Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
8e1016b
1
Parent(s):
4d6899e
chore: Update TashkeelModelEO and TashkeelModelED loading in app.py
Browse files
app.py
CHANGED
@@ -24,16 +24,13 @@ def infer_shakkala(input_text):
|
|
24 |
tokenizer = TashkeelTokenizer()
|
25 |
eo_ckpt_path = Path(__file__).parent / 'models/best_eo_mlm_ns_epoch_193.pt'
|
26 |
|
27 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
28 |
-
print('device:', device)
|
29 |
-
|
30 |
max_seq_len = 1024
|
31 |
print('Creating Model...')
|
32 |
eo_model = TashkeelModelEO(tokenizer, max_seq_len=max_seq_len, n_layers=6, learnable_pos_emb=False)
|
33 |
ed_model = TashkeelModelED(tokenizer, max_seq_len=max_seq_len, n_layers=3, learnable_pos_emb=False)
|
34 |
|
35 |
-
eo_model.load_state_dict(torch.load(eo_ckpt_path
|
36 |
-
ed_model.load_state_dict(torch.load(eo_ckpt_path
|
37 |
|
38 |
@spaces.GPU()
|
39 |
def infer_catt(input_text, choose_model):
|
@@ -41,8 +38,10 @@ def infer_catt(input_text, choose_model):
|
|
41 |
batch_size = 16
|
42 |
verbose = True
|
43 |
if choose_model == 'Encoder-Only':
|
|
|
44 |
output_text = eo_model.do_tashkeel_batch([input_text], batch_size, verbose)
|
45 |
else:
|
|
|
46 |
output_text = ed_model.do_tashkeel_batch([input_text], batch_size, verbose)
|
47 |
|
48 |
return output_text[0]
|
|
|
24 |
tokenizer = TashkeelTokenizer()
|
25 |
eo_ckpt_path = Path(__file__).parent / 'models/best_eo_mlm_ns_epoch_193.pt'
|
26 |
|
|
|
|
|
|
|
27 |
max_seq_len = 1024
|
28 |
print('Creating Model...')
|
29 |
eo_model = TashkeelModelEO(tokenizer, max_seq_len=max_seq_len, n_layers=6, learnable_pos_emb=False)
|
30 |
ed_model = TashkeelModelED(tokenizer, max_seq_len=max_seq_len, n_layers=3, learnable_pos_emb=False)
|
31 |
|
32 |
+
eo_model.load_state_dict(torch.load(eo_ckpt_path)).eval()
|
33 |
+
ed_model.load_state_dict(torch.load(eo_ckpt_path)).eval()
|
34 |
|
35 |
@spaces.GPU()
|
36 |
def infer_catt(input_text, choose_model):
|
|
|
38 |
batch_size = 16
|
39 |
verbose = True
|
40 |
if choose_model == 'Encoder-Only':
|
41 |
+
eo_model.to("cuda")
|
42 |
output_text = eo_model.do_tashkeel_batch([input_text], batch_size, verbose)
|
43 |
else:
|
44 |
+
ed_model.to("cuda")
|
45 |
output_text = ed_model.do_tashkeel_batch([input_text], batch_size, verbose)
|
46 |
|
47 |
return output_text[0]
|