Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,9 @@
|
|
| 1 |
-
hERE IS MY APP
|
| 2 |
-
|
| 3 |
-
|
| 4 |
#!/usr/bin/env python3
|
| 5 |
"""
|
| 6 |
Final Fixed Video Background Replacement
|
| 7 |
Uses proper functions from utilities.py to avoid transparency issues
|
| 8 |
-
NEW: Added
|
| 9 |
-
|
| 10 |
"""
|
| 11 |
import sys
|
| 12 |
import cv2
|
|
@@ -21,6 +18,7 @@
|
|
| 21 |
from typing import Optional, Tuple, Dict, Any
|
| 22 |
import logging
|
| 23 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 24 |
# Import utilities - CRITICAL: Use these functions, don't duplicate!
|
| 25 |
from utilities import (
|
| 26 |
segment_person_hq,
|
|
@@ -31,25 +29,30 @@
|
|
| 31 |
PROFESSIONAL_BACKGROUNDS,
|
| 32 |
validate_video_file
|
| 33 |
)
|
|
|
|
| 34 |
# Import two-stage processor if available
|
| 35 |
try:
|
| 36 |
from two_stage_processor import TwoStageProcessor, CHROMA_PRESETS
|
| 37 |
TWO_STAGE_AVAILABLE = True
|
| 38 |
except ImportError:
|
| 39 |
TWO_STAGE_AVAILABLE = False
|
|
|
|
| 40 |
logging.basicConfig(level=logging.INFO)
|
| 41 |
logger = logging.getLogger(__name__)
|
|
|
|
| 42 |
# ============================================================================ #
|
| 43 |
# OPTIMIZATION SETTINGS
|
| 44 |
# ============================================================================ #
|
| 45 |
KEYFRAME_INTERVAL = 5 # Process MatAnyone every 5th frame
|
| 46 |
FRAME_SKIP = 1 # Process every frame (set to 2 for every other frame)
|
| 47 |
MEMORY_CLEANUP_INTERVAL = 30 # Clean memory every 30 frames
|
|
|
|
| 48 |
# ============================================================================ #
|
| 49 |
# MODEL CACHING SYSTEM
|
| 50 |
# ============================================================================ #
|
| 51 |
CACHE_DIR = Path("/tmp/model_cache")
|
| 52 |
CACHE_DIR.mkdir(exist_ok=True, parents=True)
|
|
|
|
| 53 |
# ============================================================================ #
|
| 54 |
# GLOBAL MODEL STATE
|
| 55 |
# ============================================================================ #
|
|
@@ -59,14 +62,33 @@
|
|
| 59 |
loading_lock = threading.Lock()
|
| 60 |
two_stage_processor = None
|
| 61 |
PROCESS_CANCELLED = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
# ============================================================================ #
|
| 63 |
# SAM2 LOADER WITH VALIDATION
|
| 64 |
# ============================================================================ #
|
| 65 |
-
def load_sam2_predictor_fixed(device: str =
|
| 66 |
"""Load SAM2 with proper error handling and validation"""
|
| 67 |
def _prog(pct: float, desc: str):
|
| 68 |
if progress_callback:
|
| 69 |
progress_callback(pct, desc)
|
|
|
|
| 70 |
# Format progress info for display in the UI
|
| 71 |
if "Frame" in desc and "|" in desc:
|
| 72 |
parts = desc.split("|")
|
|
@@ -87,8 +109,10 @@ def _prog(pct: float, desc: str):
|
|
| 87 |
f.write(display_text)
|
| 88 |
except Exception as e:
|
| 89 |
logger.warning(f"Error writing processing info: {e}")
|
|
|
|
| 90 |
try:
|
| 91 |
_prog(0.1, "Initializing SAM2...")
|
|
|
|
| 92 |
# Download checkpoint with caching
|
| 93 |
checkpoint_path = hf_hub_download(
|
| 94 |
repo_id="facebook/sam2-hiera-large",
|
|
@@ -96,14 +120,18 @@ def _prog(pct: float, desc: str):
|
|
| 96 |
cache_dir=str(CACHE_DIR / "sam2_checkpoint"),
|
| 97 |
force_download=False
|
| 98 |
)
|
|
|
|
| 99 |
_prog(0.5, "SAM2 checkpoint downloaded, building model...")
|
|
|
|
| 100 |
# Import and build
|
| 101 |
from sam2.build_sam import build_sam2
|
| 102 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
|
|
| 103 |
# Build model with explicit config
|
| 104 |
sam2_model = build_sam2("sam2_hiera_l.yaml", checkpoint_path)
|
| 105 |
sam2_model.to(device)
|
| 106 |
predictor = SAM2ImagePredictor(sam2_model)
|
|
|
|
| 107 |
# Test the predictor with dummy data
|
| 108 |
_prog(0.8, "Testing SAM2 functionality...")
|
| 109 |
test_image = np.zeros((256, 256, 3), dtype=np.uint8)
|
|
@@ -115,15 +143,19 @@ def _prog(pct: float, desc: str):
|
|
| 115 |
point_labels=test_labels,
|
| 116 |
multimask_output=False
|
| 117 |
)
|
|
|
|
| 118 |
if masks is None or len(masks) == 0:
|
| 119 |
raise Exception("SAM2 predictor test failed - no masks generated")
|
|
|
|
| 120 |
_prog(1.0, "SAM2 loaded and validated successfully!")
|
| 121 |
-
logger.info("SAM2 predictor loaded and tested successfully")
|
| 122 |
return predictor
|
|
|
|
| 123 |
except Exception as e:
|
| 124 |
logger.error(f"SAM2 loading failed: {str(e)}")
|
| 125 |
logger.error(f"Full traceback: {traceback.format_exc()}")
|
| 126 |
raise Exception(f"SAM2 loading failed: {str(e)}")
|
|
|
|
| 127 |
# ============================================================================ #
|
| 128 |
# MATANYONE LOADER WITH VALIDATION
|
| 129 |
# ============================================================================ #
|
|
@@ -132,15 +164,19 @@ def load_matanyone_fixed(progress_callback: Optional[callable] = None) -> Any:
|
|
| 132 |
def _prog(pct: float, desc: str):
|
| 133 |
if progress_callback:
|
| 134 |
progress_callback(pct, desc)
|
|
|
|
| 135 |
try:
|
| 136 |
_prog(0.2, "Loading MatAnyone...")
|
|
|
|
| 137 |
from matanyone import InferenceCore
|
| 138 |
processor = InferenceCore("PeiqingYang/MatAnyone")
|
|
|
|
| 139 |
# Test MatAnyone with dummy data
|
| 140 |
_prog(0.8, "Testing MatAnyone functionality...")
|
| 141 |
test_image = np.zeros((256, 256, 3), dtype=np.uint8)
|
| 142 |
test_mask = np.zeros((256, 256), dtype=np.uint8)
|
| 143 |
test_mask[64:192, 64:192] = 255
|
|
|
|
| 144 |
# Test the processor
|
| 145 |
try:
|
| 146 |
if hasattr(processor, 'process') or hasattr(processor, '__call__'):
|
|
@@ -149,13 +185,16 @@ def _prog(pct: float, desc: str):
|
|
| 149 |
logger.warning("MatAnyone interface unclear, will use fallback refinement")
|
| 150 |
except Exception as test_e:
|
| 151 |
logger.warning(f"MatAnyone test failed: {test_e}, will use enhanced OpenCV")
|
|
|
|
| 152 |
_prog(1.0, "MatAnyone loaded successfully!")
|
| 153 |
-
logger.info("MatAnyone processor loaded successfully")
|
| 154 |
return processor
|
|
|
|
| 155 |
except Exception as e:
|
| 156 |
logger.error(f"MatAnyone loading failed: {str(e)}")
|
| 157 |
logger.error(f"Full traceback: {traceback.format_exc()}")
|
| 158 |
raise Exception(f"MatAnyone loading failed: {str(e)}")
|
|
|
|
| 159 |
# ============================================================================ #
|
| 160 |
# MODEL MANAGEMENT FUNCTIONS
|
| 161 |
# ============================================================================ #
|
|
@@ -165,53 +204,68 @@ def get_model_status() -> Dict[str, str]:
|
|
| 165 |
return {
|
| 166 |
'sam2': 'Ready' if sam2_predictor is not None else 'Not loaded',
|
| 167 |
'matanyone': 'Ready' if matanyone_model is not None else 'Not loaded',
|
| 168 |
-
'validated': models_loaded
|
|
|
|
| 169 |
}
|
|
|
|
| 170 |
def get_cache_status() -> Dict[str, Any]:
|
| 171 |
"""Get current cache status"""
|
| 172 |
return {
|
| 173 |
"sam2_loaded": sam2_predictor is not None,
|
| 174 |
"matanyone_loaded": matanyone_model is not None,
|
| 175 |
"models_validated": models_loaded,
|
| 176 |
-
"two_stage_available": TWO_STAGE_AVAILABLE
|
|
|
|
| 177 |
}
|
|
|
|
| 178 |
def load_models_with_validation(progress_callback: Optional[callable] = None) -> str:
|
| 179 |
"""Load models with comprehensive validation"""
|
| 180 |
global sam2_predictor, matanyone_model, models_loaded, two_stage_processor, PROCESS_CANCELLED
|
|
|
|
| 181 |
with loading_lock:
|
| 182 |
if models_loaded and not PROCESS_CANCELLED:
|
| 183 |
return "Models already loaded and validated"
|
|
|
|
| 184 |
try:
|
| 185 |
PROCESS_CANCELLED = False
|
| 186 |
start_time = time.time()
|
| 187 |
-
|
| 188 |
-
|
| 189 |
if progress_callback:
|
| 190 |
-
progress_callback(0.0, "Starting model loading...")
|
|
|
|
| 191 |
# Load SAM2 with validation
|
| 192 |
-
sam2_predictor = load_sam2_predictor_fixed(device=
|
|
|
|
| 193 |
if PROCESS_CANCELLED:
|
| 194 |
return "Model loading cancelled by user"
|
|
|
|
| 195 |
# Load MatAnyone with validation
|
| 196 |
matanyone_model = load_matanyone_fixed(progress_callback=progress_callback)
|
|
|
|
| 197 |
if PROCESS_CANCELLED:
|
| 198 |
return "Model loading cancelled by user"
|
|
|
|
| 199 |
models_loaded = True
|
|
|
|
| 200 |
# Initialize two-stage processor if available
|
| 201 |
if TWO_STAGE_AVAILABLE:
|
| 202 |
two_stage_processor = TwoStageProcessor(sam2_predictor, matanyone_model)
|
| 203 |
logger.info("Two-stage processor initialized")
|
|
|
|
| 204 |
load_time = time.time() - start_time
|
| 205 |
-
message = f"SUCCESS: SAM2 + MatAnyone loaded and validated in {load_time:.1f}s"
|
| 206 |
if TWO_STAGE_AVAILABLE:
|
| 207 |
message += " (Two-stage mode available)"
|
| 208 |
logger.info(message)
|
| 209 |
return message
|
|
|
|
| 210 |
except Exception as e:
|
| 211 |
models_loaded = False
|
| 212 |
error_msg = f"Model loading failed: {str(e)}"
|
| 213 |
logger.error(error_msg)
|
| 214 |
return error_msg
|
|
|
|
| 215 |
# ============================================================================ #
|
| 216 |
# MAIN VIDEO PROCESSING - USING UTILITIES FUNCTIONS
|
| 217 |
# ============================================================================ #
|
|
@@ -227,21 +281,28 @@ def process_video_fixed(
|
|
| 227 |
) -> Tuple[Optional[str], str]:
|
| 228 |
"""Optimized video processing using proper functions from utilities"""
|
| 229 |
global PROCESS_CANCELLED
|
|
|
|
| 230 |
if PROCESS_CANCELLED:
|
| 231 |
return None, "Processing cancelled by user"
|
|
|
|
| 232 |
if not models_loaded:
|
| 233 |
return None, "Models not loaded. Call load_models_with_validation() first."
|
|
|
|
| 234 |
if not video_path or not os.path.exists(video_path):
|
| 235 |
return None, f"Video file not found: {video_path}"
|
|
|
|
| 236 |
# Validate video file
|
| 237 |
is_valid, validation_msg = validate_video_file(video_path)
|
| 238 |
if not is_valid:
|
| 239 |
return None, f"Invalid video: {validation_msg}"
|
|
|
|
| 240 |
def _prog(pct: float, desc: str):
|
| 241 |
if PROCESS_CANCELLED:
|
| 242 |
raise Exception("Processing cancelled by user")
|
|
|
|
| 243 |
if progress_callback:
|
| 244 |
progress_callback(pct, desc)
|
|
|
|
| 245 |
# Update processing info file
|
| 246 |
if "Frame" in desc and "|" in desc:
|
| 247 |
parts = desc.split("|")
|
|
@@ -249,6 +310,7 @@ def _prog(pct: float, desc: str):
|
|
| 249 |
time_info = parts[1].strip() if len(parts) > 1 else ""
|
| 250 |
fps_info = parts[2].strip() if len(parts) > 2 else ""
|
| 251 |
eta_info = parts[3].strip() if len(parts) > 3 else ""
|
|
|
|
| 252 |
display_text = f"""📊 PROCESSING STATUS
|
| 253 |
━━━━━━━━━━━━━━━━━━━━━━━━━━
|
| 254 |
🎬 {frame_info}
|
|
@@ -262,24 +324,31 @@ def _prog(pct: float, desc: str):
|
|
| 262 |
f.write(display_text)
|
| 263 |
except Exception as e:
|
| 264 |
logger.warning(f"Error writing processing info: {e}")
|
|
|
|
| 265 |
try:
|
| 266 |
-
_prog(0.0, f"Starting {'TWO-STAGE' if use_two_stage else 'SINGLE-STAGE'} processing...")
|
|
|
|
| 267 |
# Check if two-stage mode is requested
|
| 268 |
if use_two_stage:
|
| 269 |
if not TWO_STAGE_AVAILABLE:
|
| 270 |
return None, "Two-stage mode not available. Please add two_stage_processor.py file."
|
|
|
|
| 271 |
if two_stage_processor is None:
|
| 272 |
return None, "Two-stage processor not initialized. Please reload models."
|
|
|
|
| 273 |
_prog(0.05, "Starting TWO-STAGE green screen processing...")
|
|
|
|
| 274 |
# Get video dimensions
|
| 275 |
cap = cv2.VideoCapture(video_path)
|
| 276 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 277 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 278 |
cap.release()
|
|
|
|
| 279 |
# Prepare background
|
| 280 |
if background_choice == "custom" and custom_background_path:
|
| 281 |
if not os.path.exists(custom_background_path):
|
| 282 |
return None, f"Custom background not found: {custom_background_path}"
|
|
|
|
| 283 |
background = cv2.imread(custom_background_path)
|
| 284 |
if background is None:
|
| 285 |
return None, "Could not read custom background image."
|
|
@@ -291,11 +360,14 @@ def _prog(pct: float, desc: str):
|
|
| 291 |
background_name = bg_config["name"]
|
| 292 |
else:
|
| 293 |
return None, f"Invalid background selection: {background_choice}"
|
|
|
|
| 294 |
# Get chroma settings
|
| 295 |
chroma_settings = CHROMA_PRESETS.get(chroma_preset, CHROMA_PRESETS['standard'])
|
|
|
|
| 296 |
# Run two-stage pipeline
|
| 297 |
timestamp = int(time.time())
|
| 298 |
final_output = f"/tmp/twostage_final_{timestamp}.mp4"
|
|
|
|
| 299 |
result, message = two_stage_processor.process_full_pipeline(
|
| 300 |
video_path,
|
| 301 |
background,
|
|
@@ -303,13 +375,17 @@ def _prog(pct: float, desc: str):
|
|
| 303 |
chroma_settings=chroma_settings,
|
| 304 |
progress_callback=_prog
|
| 305 |
)
|
|
|
|
| 306 |
if PROCESS_CANCELLED:
|
| 307 |
return None, "Processing cancelled by user"
|
|
|
|
| 308 |
if result is None:
|
| 309 |
return None, message
|
|
|
|
| 310 |
# Add audio back
|
| 311 |
_prog(0.9, "Adding audio...")
|
| 312 |
final_with_audio = f"/tmp/twostage_audio_{timestamp}.mp4"
|
|
|
|
| 313 |
try:
|
| 314 |
audio_cmd = (
|
| 315 |
f'ffmpeg -y -i "{final_output}" -i "{video_path}" '
|
|
@@ -324,34 +400,46 @@ def _prog(pct: float, desc: str):
|
|
| 324 |
except Exception as e:
|
| 325 |
logger.warning(f"Audio processing error: {e}")
|
| 326 |
final_with_audio = final_output # Fallback to video without audio
|
|
|
|
| 327 |
_prog(1.0, "TWO-STAGE processing complete!")
|
|
|
|
| 328 |
success_message = (
|
| 329 |
f"TWO-STAGE Success!\n"
|
| 330 |
f"Background: {background_name}\n"
|
| 331 |
f"Method: Green Screen Chroma Key\n"
|
| 332 |
f"Preset: {chroma_preset}\n"
|
| 333 |
-
f"Quality: Professional cinema-grade"
|
|
|
|
| 334 |
)
|
|
|
|
| 335 |
return final_output, success_message
|
|
|
|
| 336 |
# Single-stage processing
|
| 337 |
-
_prog(0.05, "Starting SINGLE-STAGE processing...")
|
|
|
|
| 338 |
cap = cv2.VideoCapture(video_path)
|
| 339 |
if not cap.isOpened():
|
| 340 |
return None, "Could not open video file."
|
|
|
|
| 341 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 342 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 343 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 344 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
| 345 |
if total_frames == 0:
|
| 346 |
return None, "Video appears to be empty."
|
|
|
|
| 347 |
# Log video info
|
| 348 |
-
logger.info(f"Video info: {frame_width}x{frame_height}, {fps}fps, {total_frames} frames")
|
|
|
|
| 349 |
# Prepare background
|
| 350 |
background = None
|
| 351 |
background_name = ""
|
|
|
|
| 352 |
if background_choice == "custom" and custom_background_path:
|
| 353 |
if not os.path.exists(custom_background_path):
|
| 354 |
return None, f"Custom background not found: {custom_background_path}"
|
|
|
|
| 355 |
background = cv2.imread(custom_background_path)
|
| 356 |
if background is None:
|
| 357 |
return None, "Could not read custom background image."
|
|
@@ -363,11 +451,15 @@ def _prog(pct: float, desc: str):
|
|
| 363 |
background_name = bg_config["name"]
|
| 364 |
else:
|
| 365 |
return None, f"Invalid background selection: {background_choice}"
|
|
|
|
| 366 |
if background is None:
|
| 367 |
return None, "Failed to create background."
|
|
|
|
| 368 |
timestamp = int(time.time())
|
| 369 |
fourcc = cv2.VideoWriter_fourcc(*'avc1') # H.264 for better compatibility
|
| 370 |
-
|
|
|
|
|
|
|
| 371 |
# Create temporary output for preview if needed
|
| 372 |
if preview_mask or preview_greenscreen:
|
| 373 |
temp_output = f"/tmp/preview_{timestamp}.mp4"
|
|
@@ -375,13 +467,17 @@ def _prog(pct: float, desc: str):
|
|
| 375 |
else:
|
| 376 |
final_path = f"/tmp/output_{timestamp}.mp4"
|
| 377 |
final_writer = cv2.VideoWriter(final_path, fourcc, fps, (frame_width, frame_height))
|
|
|
|
| 378 |
if not final_writer.isOpened():
|
| 379 |
return None, "Could not create output video file."
|
|
|
|
| 380 |
frame_count = 0
|
| 381 |
successful_frames = 0
|
| 382 |
last_refined_mask = None
|
|
|
|
| 383 |
# Processing stats
|
| 384 |
start_time = time.time()
|
|
|
|
| 385 |
while True:
|
| 386 |
if PROCESS_CANCELLED:
|
| 387 |
cap.release()
|
|
@@ -389,13 +485,16 @@ def _prog(pct: float, desc: str):
|
|
| 389 |
if os.path.exists(final_path):
|
| 390 |
os.remove(final_path)
|
| 391 |
return None, "Processing cancelled by user"
|
|
|
|
| 392 |
ret, frame = cap.read()
|
| 393 |
if not ret:
|
| 394 |
break
|
|
|
|
| 395 |
# Skip frames if FRAME_SKIP > 1
|
| 396 |
if frame_count % FRAME_SKIP != 0:
|
| 397 |
frame_count += 1
|
| 398 |
continue
|
|
|
|
| 399 |
try:
|
| 400 |
# Update progress with detailed timing info and ETA
|
| 401 |
elapsed_time = time.time() - start_time
|
|
@@ -403,13 +502,17 @@ def _prog(pct: float, desc: str):
|
|
| 403 |
remaining_frames = total_frames - frame_count
|
| 404 |
eta_seconds = remaining_frames / current_fps if current_fps > 0 else 0
|
| 405 |
eta_display = f"{int(eta_seconds//60)}m {int(eta_seconds%60)}s" if eta_seconds > 60 else f"{int(eta_seconds)}s"
|
| 406 |
-
|
|
|
|
|
|
|
| 407 |
# Log and display progress
|
| 408 |
logger.info(progress_msg)
|
| 409 |
_prog(0.1 + (frame_count / max(1, total_frames)) * 0.8, progress_msg)
|
|
|
|
| 410 |
# CRITICAL: Use functions from utilities.py, not local implementations!
|
| 411 |
# SAM2 segmentation using utilities function
|
| 412 |
mask = segment_person_hq(frame, sam2_predictor)
|
|
|
|
| 413 |
if preview_mask:
|
| 414 |
# Save mask visualization
|
| 415 |
mask_vis = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
|
|
@@ -417,15 +520,17 @@ def _prog(pct: float, desc: str):
|
|
| 417 |
final_writer.write(mask_vis)
|
| 418 |
frame_count += 1
|
| 419 |
continue
|
|
|
|
| 420 |
# MatAnyone refinement on keyframes using utilities function
|
| 421 |
if (frame_count % KEYFRAME_INTERVAL == 0) or (last_refined_mask is None):
|
| 422 |
refined_mask = refine_mask_hq(frame, mask, matanyone_model)
|
| 423 |
last_refined_mask = refined_mask.copy()
|
| 424 |
-
logger.info(f"Keyframe refinement at frame {frame_count}")
|
| 425 |
else:
|
| 426 |
# Blend SAM2 mask with last refined mask for temporal smoothness
|
| 427 |
alpha = 0.7
|
| 428 |
refined_mask = cv2.addWeighted(mask, alpha, last_refined_mask, 1-alpha, 0)
|
|
|
|
| 429 |
if preview_greenscreen:
|
| 430 |
# Create green screen preview
|
| 431 |
green_bg = np.zeros_like(frame)
|
|
@@ -437,15 +542,19 @@ def _prog(pct: float, desc: str):
|
|
| 437 |
final_writer.write(preview_frame.astype(np.uint8))
|
| 438 |
frame_count += 1
|
| 439 |
continue
|
|
|
|
| 440 |
# CRITICAL: Use replace_background_hq from utilities which has the transparency fix!
|
| 441 |
result_frame = replace_background_hq(frame, refined_mask, background)
|
| 442 |
final_writer.write(result_frame)
|
| 443 |
successful_frames += 1
|
|
|
|
| 444 |
except Exception as frame_error:
|
| 445 |
logger.warning(f"Error processing frame {frame_count}: {frame_error}")
|
| 446 |
# Write original frame if processing fails
|
| 447 |
final_writer.write(frame)
|
|
|
|
| 448 |
frame_count += 1
|
|
|
|
| 449 |
# Memory management
|
| 450 |
if frame_count % MEMORY_CLEANUP_INTERVAL == 0:
|
| 451 |
gc.collect()
|
|
@@ -454,25 +563,32 @@ def _prog(pct: float, desc: str):
|
|
| 454 |
elapsed = time.time() - start_time
|
| 455 |
fps_actual = frame_count / elapsed
|
| 456 |
eta = (total_frames - frame_count) / fps_actual if fps_actual > 0 else 0
|
| 457 |
-
logger.info(f"Progress: {frame_count}/{total_frames}, FPS: {fps_actual:.1f}, ETA: {eta:.0f}s")
|
|
|
|
| 458 |
cap.release()
|
| 459 |
final_writer.release()
|
|
|
|
| 460 |
if PROCESS_CANCELLED:
|
| 461 |
if os.path.exists(final_path):
|
| 462 |
os.remove(final_path)
|
| 463 |
return None, "Processing cancelled by user"
|
|
|
|
| 464 |
if successful_frames == 0:
|
| 465 |
return None, "No frames were processed successfully with AI."
|
|
|
|
| 466 |
# Calculate processing stats
|
| 467 |
total_time = time.time() - start_time
|
| 468 |
avg_fps = frame_count / total_time if total_time > 0 else 0
|
|
|
|
| 469 |
_prog(0.9, "Finalizing output...")
|
|
|
|
| 470 |
if preview_mask or preview_greenscreen:
|
| 471 |
final_output = temp_output
|
| 472 |
else:
|
| 473 |
# Add audio back for final output
|
| 474 |
_prog(0.9, "Adding audio...")
|
| 475 |
final_output = f"/tmp/final_{timestamp}.mp4"
|
|
|
|
| 476 |
try:
|
| 477 |
audio_cmd = (
|
| 478 |
f'ffmpeg -y -i "{final_path}" -i "{video_path}" '
|
|
@@ -486,13 +602,16 @@ def _prog(pct: float, desc: str):
|
|
| 486 |
except Exception as e:
|
| 487 |
logger.warning(f"Audio processing error: {e}")
|
| 488 |
shutil.copy2(final_path, final_output)
|
|
|
|
| 489 |
# Cleanup
|
| 490 |
try:
|
| 491 |
if os.path.exists(final_path):
|
| 492 |
os.remove(final_path)
|
| 493 |
except Exception as e:
|
| 494 |
logger.warning(f"Cleanup error: {e}")
|
|
|
|
| 495 |
_prog(1.0, "Processing complete!")
|
|
|
|
| 496 |
success_message = (
|
| 497 |
f"Success!\n"
|
| 498 |
f"Background: {background_name}\n"
|
|
@@ -502,12 +621,16 @@ def _prog(pct: float, desc: str):
|
|
| 502 |
f"Processing time: {total_time:.1f}s\n"
|
| 503 |
f"Average FPS: {avg_fps:.1f}\n"
|
| 504 |
f"Keyframe interval: {KEYFRAME_INTERVAL}\n"
|
| 505 |
-
f"Mode: {'TWO-STAGE' if use_two_stage else 'SINGLE-STAGE'}"
|
|
|
|
| 506 |
)
|
|
|
|
| 507 |
return final_output, success_message
|
|
|
|
| 508 |
except Exception as e:
|
| 509 |
logger.error(f"Processing error: {traceback.format_exc()}")
|
| 510 |
return None, f"Processing Error: {str(e)}"
|
|
|
|
| 511 |
# ============================================================================ #
|
| 512 |
# MAIN - IMPORT UI COMPONENTS
|
| 513 |
# ============================================================================ #
|
|
@@ -517,13 +640,18 @@ def main():
|
|
| 517 |
print(f"Keyframe interval: {KEYFRAME_INTERVAL} frames")
|
| 518 |
print(f"Frame skip: {FRAME_SKIP} (1=all frames, 2=every other)")
|
| 519 |
print(f"Two-stage mode: {'AVAILABLE' if TWO_STAGE_AVAILABLE else 'NOT AVAILABLE'}")
|
|
|
|
| 520 |
print("Loading UI components...")
|
|
|
|
| 521 |
# Import UI components
|
| 522 |
from ui_components import create_interface
|
|
|
|
| 523 |
os.makedirs("/tmp/MyAvatar/My_Videos/", exist_ok=True)
|
| 524 |
CACHE_DIR.mkdir(exist_ok=True, parents=True)
|
|
|
|
| 525 |
print("Creating interface...")
|
| 526 |
demo = create_interface()
|
|
|
|
| 527 |
print("Launching...")
|
| 528 |
demo.launch(
|
| 529 |
server_name="0.0.0.0",
|
|
@@ -533,10 +661,10 @@ def main():
|
|
| 533 |
debug=True,
|
| 534 |
enable_queue=True
|
| 535 |
)
|
|
|
|
| 536 |
except Exception as e:
|
| 537 |
logger.error(f"Startup failed: {e}")
|
| 538 |
print(f"Startup failed: {e}")
|
|
|
|
| 539 |
if __name__ == "__main__":
|
| 540 |
main()
|
| 541 |
-
|
| 542 |
-
pLEASE UPDATE
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
Final Fixed Video Background Replacement
|
| 4 |
Uses proper functions from utilities.py to avoid transparency issues
|
| 5 |
+
NEW: Added automatic device detection for Hugging Face Spaces compatibility,
|
| 6 |
+
improved error handling, and better resource management
|
| 7 |
"""
|
| 8 |
import sys
|
| 9 |
import cv2
|
|
|
|
| 18 |
from typing import Optional, Tuple, Dict, Any
|
| 19 |
import logging
|
| 20 |
from huggingface_hub import hf_hub_download
|
| 21 |
+
|
| 22 |
# Import utilities - CRITICAL: Use these functions, don't duplicate!
|
| 23 |
from utilities import (
|
| 24 |
segment_person_hq,
|
|
|
|
| 29 |
PROFESSIONAL_BACKGROUNDS,
|
| 30 |
validate_video_file
|
| 31 |
)
|
| 32 |
+
|
| 33 |
# Import two-stage processor if available
|
| 34 |
try:
|
| 35 |
from two_stage_processor import TwoStageProcessor, CHROMA_PRESETS
|
| 36 |
TWO_STAGE_AVAILABLE = True
|
| 37 |
except ImportError:
|
| 38 |
TWO_STAGE_AVAILABLE = False
|
| 39 |
+
|
| 40 |
logging.basicConfig(level=logging.INFO)
|
| 41 |
logger = logging.getLogger(__name__)
|
| 42 |
+
|
| 43 |
# ============================================================================ #
|
| 44 |
# OPTIMIZATION SETTINGS
|
| 45 |
# ============================================================================ #
|
| 46 |
KEYFRAME_INTERVAL = 5 # Process MatAnyone every 5th frame
|
| 47 |
FRAME_SKIP = 1 # Process every frame (set to 2 for every other frame)
|
| 48 |
MEMORY_CLEANUP_INTERVAL = 30 # Clean memory every 30 frames
|
| 49 |
+
|
| 50 |
# ============================================================================ #
|
| 51 |
# MODEL CACHING SYSTEM
|
| 52 |
# ============================================================================ #
|
| 53 |
CACHE_DIR = Path("/tmp/model_cache")
|
| 54 |
CACHE_DIR.mkdir(exist_ok=True, parents=True)
|
| 55 |
+
|
| 56 |
# ============================================================================ #
|
| 57 |
# GLOBAL MODEL STATE
|
| 58 |
# ============================================================================ #
|
|
|
|
| 62 |
loading_lock = threading.Lock()
|
| 63 |
two_stage_processor = None
|
| 64 |
PROCESS_CANCELLED = False
|
| 65 |
+
|
| 66 |
+
# ============================================================================ #
|
| 67 |
+
# DEVICE DETECTION FOR HUGGING FACE SPACES
|
| 68 |
+
# ============================================================================ #
|
| 69 |
+
def get_device():
|
| 70 |
+
"""Automatically detect the best available device (CPU or GPU)"""
|
| 71 |
+
if torch.cuda.is_available():
|
| 72 |
+
# Get the current CUDA device name
|
| 73 |
+
device_name = torch.cuda.get_device_name(0)
|
| 74 |
+
logger.info(f"Using GPU: {device_name}")
|
| 75 |
+
return "cuda"
|
| 76 |
+
else:
|
| 77 |
+
logger.info("Using CPU (no GPU available)")
|
| 78 |
+
return "cpu"
|
| 79 |
+
|
| 80 |
+
# Set the device globally
|
| 81 |
+
DEVICE = get_device()
|
| 82 |
+
|
| 83 |
# ============================================================================ #
|
| 84 |
# SAM2 LOADER WITH VALIDATION
|
| 85 |
# ============================================================================ #
|
| 86 |
+
def load_sam2_predictor_fixed(device: str = DEVICE, progress_callback: Optional[callable] = None) -> Any:
|
| 87 |
"""Load SAM2 with proper error handling and validation"""
|
| 88 |
def _prog(pct: float, desc: str):
|
| 89 |
if progress_callback:
|
| 90 |
progress_callback(pct, desc)
|
| 91 |
+
|
| 92 |
# Format progress info for display in the UI
|
| 93 |
if "Frame" in desc and "|" in desc:
|
| 94 |
parts = desc.split("|")
|
|
|
|
| 109 |
f.write(display_text)
|
| 110 |
except Exception as e:
|
| 111 |
logger.warning(f"Error writing processing info: {e}")
|
| 112 |
+
|
| 113 |
try:
|
| 114 |
_prog(0.1, "Initializing SAM2...")
|
| 115 |
+
|
| 116 |
# Download checkpoint with caching
|
| 117 |
checkpoint_path = hf_hub_download(
|
| 118 |
repo_id="facebook/sam2-hiera-large",
|
|
|
|
| 120 |
cache_dir=str(CACHE_DIR / "sam2_checkpoint"),
|
| 121 |
force_download=False
|
| 122 |
)
|
| 123 |
+
|
| 124 |
_prog(0.5, "SAM2 checkpoint downloaded, building model...")
|
| 125 |
+
|
| 126 |
# Import and build
|
| 127 |
from sam2.build_sam import build_sam2
|
| 128 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 129 |
+
|
| 130 |
# Build model with explicit config
|
| 131 |
sam2_model = build_sam2("sam2_hiera_l.yaml", checkpoint_path)
|
| 132 |
sam2_model.to(device)
|
| 133 |
predictor = SAM2ImagePredictor(sam2_model)
|
| 134 |
+
|
| 135 |
# Test the predictor with dummy data
|
| 136 |
_prog(0.8, "Testing SAM2 functionality...")
|
| 137 |
test_image = np.zeros((256, 256, 3), dtype=np.uint8)
|
|
|
|
| 143 |
point_labels=test_labels,
|
| 144 |
multimask_output=False
|
| 145 |
)
|
| 146 |
+
|
| 147 |
if masks is None or len(masks) == 0:
|
| 148 |
raise Exception("SAM2 predictor test failed - no masks generated")
|
| 149 |
+
|
| 150 |
_prog(1.0, "SAM2 loaded and validated successfully!")
|
| 151 |
+
logger.info(f"SAM2 predictor loaded and tested successfully on {device}")
|
| 152 |
return predictor
|
| 153 |
+
|
| 154 |
except Exception as e:
|
| 155 |
logger.error(f"SAM2 loading failed: {str(e)}")
|
| 156 |
logger.error(f"Full traceback: {traceback.format_exc()}")
|
| 157 |
raise Exception(f"SAM2 loading failed: {str(e)}")
|
| 158 |
+
|
| 159 |
# ============================================================================ #
|
| 160 |
# MATANYONE LOADER WITH VALIDATION
|
| 161 |
# ============================================================================ #
|
|
|
|
| 164 |
def _prog(pct: float, desc: str):
|
| 165 |
if progress_callback:
|
| 166 |
progress_callback(pct, desc)
|
| 167 |
+
|
| 168 |
try:
|
| 169 |
_prog(0.2, "Loading MatAnyone...")
|
| 170 |
+
|
| 171 |
from matanyone import InferenceCore
|
| 172 |
processor = InferenceCore("PeiqingYang/MatAnyone")
|
| 173 |
+
|
| 174 |
# Test MatAnyone with dummy data
|
| 175 |
_prog(0.8, "Testing MatAnyone functionality...")
|
| 176 |
test_image = np.zeros((256, 256, 3), dtype=np.uint8)
|
| 177 |
test_mask = np.zeros((256, 256), dtype=np.uint8)
|
| 178 |
test_mask[64:192, 64:192] = 255
|
| 179 |
+
|
| 180 |
# Test the processor
|
| 181 |
try:
|
| 182 |
if hasattr(processor, 'process') or hasattr(processor, '__call__'):
|
|
|
|
| 185 |
logger.warning("MatAnyone interface unclear, will use fallback refinement")
|
| 186 |
except Exception as test_e:
|
| 187 |
logger.warning(f"MatAnyone test failed: {test_e}, will use enhanced OpenCV")
|
| 188 |
+
|
| 189 |
_prog(1.0, "MatAnyone loaded successfully!")
|
| 190 |
+
logger.info(f"MatAnyone processor loaded successfully on {DEVICE}")
|
| 191 |
return processor
|
| 192 |
+
|
| 193 |
except Exception as e:
|
| 194 |
logger.error(f"MatAnyone loading failed: {str(e)}")
|
| 195 |
logger.error(f"Full traceback: {traceback.format_exc()}")
|
| 196 |
raise Exception(f"MatAnyone loading failed: {str(e)}")
|
| 197 |
+
|
| 198 |
# ============================================================================ #
|
| 199 |
# MODEL MANAGEMENT FUNCTIONS
|
| 200 |
# ============================================================================ #
|
|
|
|
| 204 |
return {
|
| 205 |
'sam2': 'Ready' if sam2_predictor is not None else 'Not loaded',
|
| 206 |
'matanyone': 'Ready' if matanyone_model is not None else 'Not loaded',
|
| 207 |
+
'validated': models_loaded,
|
| 208 |
+
'device': DEVICE
|
| 209 |
}
|
| 210 |
+
|
| 211 |
def get_cache_status() -> Dict[str, Any]:
|
| 212 |
"""Get current cache status"""
|
| 213 |
return {
|
| 214 |
"sam2_loaded": sam2_predictor is not None,
|
| 215 |
"matanyone_loaded": matanyone_model is not None,
|
| 216 |
"models_validated": models_loaded,
|
| 217 |
+
"two_stage_available": TWO_STAGE_AVAILABLE,
|
| 218 |
+
"device": DEVICE
|
| 219 |
}
|
| 220 |
+
|
| 221 |
def load_models_with_validation(progress_callback: Optional[callable] = None) -> str:
|
| 222 |
"""Load models with comprehensive validation"""
|
| 223 |
global sam2_predictor, matanyone_model, models_loaded, two_stage_processor, PROCESS_CANCELLED
|
| 224 |
+
|
| 225 |
with loading_lock:
|
| 226 |
if models_loaded and not PROCESS_CANCELLED:
|
| 227 |
return "Models already loaded and validated"
|
| 228 |
+
|
| 229 |
try:
|
| 230 |
PROCESS_CANCELLED = False
|
| 231 |
start_time = time.time()
|
| 232 |
+
logger.info(f"Starting model loading on {DEVICE}")
|
| 233 |
+
|
| 234 |
if progress_callback:
|
| 235 |
+
progress_callback(0.0, f"Starting model loading on {DEVICE}...")
|
| 236 |
+
|
| 237 |
# Load SAM2 with validation
|
| 238 |
+
sam2_predictor = load_sam2_predictor_fixed(device=DEVICE, progress_callback=progress_callback)
|
| 239 |
+
|
| 240 |
if PROCESS_CANCELLED:
|
| 241 |
return "Model loading cancelled by user"
|
| 242 |
+
|
| 243 |
# Load MatAnyone with validation
|
| 244 |
matanyone_model = load_matanyone_fixed(progress_callback=progress_callback)
|
| 245 |
+
|
| 246 |
if PROCESS_CANCELLED:
|
| 247 |
return "Model loading cancelled by user"
|
| 248 |
+
|
| 249 |
models_loaded = True
|
| 250 |
+
|
| 251 |
# Initialize two-stage processor if available
|
| 252 |
if TWO_STAGE_AVAILABLE:
|
| 253 |
two_stage_processor = TwoStageProcessor(sam2_predictor, matanyone_model)
|
| 254 |
logger.info("Two-stage processor initialized")
|
| 255 |
+
|
| 256 |
load_time = time.time() - start_time
|
| 257 |
+
message = f"SUCCESS: SAM2 + MatAnyone loaded and validated in {load_time:.1f}s on {DEVICE}"
|
| 258 |
if TWO_STAGE_AVAILABLE:
|
| 259 |
message += " (Two-stage mode available)"
|
| 260 |
logger.info(message)
|
| 261 |
return message
|
| 262 |
+
|
| 263 |
except Exception as e:
|
| 264 |
models_loaded = False
|
| 265 |
error_msg = f"Model loading failed: {str(e)}"
|
| 266 |
logger.error(error_msg)
|
| 267 |
return error_msg
|
| 268 |
+
|
| 269 |
# ============================================================================ #
|
| 270 |
# MAIN VIDEO PROCESSING - USING UTILITIES FUNCTIONS
|
| 271 |
# ============================================================================ #
|
|
|
|
| 281 |
) -> Tuple[Optional[str], str]:
|
| 282 |
"""Optimized video processing using proper functions from utilities"""
|
| 283 |
global PROCESS_CANCELLED
|
| 284 |
+
|
| 285 |
if PROCESS_CANCELLED:
|
| 286 |
return None, "Processing cancelled by user"
|
| 287 |
+
|
| 288 |
if not models_loaded:
|
| 289 |
return None, "Models not loaded. Call load_models_with_validation() first."
|
| 290 |
+
|
| 291 |
if not video_path or not os.path.exists(video_path):
|
| 292 |
return None, f"Video file not found: {video_path}"
|
| 293 |
+
|
| 294 |
# Validate video file
|
| 295 |
is_valid, validation_msg = validate_video_file(video_path)
|
| 296 |
if not is_valid:
|
| 297 |
return None, f"Invalid video: {validation_msg}"
|
| 298 |
+
|
| 299 |
def _prog(pct: float, desc: str):
|
| 300 |
if PROCESS_CANCELLED:
|
| 301 |
raise Exception("Processing cancelled by user")
|
| 302 |
+
|
| 303 |
if progress_callback:
|
| 304 |
progress_callback(pct, desc)
|
| 305 |
+
|
| 306 |
# Update processing info file
|
| 307 |
if "Frame" in desc and "|" in desc:
|
| 308 |
parts = desc.split("|")
|
|
|
|
| 310 |
time_info = parts[1].strip() if len(parts) > 1 else ""
|
| 311 |
fps_info = parts[2].strip() if len(parts) > 2 else ""
|
| 312 |
eta_info = parts[3].strip() if len(parts) > 3 else ""
|
| 313 |
+
|
| 314 |
display_text = f"""📊 PROCESSING STATUS
|
| 315 |
━━━━━━━━━━━━━━━━━━━━━━━━━━
|
| 316 |
🎬 {frame_info}
|
|
|
|
| 324 |
f.write(display_text)
|
| 325 |
except Exception as e:
|
| 326 |
logger.warning(f"Error writing processing info: {e}")
|
| 327 |
+
|
| 328 |
try:
|
| 329 |
+
_prog(0.0, f"Starting {'TWO-STAGE' if use_two_stage else 'SINGLE-STAGE'} processing on {DEVICE}...")
|
| 330 |
+
|
| 331 |
# Check if two-stage mode is requested
|
| 332 |
if use_two_stage:
|
| 333 |
if not TWO_STAGE_AVAILABLE:
|
| 334 |
return None, "Two-stage mode not available. Please add two_stage_processor.py file."
|
| 335 |
+
|
| 336 |
if two_stage_processor is None:
|
| 337 |
return None, "Two-stage processor not initialized. Please reload models."
|
| 338 |
+
|
| 339 |
_prog(0.05, "Starting TWO-STAGE green screen processing...")
|
| 340 |
+
|
| 341 |
# Get video dimensions
|
| 342 |
cap = cv2.VideoCapture(video_path)
|
| 343 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 344 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 345 |
cap.release()
|
| 346 |
+
|
| 347 |
# Prepare background
|
| 348 |
if background_choice == "custom" and custom_background_path:
|
| 349 |
if not os.path.exists(custom_background_path):
|
| 350 |
return None, f"Custom background not found: {custom_background_path}"
|
| 351 |
+
|
| 352 |
background = cv2.imread(custom_background_path)
|
| 353 |
if background is None:
|
| 354 |
return None, "Could not read custom background image."
|
|
|
|
| 360 |
background_name = bg_config["name"]
|
| 361 |
else:
|
| 362 |
return None, f"Invalid background selection: {background_choice}"
|
| 363 |
+
|
| 364 |
# Get chroma settings
|
| 365 |
chroma_settings = CHROMA_PRESETS.get(chroma_preset, CHROMA_PRESETS['standard'])
|
| 366 |
+
|
| 367 |
# Run two-stage pipeline
|
| 368 |
timestamp = int(time.time())
|
| 369 |
final_output = f"/tmp/twostage_final_{timestamp}.mp4"
|
| 370 |
+
|
| 371 |
result, message = two_stage_processor.process_full_pipeline(
|
| 372 |
video_path,
|
| 373 |
background,
|
|
|
|
| 375 |
chroma_settings=chroma_settings,
|
| 376 |
progress_callback=_prog
|
| 377 |
)
|
| 378 |
+
|
| 379 |
if PROCESS_CANCELLED:
|
| 380 |
return None, "Processing cancelled by user"
|
| 381 |
+
|
| 382 |
if result is None:
|
| 383 |
return None, message
|
| 384 |
+
|
| 385 |
# Add audio back
|
| 386 |
_prog(0.9, "Adding audio...")
|
| 387 |
final_with_audio = f"/tmp/twostage_audio_{timestamp}.mp4"
|
| 388 |
+
|
| 389 |
try:
|
| 390 |
audio_cmd = (
|
| 391 |
f'ffmpeg -y -i "{final_output}" -i "{video_path}" '
|
|
|
|
| 400 |
except Exception as e:
|
| 401 |
logger.warning(f"Audio processing error: {e}")
|
| 402 |
final_with_audio = final_output # Fallback to video without audio
|
| 403 |
+
|
| 404 |
_prog(1.0, "TWO-STAGE processing complete!")
|
| 405 |
+
|
| 406 |
success_message = (
|
| 407 |
f"TWO-STAGE Success!\n"
|
| 408 |
f"Background: {background_name}\n"
|
| 409 |
f"Method: Green Screen Chroma Key\n"
|
| 410 |
f"Preset: {chroma_preset}\n"
|
| 411 |
+
f"Quality: Professional cinema-grade\n"
|
| 412 |
+
f"Device: {DEVICE}"
|
| 413 |
)
|
| 414 |
+
|
| 415 |
return final_output, success_message
|
| 416 |
+
|
| 417 |
# Single-stage processing
|
| 418 |
+
_prog(0.05, f"Starting SINGLE-STAGE processing on {DEVICE}...")
|
| 419 |
+
|
| 420 |
cap = cv2.VideoCapture(video_path)
|
| 421 |
if not cap.isOpened():
|
| 422 |
return None, "Could not open video file."
|
| 423 |
+
|
| 424 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 425 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 426 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 427 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 428 |
+
|
| 429 |
if total_frames == 0:
|
| 430 |
return None, "Video appears to be empty."
|
| 431 |
+
|
| 432 |
# Log video info
|
| 433 |
+
logger.info(f"Video info: {frame_width}x{frame_height}, {fps}fps, {total_frames} frames, processing on {DEVICE}")
|
| 434 |
+
|
| 435 |
# Prepare background
|
| 436 |
background = None
|
| 437 |
background_name = ""
|
| 438 |
+
|
| 439 |
if background_choice == "custom" and custom_background_path:
|
| 440 |
if not os.path.exists(custom_background_path):
|
| 441 |
return None, f"Custom background not found: {custom_background_path}"
|
| 442 |
+
|
| 443 |
background = cv2.imread(custom_background_path)
|
| 444 |
if background is None:
|
| 445 |
return None, "Could not read custom background image."
|
|
|
|
| 451 |
background_name = bg_config["name"]
|
| 452 |
else:
|
| 453 |
return None, f"Invalid background selection: {background_choice}"
|
| 454 |
+
|
| 455 |
if background is None:
|
| 456 |
return None, "Failed to create background."
|
| 457 |
+
|
| 458 |
timestamp = int(time.time())
|
| 459 |
fourcc = cv2.VideoWriter_fourcc(*'avc1') # H.264 for better compatibility
|
| 460 |
+
|
| 461 |
+
_prog(0.1, f"Processing {total_frames} frames with {'TWO-STAGE' if use_two_stage else 'SINGLE-STAGE'} processing on {DEVICE}...")
|
| 462 |
+
|
| 463 |
# Create temporary output for preview if needed
|
| 464 |
if preview_mask or preview_greenscreen:
|
| 465 |
temp_output = f"/tmp/preview_{timestamp}.mp4"
|
|
|
|
| 467 |
else:
|
| 468 |
final_path = f"/tmp/output_{timestamp}.mp4"
|
| 469 |
final_writer = cv2.VideoWriter(final_path, fourcc, fps, (frame_width, frame_height))
|
| 470 |
+
|
| 471 |
if not final_writer.isOpened():
|
| 472 |
return None, "Could not create output video file."
|
| 473 |
+
|
| 474 |
frame_count = 0
|
| 475 |
successful_frames = 0
|
| 476 |
last_refined_mask = None
|
| 477 |
+
|
| 478 |
# Processing stats
|
| 479 |
start_time = time.time()
|
| 480 |
+
|
| 481 |
while True:
|
| 482 |
if PROCESS_CANCELLED:
|
| 483 |
cap.release()
|
|
|
|
| 485 |
if os.path.exists(final_path):
|
| 486 |
os.remove(final_path)
|
| 487 |
return None, "Processing cancelled by user"
|
| 488 |
+
|
| 489 |
ret, frame = cap.read()
|
| 490 |
if not ret:
|
| 491 |
break
|
| 492 |
+
|
| 493 |
# Skip frames if FRAME_SKIP > 1
|
| 494 |
if frame_count % FRAME_SKIP != 0:
|
| 495 |
frame_count += 1
|
| 496 |
continue
|
| 497 |
+
|
| 498 |
try:
|
| 499 |
# Update progress with detailed timing info and ETA
|
| 500 |
elapsed_time = time.time() - start_time
|
|
|
|
| 502 |
remaining_frames = total_frames - frame_count
|
| 503 |
eta_seconds = remaining_frames / current_fps if current_fps > 0 else 0
|
| 504 |
eta_display = f"{int(eta_seconds//60)}m {int(eta_seconds%60)}s" if eta_seconds > 60 else f"{int(eta_seconds)}s"
|
| 505 |
+
|
| 506 |
+
progress_msg = f"Frame {frame_count + 1}/{total_frames} | {elapsed_time:.1f}s | {current_fps:.1f} fps | ETA: {eta_display} | Device: {DEVICE}"
|
| 507 |
+
|
| 508 |
# Log and display progress
|
| 509 |
logger.info(progress_msg)
|
| 510 |
_prog(0.1 + (frame_count / max(1, total_frames)) * 0.8, progress_msg)
|
| 511 |
+
|
| 512 |
# CRITICAL: Use functions from utilities.py, not local implementations!
|
| 513 |
# SAM2 segmentation using utilities function
|
| 514 |
mask = segment_person_hq(frame, sam2_predictor)
|
| 515 |
+
|
| 516 |
if preview_mask:
|
| 517 |
# Save mask visualization
|
| 518 |
mask_vis = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
|
|
|
|
| 520 |
final_writer.write(mask_vis)
|
| 521 |
frame_count += 1
|
| 522 |
continue
|
| 523 |
+
|
| 524 |
# MatAnyone refinement on keyframes using utilities function
|
| 525 |
if (frame_count % KEYFRAME_INTERVAL == 0) or (last_refined_mask is None):
|
| 526 |
refined_mask = refine_mask_hq(frame, mask, matanyone_model)
|
| 527 |
last_refined_mask = refined_mask.copy()
|
| 528 |
+
logger.info(f"Keyframe refinement at frame {frame_count} on {DEVICE}")
|
| 529 |
else:
|
| 530 |
# Blend SAM2 mask with last refined mask for temporal smoothness
|
| 531 |
alpha = 0.7
|
| 532 |
refined_mask = cv2.addWeighted(mask, alpha, last_refined_mask, 1-alpha, 0)
|
| 533 |
+
|
| 534 |
if preview_greenscreen:
|
| 535 |
# Create green screen preview
|
| 536 |
green_bg = np.zeros_like(frame)
|
|
|
|
| 542 |
final_writer.write(preview_frame.astype(np.uint8))
|
| 543 |
frame_count += 1
|
| 544 |
continue
|
| 545 |
+
|
| 546 |
# CRITICAL: Use replace_background_hq from utilities which has the transparency fix!
|
| 547 |
result_frame = replace_background_hq(frame, refined_mask, background)
|
| 548 |
final_writer.write(result_frame)
|
| 549 |
successful_frames += 1
|
| 550 |
+
|
| 551 |
except Exception as frame_error:
|
| 552 |
logger.warning(f"Error processing frame {frame_count}: {frame_error}")
|
| 553 |
# Write original frame if processing fails
|
| 554 |
final_writer.write(frame)
|
| 555 |
+
|
| 556 |
frame_count += 1
|
| 557 |
+
|
| 558 |
# Memory management
|
| 559 |
if frame_count % MEMORY_CLEANUP_INTERVAL == 0:
|
| 560 |
gc.collect()
|
|
|
|
| 563 |
elapsed = time.time() - start_time
|
| 564 |
fps_actual = frame_count / elapsed
|
| 565 |
eta = (total_frames - frame_count) / fps_actual if fps_actual > 0 else 0
|
| 566 |
+
logger.info(f"Progress: {frame_count}/{total_frames}, FPS: {fps_actual:.1f}, ETA: {eta:.0f}s, Device: {DEVICE}")
|
| 567 |
+
|
| 568 |
cap.release()
|
| 569 |
final_writer.release()
|
| 570 |
+
|
| 571 |
if PROCESS_CANCELLED:
|
| 572 |
if os.path.exists(final_path):
|
| 573 |
os.remove(final_path)
|
| 574 |
return None, "Processing cancelled by user"
|
| 575 |
+
|
| 576 |
if successful_frames == 0:
|
| 577 |
return None, "No frames were processed successfully with AI."
|
| 578 |
+
|
| 579 |
# Calculate processing stats
|
| 580 |
total_time = time.time() - start_time
|
| 581 |
avg_fps = frame_count / total_time if total_time > 0 else 0
|
| 582 |
+
|
| 583 |
_prog(0.9, "Finalizing output...")
|
| 584 |
+
|
| 585 |
if preview_mask or preview_greenscreen:
|
| 586 |
final_output = temp_output
|
| 587 |
else:
|
| 588 |
# Add audio back for final output
|
| 589 |
_prog(0.9, "Adding audio...")
|
| 590 |
final_output = f"/tmp/final_{timestamp}.mp4"
|
| 591 |
+
|
| 592 |
try:
|
| 593 |
audio_cmd = (
|
| 594 |
f'ffmpeg -y -i "{final_path}" -i "{video_path}" '
|
|
|
|
| 602 |
except Exception as e:
|
| 603 |
logger.warning(f"Audio processing error: {e}")
|
| 604 |
shutil.copy2(final_path, final_output)
|
| 605 |
+
|
| 606 |
# Cleanup
|
| 607 |
try:
|
| 608 |
if os.path.exists(final_path):
|
| 609 |
os.remove(final_path)
|
| 610 |
except Exception as e:
|
| 611 |
logger.warning(f"Cleanup error: {e}")
|
| 612 |
+
|
| 613 |
_prog(1.0, "Processing complete!")
|
| 614 |
+
|
| 615 |
success_message = (
|
| 616 |
f"Success!\n"
|
| 617 |
f"Background: {background_name}\n"
|
|
|
|
| 621 |
f"Processing time: {total_time:.1f}s\n"
|
| 622 |
f"Average FPS: {avg_fps:.1f}\n"
|
| 623 |
f"Keyframe interval: {KEYFRAME_INTERVAL}\n"
|
| 624 |
+
f"Mode: {'TWO-STAGE' if use_two_stage else 'SINGLE-STAGE'}\n"
|
| 625 |
+
f"Device: {DEVICE}"
|
| 626 |
)
|
| 627 |
+
|
| 628 |
return final_output, success_message
|
| 629 |
+
|
| 630 |
except Exception as e:
|
| 631 |
logger.error(f"Processing error: {traceback.format_exc()}")
|
| 632 |
return None, f"Processing Error: {str(e)}"
|
| 633 |
+
|
| 634 |
# ============================================================================ #
|
| 635 |
# MAIN - IMPORT UI COMPONENTS
|
| 636 |
# ============================================================================ #
|
|
|
|
| 640 |
print(f"Keyframe interval: {KEYFRAME_INTERVAL} frames")
|
| 641 |
print(f"Frame skip: {FRAME_SKIP} (1=all frames, 2=every other)")
|
| 642 |
print(f"Two-stage mode: {'AVAILABLE' if TWO_STAGE_AVAILABLE else 'NOT AVAILABLE'}")
|
| 643 |
+
print(f"Device: {DEVICE}")
|
| 644 |
print("Loading UI components...")
|
| 645 |
+
|
| 646 |
# Import UI components
|
| 647 |
from ui_components import create_interface
|
| 648 |
+
|
| 649 |
os.makedirs("/tmp/MyAvatar/My_Videos/", exist_ok=True)
|
| 650 |
CACHE_DIR.mkdir(exist_ok=True, parents=True)
|
| 651 |
+
|
| 652 |
print("Creating interface...")
|
| 653 |
demo = create_interface()
|
| 654 |
+
|
| 655 |
print("Launching...")
|
| 656 |
demo.launch(
|
| 657 |
server_name="0.0.0.0",
|
|
|
|
| 661 |
debug=True,
|
| 662 |
enable_queue=True
|
| 663 |
)
|
| 664 |
+
|
| 665 |
except Exception as e:
|
| 666 |
logger.error(f"Startup failed: {e}")
|
| 667 |
print(f"Startup failed: {e}")
|
| 668 |
+
|
| 669 |
if __name__ == "__main__":
|
| 670 |
main()
|
|
|
|
|
|