FeatureExtraction == 'ResUnet': | |
self.FeatureExtraction = ResUnet_FeatureExtractor(opt.input_channel, opt.output_channel) | |
elif opt.FeatureExtraction == 'AttnUNet': | |
self.FeatureExtraction = AttnUNet_FeatureExtractor(opt.input_channel, opt.output_channel) | |
elif opt.FeatureExtraction == 'UNet': | |
self.FeatureExtraction = UNet_FeatureExtractor(opt.input_channel, opt.output_channel) | |
elif opt.FeatureExtraction == 'UnetPlusPlus': | |
self.FeatureExtraction = UNetPlusPlus_FeatureExtractor(opt.input_channel, opt.output_channel) | |
elif opt.FeatureExtraction == 'VGG': | |
self.FeatureExtraction = VGG_FeatureExtractor(opt.input_channel, opt.output_channel) | |
else: | |
raise Exception('No FeatureExtraction module specified') | |
self.FeatureExtraction_output = opt.output_channel | |
self.AdaptiveAvgPool = nn.AdaptiveAvgPool2d((None, 1)) # Transform final (imgH/16-1) -> 1 | |
""" | |
Temporal Dropout | |
""" | |
self.dropout1 = dropout_layer(opt.device) | |
self.dropout2 = dropout_layer(opt.device) | |
self.dropout3 = dropout_layer(opt.device) | |
self.dropout4 = dropout_layer(opt.device) | |
self.dropout5 = dropout_layer(opt.device) | |
""" Sequence modeling""" | |
if opt.SequenceModeling == 'LSTM': | |
self.SequenceModeling = LSTM(self.FeatureExtraction_output, opt.hidden_size, opt.hidden_size) | |
elif opt.SequenceModeling == 'GRU': | |
self.SequenceModeling = GRU(self.FeatureExtraction_output, opt.hidden_size, opt.hidden_size) | |
elif opt.SequenceModeling == 'MDLSTM': | |
self.SequenceModeling = MDLSTM(self.FeatureExtraction_output, opt.hidden_size, opt.hidden_size) | |
elif opt.SequenceModeling == 'BiLSTM': | |
self.SequenceModeling = BidirectionalLSTM(self.FeatureExtraction_output, opt.hidden_size, opt.hidden_size) | |
# Double BiLSTM | |
elif opt.SequenceModeling == 'DBiLSTM': | |
self.SequenceModeling = nn.Sequential( | |
BidirectionalLSTM(self.FeatureExtraction_output, opt.hidden_size, opt.hidden_size), | |
BidirectionalLSTM(opt.hidden_size, opt.hidden_size, opt.hidden_size)) | |
else: | |
raise Exception('No Sequence Modeling module specified') | |
self.SequenceModeling_output = opt.hidden_size | |
""" Prediction """ | |
if opt.Prediction == 'CTC': | |
self.Prediction = nn.Linear(self.SequenceModeling_output, opt.num_class) | |
elif opt.Prediction == 'Attn': | |
self.Prediction = Attention(self.SequenceModeling_output, opt.hidden_size, opt.num_class, opt.device) | |
else: | |
raise Exception('Prediction is neither CTC or Attn') | |
def forward(self, input, text=None, is_train=True): | |
""" Feature extraction stage """ | |
### Pass input to the feature extraction network ### | |
visual_feature = self.FeatureExtraction(input) | |
# print(visual_feature.shape) # [32, 32, 32, 400] #HRNet, [32, 512, 32, 400] #UNet | |
### Then make pooling ### | |
visual_feature = self.AdaptiveAvgPool(visual_feature.permute(0, 3, 1, 2)) # [b, c, h, w] -> [b, w, c, h] | |
# print(visual_feature.shape) # [32, 400, 32, 1] #HRNet, [32, 400, 512, 1] #UNet | |
### Remove the columb 3 Ex=> [32,400,32,1] will be [32,400,32] ### | |
visual_feature = visual_feature.squeeze(3) | |
# print(visual_feature.shape) # [32, 400, 32] #HRNet, [32, 400, 512] #UNet | |
""" Temporal Dropout + Sequence modeling stage """ | |
# contextual_feature = self.SequenceModeling(visual_feature) ##### Without temporal dropout | |
if (self.training): | |
visual_feature_after_dropout1 = self.dropout1(visual_feature) | |
contextual_feature = self.SequenceModeling(visual_feature_after_dropout1) | |
else : | |
# Inference Phase, make multiple dropout, and take the average of them, this is called Monte Carlo Dropout | |
visual_feature_after_dropout1 = self.dropout1(visual_feature) | |
visual_feature_after_dropout2 = self.dropout2(visual_feature) | |
visual_feature_after_dropout3 = self.dropout3(visual_feature) | |
visual_feature_after_dropout4 = self.dropout4(visual_feature) | |
visual_feature_after_dropout5 = self.dropout5(visual_feature) | |
contextual_feature1 = self.SequenceModeling(visual_feature_after_dropout1) | |
contextual_feature2 = self.SequenceModeling(visual_feature_after_dropout2) | |
contextual_feature3 = self.SequenceModeling(visual_feature_after_dropout3) | |
contextual_feature4 = self.SequenceModeling(visual_feature_after_dropout4) | |
contextual_feature5 = self.SequenceModeling(visual_feature_after_dropout5) | |
contextual_feature = ( (contextual_feature1).add ((contextual_feature2).add(((contextual_feature3).add(((contextual_feature4).add(contextual_feature5)))))) ) * (1/5) | |
""" Prediction stage """ | |
if self.stages['Pred'] == 'CTC': | |
prediction = self.Prediction(contextual_feature.contiguous()) | |
else: | |
if text is None: | |
raise Exception('Input text (for prediction) to model is None') | |
text = text.to(self.opt.device) | |
prediction = self.Prediction(contextual_feature, text, is_train, batch_max_length=self.opt.batch_max_length) | |
return prediction | |