Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
RND1 Diffusion Model Demo for Hugging Face Spaces with ZeroGPU
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import spaces
|
| 9 |
+
import random
|
| 10 |
+
import numpy as np
|
| 11 |
+
from transformers import AutoTokenizer
|
| 12 |
+
|
| 13 |
+
# Global model and tokenizer
|
| 14 |
+
model = None
|
| 15 |
+
tokenizer = None
|
| 16 |
+
device = "cuda"
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def set_seed(seed: int):
|
| 20 |
+
"""Set random seed for reproducibility."""
|
| 21 |
+
random.seed(seed)
|
| 22 |
+
np.random.seed(seed)
|
| 23 |
+
torch.manual_seed(seed)
|
| 24 |
+
if torch.cuda.is_available():
|
| 25 |
+
torch.cuda.manual_seed_all(seed)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def load_model():
|
| 29 |
+
"""Load model and tokenizer (called once at startup)."""
|
| 30 |
+
global model, tokenizer
|
| 31 |
+
|
| 32 |
+
from rnd.configuration_rnd import RND1Config
|
| 33 |
+
from rnd.modeling_rnd import RND1LM
|
| 34 |
+
|
| 35 |
+
model_path = "radicalnumerics/RND1-Base-0910"
|
| 36 |
+
|
| 37 |
+
print("Loading tokenizer...")
|
| 38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 39 |
+
|
| 40 |
+
print("Loading model...")
|
| 41 |
+
cfg = RND1Config.from_pretrained(model_path)
|
| 42 |
+
cfg.model_type = "rnd1"
|
| 43 |
+
cfg.attn_implementation = "sdpa"
|
| 44 |
+
cfg.moe_backend = "hf"
|
| 45 |
+
|
| 46 |
+
model = RND1LM.from_pretrained(
|
| 47 |
+
model_path,
|
| 48 |
+
config=cfg,
|
| 49 |
+
torch_dtype=torch.bfloat16,
|
| 50 |
+
device_map="auto",
|
| 51 |
+
trust_remote_code=True,
|
| 52 |
+
use_safetensors=True,
|
| 53 |
+
low_cpu_mem_usage=True,
|
| 54 |
+
)
|
| 55 |
+
model.eval()
|
| 56 |
+
print("Model loaded successfully!")
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
@spaces.GPU(duration=120) # Request GPU for up to 120 seconds
|
| 60 |
+
def generate_text(
|
| 61 |
+
prompt: str,
|
| 62 |
+
mode: str,
|
| 63 |
+
num_steps: int,
|
| 64 |
+
max_new_tokens: int,
|
| 65 |
+
temperature: float,
|
| 66 |
+
top_k: int,
|
| 67 |
+
top_p: float,
|
| 68 |
+
seed: int,
|
| 69 |
+
progress=gr.Progress()
|
| 70 |
+
):
|
| 71 |
+
"""
|
| 72 |
+
Generate text using RND1 diffusion model.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
prompt: Input text prompt
|
| 76 |
+
mode: Generation mode ('task' or 'completion')
|
| 77 |
+
num_steps: Number of diffusion steps
|
| 78 |
+
max_new_tokens: Maximum tokens to generate
|
| 79 |
+
temperature: Sampling temperature
|
| 80 |
+
top_k: Top-k filtering (0 to disable)
|
| 81 |
+
top_p: Top-p nucleus filtering (0 to disable)
|
| 82 |
+
seed: Random seed
|
| 83 |
+
progress: Gradio progress tracker
|
| 84 |
+
"""
|
| 85 |
+
if not prompt.strip():
|
| 86 |
+
return "⚠️ Please enter a prompt."
|
| 87 |
+
|
| 88 |
+
progress(0, desc="Setting seed...")
|
| 89 |
+
set_seed(seed)
|
| 90 |
+
|
| 91 |
+
progress(0.1, desc="Preparing prompt...")
|
| 92 |
+
|
| 93 |
+
# Format prompt based on mode
|
| 94 |
+
if mode == "task":
|
| 95 |
+
if not prompt.strip().startswith("Question:"):
|
| 96 |
+
formatted_prompt = f"Question: {prompt}\n"
|
| 97 |
+
else:
|
| 98 |
+
formatted_prompt = prompt
|
| 99 |
+
else:
|
| 100 |
+
formatted_prompt = prompt
|
| 101 |
+
|
| 102 |
+
# Tokenize
|
| 103 |
+
progress(0.2, desc="Tokenizing...")
|
| 104 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt")
|
| 105 |
+
input_ids = inputs.input_ids.to(device)
|
| 106 |
+
attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else None
|
| 107 |
+
|
| 108 |
+
# Prepare generation config
|
| 109 |
+
from rnd.generation_config import RND1GenerationConfig
|
| 110 |
+
|
| 111 |
+
greedy = (temperature == 1.0)
|
| 112 |
+
gen_config = RND1GenerationConfig(
|
| 113 |
+
max_new_tokens=max_new_tokens,
|
| 114 |
+
num_diffusion_steps=num_steps,
|
| 115 |
+
mask_token_id=151669,
|
| 116 |
+
temperature=temperature if not greedy else 1.0,
|
| 117 |
+
top_k=top_k if top_k > 0 else None,
|
| 118 |
+
top_p=top_p if top_p > 0 else None,
|
| 119 |
+
greedy=greedy,
|
| 120 |
+
eos_token_id=tokenizer.eos_token_id if tokenizer.eos_token_id else 151645,
|
| 121 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 122 |
+
bos_token_id=tokenizer.bos_token_id,
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# Generate
|
| 126 |
+
progress(0.3, desc=f"Generating ({num_steps} diffusion steps)...")
|
| 127 |
+
|
| 128 |
+
generator = torch.Generator(device=device)
|
| 129 |
+
generator.manual_seed(seed)
|
| 130 |
+
|
| 131 |
+
with torch.no_grad():
|
| 132 |
+
output = model.generate(
|
| 133 |
+
inputs=input_ids,
|
| 134 |
+
generation_config=gen_config,
|
| 135 |
+
generator=generator,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
progress(0.9, desc="Decoding...")
|
| 139 |
+
|
| 140 |
+
# Decode generated tokens
|
| 141 |
+
generated_tokens = output[0][len(input_ids[0]):]
|
| 142 |
+
generation = tokenizer.decode(
|
| 143 |
+
generated_tokens.tolist(),
|
| 144 |
+
skip_special_tokens=True
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
progress(1.0, desc="Complete!")
|
| 148 |
+
|
| 149 |
+
return generation
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
# Create Gradio interface
|
| 153 |
+
def create_interface():
|
| 154 |
+
with gr.Blocks(title="RND1 Diffusion Language Model", theme=gr.themes.Soft()) as demo:
|
| 155 |
+
gr.Markdown("""
|
| 156 |
+
# 🌊 RND1 Diffusion Language Model
|
| 157 |
+
|
| 158 |
+
Generate text using a diffusion-based language model. The model uses iterative denoising
|
| 159 |
+
to progressively refine masked tokens into coherent text.
|
| 160 |
+
|
| 161 |
+
**Note:** First generation may take longer as the model loads.
|
| 162 |
+
""")
|
| 163 |
+
|
| 164 |
+
with gr.Row():
|
| 165 |
+
with gr.Column(scale=1):
|
| 166 |
+
prompt = gr.Textbox(
|
| 167 |
+
label="Prompt",
|
| 168 |
+
placeholder="Enter your prompt here...",
|
| 169 |
+
lines=4,
|
| 170 |
+
value="Write a Python function that finds the longest common subsequence of two strings."
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
mode = gr.Radio(
|
| 174 |
+
choices=["task", "completion"],
|
| 175 |
+
value="task",
|
| 176 |
+
label="Generation Mode",
|
| 177 |
+
info="Task: Q&A format for instructions | Completion: Continue the text"
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
with gr.Accordion("Generation Settings", open=True):
|
| 181 |
+
num_steps = gr.Slider(
|
| 182 |
+
minimum=16,
|
| 183 |
+
maximum=512,
|
| 184 |
+
value=256,
|
| 185 |
+
step=16,
|
| 186 |
+
label="Diffusion Steps",
|
| 187 |
+
info="More steps = better quality but slower"
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
max_new_tokens = gr.Slider(
|
| 191 |
+
minimum=32,
|
| 192 |
+
maximum=512,
|
| 193 |
+
value=256,
|
| 194 |
+
step=32,
|
| 195 |
+
label="Max New Tokens"
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
with gr.Accordion("Sampling Parameters", open=False):
|
| 199 |
+
temperature = gr.Slider(
|
| 200 |
+
minimum=0.1,
|
| 201 |
+
maximum=2.0,
|
| 202 |
+
value=1.0,
|
| 203 |
+
step=0.1,
|
| 204 |
+
label="Temperature",
|
| 205 |
+
info="1.0 = greedy/deterministic"
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
top_k = gr.Slider(
|
| 209 |
+
minimum=0,
|
| 210 |
+
maximum=100,
|
| 211 |
+
value=0,
|
| 212 |
+
step=1,
|
| 213 |
+
label="Top-K",
|
| 214 |
+
info="0 to disable"
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
top_p = gr.Slider(
|
| 218 |
+
minimum=0.0,
|
| 219 |
+
maximum=1.0,
|
| 220 |
+
value=0.0,
|
| 221 |
+
step=0.05,
|
| 222 |
+
label="Top-P (Nucleus)",
|
| 223 |
+
info="0 to disable"
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
seed = gr.Slider(
|
| 227 |
+
minimum=0,
|
| 228 |
+
maximum=100000,
|
| 229 |
+
value=12345,
|
| 230 |
+
step=1,
|
| 231 |
+
label="Random Seed"
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
generate_btn = gr.Button("🚀 Generate", variant="primary", size="lg")
|
| 235 |
+
|
| 236 |
+
with gr.Column(scale=1):
|
| 237 |
+
output = gr.Textbox(
|
| 238 |
+
label="Generated Text",
|
| 239 |
+
lines=20,
|
| 240 |
+
show_copy_button=True
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
gr.Markdown("""
|
| 244 |
+
### Examples
|
| 245 |
+
Try these prompts to see what the model can do!
|
| 246 |
+
""")
|
| 247 |
+
|
| 248 |
+
gr.Examples(
|
| 249 |
+
examples=[
|
| 250 |
+
["Write a Python function that finds the longest common subsequence of two strings.", "task", 256, 256, 1.0, 0, 0.0, 12345],
|
| 251 |
+
["Explain the concept of recursion with a simple example.", "task", 256, 200, 1.0, 0, 0.0, 42],
|
| 252 |
+
["The key to understanding quantum computing lies in", "completion", 256, 256, 1.0, 0, 0.0, 9876],
|
| 253 |
+
["Once upon a time in a distant galaxy,", "completion", 256, 300, 1.0, 0, 0.0, 7777],
|
| 254 |
+
],
|
| 255 |
+
inputs=[prompt, mode, num_steps, max_new_tokens, temperature, top_k, top_p, seed],
|
| 256 |
+
outputs=output,
|
| 257 |
+
fn=generate_text,
|
| 258 |
+
cache_examples=False,
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
generate_btn.click(
|
| 262 |
+
fn=generate_text,
|
| 263 |
+
inputs=[prompt, mode, num_steps, max_new_tokens, temperature, top_k, top_p, seed],
|
| 264 |
+
outputs=output,
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
return demo
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
if __name__ == "__main__":
|
| 271 |
+
# Load model at startup
|
| 272 |
+
load_model()
|
| 273 |
+
|
| 274 |
+
# Launch Gradio interface
|
| 275 |
+
demo = create_interface()
|
| 276 |
+
demo.queue(max_size=10) # Enable queue for ZeroGPU
|
| 277 |
+
demo.launch()
|