Update utils/cv_processing.py
Browse files- utils/cv_processing.py +109 -82
utils/cv_processing.py
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
cv_processing.py · FIXED VERSION with proper SAM2 handling + MatAnyone stateful integration
|
|
|
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
from __future__ import annotations
|
|
@@ -28,41 +31,48 @@
|
|
| 28 |
PROFESSIONAL_BACKGROUNDS = PROFESSIONAL_BACKGROUNDS_LOCAL
|
| 29 |
|
| 30 |
# ----------------------------------------------------------------------------
|
| 31 |
-
# Helpers
|
| 32 |
# ----------------------------------------------------------------------------
|
| 33 |
def _ensure_rgb(img: np.ndarray) -> np.ndarray:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
if img is None:
|
| 35 |
return img
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
def _ensure_rgb01(
|
| 41 |
"""
|
| 42 |
-
Convert
|
| 43 |
-
|
| 44 |
"""
|
| 45 |
-
if
|
| 46 |
-
raise ValueError("
|
| 47 |
-
x =
|
| 48 |
-
if x.
|
| 49 |
-
x
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
rgb = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)
|
| 56 |
-
return (rgb.astype(np.float32) / 255.0).copy()
|
| 57 |
|
| 58 |
def _to_mask01(m: np.ndarray) -> np.ndarray:
|
| 59 |
if m is None:
|
| 60 |
return None
|
| 61 |
-
if m.ndim == 3 and m.shape[2] in (1, 3):
|
| 62 |
m = m[..., 0]
|
| 63 |
-
m =
|
| 64 |
-
if m.
|
| 65 |
-
m = m / 255.0
|
|
|
|
|
|
|
| 66 |
return np.clip(m, 0.0, 1.0)
|
| 67 |
|
| 68 |
def _mask_to_2d(mask: np.ndarray) -> np.ndarray:
|
|
@@ -71,29 +81,31 @@ def _mask_to_2d(mask: np.ndarray) -> np.ndarray:
|
|
| 71 |
Handles HWC/CHW/B1HW/1HW/HW, etc.
|
| 72 |
"""
|
| 73 |
m = np.asarray(mask)
|
| 74 |
-
|
|
|
|
| 75 |
if m.ndim == 3 and m.shape[0] == 1 and (m.shape[1] > 1 and m.shape[2] > 1):
|
| 76 |
m = m[0]
|
| 77 |
-
#
|
| 78 |
if m.ndim == 3 and m.shape[-1] == 1:
|
| 79 |
m = m[..., 0]
|
| 80 |
-
#
|
| 81 |
if m.ndim == 3:
|
| 82 |
m = m[..., 0] if m.shape[-1] in (1, 3, 4) else m[0]
|
| 83 |
-
|
| 84 |
m = np.squeeze(m)
|
| 85 |
if m.ndim != 2:
|
|
|
|
| 86 |
h = int(m.shape[-2]) if m.ndim >= 2 else 512
|
| 87 |
w = int(m.shape[-1]) if m.ndim >= 2 else 512
|
| 88 |
logger.warning(f"_mask_to_2d: unexpected shape {mask.shape}, creating neutral mask.")
|
| 89 |
m = np.full((h, w), 0.5, dtype=np.float32)
|
| 90 |
-
|
| 91 |
if m.dtype == np.uint8:
|
| 92 |
m = m.astype(np.float32) / 255.0
|
| 93 |
elif m.dtype != np.float32:
|
| 94 |
m = m.astype(np.float32)
|
| 95 |
-
|
| 96 |
-
return np.ascontiguousarray(m)
|
| 97 |
|
| 98 |
def _feather(mask01: np.ndarray, k: int = 2) -> np.ndarray:
|
| 99 |
if mask01.ndim == 3:
|
|
@@ -133,17 +145,18 @@ def create_professional_background(key_or_cfg: Any, width: int, height: int) ->
|
|
| 133 |
return _vertical_gradient(dark, color, width, height)
|
| 134 |
|
| 135 |
# ----------------------------------------------------------------------------
|
| 136 |
-
# Improved Segmentation
|
| 137 |
# ----------------------------------------------------------------------------
|
| 138 |
-
def _simple_person_segmentation(
|
| 139 |
-
"""Basic fallback segmentation using color detection"""
|
| 140 |
-
h, w =
|
| 141 |
-
hsv = cv2.cvtColor(
|
| 142 |
|
| 143 |
lower_skin = np.array([0, 20, 70], dtype=np.uint8)
|
| 144 |
upper_skin = np.array([20, 255, 255], dtype=np.uint8)
|
| 145 |
skin_mask = cv2.inRange(hsv, lower_skin, upper_skin)
|
| 146 |
|
|
|
|
| 147 |
lower_green = np.array([40, 40, 40], dtype=np.uint8)
|
| 148 |
upper_green = np.array([80, 255, 255], dtype=np.uint8)
|
| 149 |
green_mask = cv2.inRange(hsv, lower_green, upper_green)
|
|
@@ -171,65 +184,77 @@ def segment_person_hq(
|
|
| 171 |
**_compat_kwargs,
|
| 172 |
) -> np.ndarray:
|
| 173 |
"""
|
| 174 |
-
High-quality person segmentation with proper SAM2 handling
|
|
|
|
| 175 |
"""
|
| 176 |
-
|
|
|
|
| 177 |
|
| 178 |
if use_sam2 is False:
|
| 179 |
-
return _simple_person_segmentation(
|
| 180 |
|
| 181 |
if predictor is not None:
|
| 182 |
try:
|
| 183 |
if hasattr(predictor, "set_image") and hasattr(predictor, "predict"):
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
|
|
|
| 189 |
|
| 190 |
-
|
| 191 |
-
points.append([w // 2, h // 4]); labels.append(1)
|
| 192 |
-
points.append([w // 2, h // 2 + h // 8]); labels.append(1)
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
result = predictor.predict(
|
| 198 |
-
point_coords=
|
| 199 |
-
point_labels=
|
| 200 |
multimask_output=True
|
| 201 |
)
|
| 202 |
|
|
|
|
| 203 |
if isinstance(result, dict):
|
| 204 |
masks = result.get("masks", None)
|
| 205 |
scores = result.get("scores", None)
|
| 206 |
-
elif isinstance(result, tuple) and len(result) >= 2:
|
| 207 |
masks, scores = result[0], result[1]
|
| 208 |
else:
|
| 209 |
-
masks = result
|
| 210 |
-
scores = None
|
| 211 |
|
| 212 |
if masks is not None:
|
| 213 |
-
masks = np.
|
| 214 |
-
if masks.
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
else:
|
| 224 |
-
logger.warning(
|
| 225 |
-
mask = None
|
| 226 |
-
|
| 227 |
-
if mask is not None:
|
| 228 |
-
mask = _to_mask01(mask)
|
| 229 |
-
if mask.max() > 0.1:
|
| 230 |
-
return mask
|
| 231 |
-
else:
|
| 232 |
-
logger.warning("SAM2 mask too weak, using fallback")
|
| 233 |
else:
|
| 234 |
logger.warning("SAM2 returned no masks")
|
| 235 |
|
|
@@ -238,7 +263,7 @@ def segment_person_hq(
|
|
| 238 |
|
| 239 |
if fallback_enabled:
|
| 240 |
logger.debug("Using fallback segmentation")
|
| 241 |
-
return _simple_person_segmentation(
|
| 242 |
else:
|
| 243 |
return np.ones((h, w), dtype=np.float32)
|
| 244 |
|
|
@@ -276,7 +301,7 @@ def refine_mask_hq(
|
|
| 276 |
|
| 277 |
if matanyone is not None and callable(matanyone):
|
| 278 |
try:
|
| 279 |
-
rgb01 = _ensure_rgb01(frame)
|
| 280 |
|
| 281 |
# Stateful path (preferred)
|
| 282 |
if frame_idx is not None:
|
|
@@ -285,7 +310,7 @@ def refine_mask_hq(
|
|
| 285 |
else:
|
| 286 |
refined = matanyone(rgb01) # propagate without mask
|
| 287 |
refined = _mask_to_2d(refined)
|
| 288 |
-
if refined.max() > 0.1:
|
| 289 |
return _postprocess_mask(refined)
|
| 290 |
logger.warning("MatAnyone stateful refinement produced empty/weak mask; falling back.")
|
| 291 |
|
|
@@ -315,7 +340,7 @@ def refine_mask_hq(
|
|
| 315 |
except Exception as e:
|
| 316 |
logger.debug(f"MatAnyone process failed: {e}")
|
| 317 |
|
| 318 |
-
if refined is not None and refined.max() > 0.1:
|
| 319 |
return _postprocess_mask(refined)
|
| 320 |
else:
|
| 321 |
logger.warning("MatAnyone refinement failed or produced empty mask")
|
|
@@ -331,7 +356,7 @@ def refine_mask_hq(
|
|
| 331 |
|
| 332 |
def _postprocess_mask(mask01: np.ndarray) -> np.ndarray:
|
| 333 |
"""Post-process mask to clean edges and remove artifacts"""
|
| 334 |
-
mask_uint8 = (mask01 * 255).astype(np.uint8)
|
| 335 |
|
| 336 |
kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
| 337 |
mask_uint8 = cv2.morphologyEx(mask_uint8, cv2.MORPH_CLOSE, kernel_close)
|
|
@@ -342,11 +367,12 @@ def _postprocess_mask(mask01: np.ndarray) -> np.ndarray:
|
|
| 342 |
|
| 343 |
mask_uint8 = cv2.GaussianBlur(mask_uint8, (5, 5), 1)
|
| 344 |
|
| 345 |
-
|
|
|
|
| 346 |
|
| 347 |
def _fallback_refine(mask01: np.ndarray) -> np.ndarray:
|
| 348 |
"""Simple fallback refinement"""
|
| 349 |
-
mask_uint8 = (mask01 * 255).astype(np.uint8)
|
| 350 |
|
| 351 |
mask_uint8 = cv2.bilateralFilter(mask_uint8, 9, 75, 75)
|
| 352 |
|
|
@@ -356,10 +382,11 @@ def _fallback_refine(mask01: np.ndarray) -> np.ndarray:
|
|
| 356 |
|
| 357 |
mask_uint8 = cv2.GaussianBlur(mask_uint8, (5, 5), 1)
|
| 358 |
|
| 359 |
-
|
|
|
|
| 360 |
|
| 361 |
# ----------------------------------------------------------------------------
|
| 362 |
-
# Compositing
|
| 363 |
# ----------------------------------------------------------------------------
|
| 364 |
def replace_background_hq(
|
| 365 |
frame: np.ndarray,
|
|
@@ -368,7 +395,7 @@ def replace_background_hq(
|
|
| 368 |
fallback_enabled: bool = True,
|
| 369 |
**_compat,
|
| 370 |
) -> np.ndarray:
|
| 371 |
-
"""High-quality background replacement with alpha blending"""
|
| 372 |
try:
|
| 373 |
H, W = frame.shape[:2]
|
| 374 |
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
cv_processing.py · FIXED VERSION with proper SAM2 handling + MatAnyone stateful integration
|
| 4 |
+
|
| 5 |
+
All public functions in this module expect RGB images (H,W,3) unless stated otherwise.
|
| 6 |
+
CoreVideoProcessor already converts BGR→RGB before calling into this module.
|
| 7 |
"""
|
| 8 |
|
| 9 |
from __future__ import annotations
|
|
|
|
| 31 |
PROFESSIONAL_BACKGROUNDS = PROFESSIONAL_BACKGROUNDS_LOCAL
|
| 32 |
|
| 33 |
# ----------------------------------------------------------------------------
|
| 34 |
+
# Helpers (RGB-safe)
|
| 35 |
# ----------------------------------------------------------------------------
|
| 36 |
def _ensure_rgb(img: np.ndarray) -> np.ndarray:
|
| 37 |
+
"""
|
| 38 |
+
Identity for RGB HWC images. If channels-first, convert to HWC.
|
| 39 |
+
DOES NOT perform BGR↔RGB swaps (the caller is responsible for color space).
|
| 40 |
+
"""
|
| 41 |
if img is None:
|
| 42 |
return img
|
| 43 |
+
x = np.asarray(img)
|
| 44 |
+
if x.ndim == 3 and x.shape[-1] in (3, 4):
|
| 45 |
+
return x[..., :3]
|
| 46 |
+
if x.ndim == 3 and x.shape[0] in (1, 3, 4) and x.shape[-1] not in (1, 3, 4):
|
| 47 |
+
return np.transpose(x, (1, 2, 0))[..., :3]
|
| 48 |
+
return x
|
| 49 |
|
| 50 |
+
def _ensure_rgb01(frame_rgb: np.ndarray) -> np.ndarray:
|
| 51 |
"""
|
| 52 |
+
Convert RGB uint8/float to RGB float32 in [0,1], HWC.
|
| 53 |
+
No channel swaps are performed.
|
| 54 |
"""
|
| 55 |
+
if frame_rgb is None:
|
| 56 |
+
raise ValueError("frame_rgb is None")
|
| 57 |
+
x = _ensure_rgb(frame_rgb)
|
| 58 |
+
if x.dtype == np.uint8:
|
| 59 |
+
return (x.astype(np.float32) / 255.0).copy()
|
| 60 |
+
if np.issubdtype(x.dtype, np.floating):
|
| 61 |
+
return np.clip(x.astype(np.float32), 0.0, 1.0).copy()
|
| 62 |
+
# other integer types
|
| 63 |
+
x = np.clip(x, 0, 255).astype(np.uint8)
|
| 64 |
+
return (x.astype(np.float32) / 255.0).copy()
|
|
|
|
|
|
|
| 65 |
|
| 66 |
def _to_mask01(m: np.ndarray) -> np.ndarray:
|
| 67 |
if m is None:
|
| 68 |
return None
|
| 69 |
+
if m.ndim == 3 and m.shape[2] in (1, 3, 4):
|
| 70 |
m = m[..., 0]
|
| 71 |
+
m = np.asarray(m)
|
| 72 |
+
if m.dtype == np.uint8:
|
| 73 |
+
m = m.astype(np.float32) / 255.0
|
| 74 |
+
elif m.dtype != np.float32:
|
| 75 |
+
m = m.astype(np.float32)
|
| 76 |
return np.clip(m, 0.0, 1.0)
|
| 77 |
|
| 78 |
def _mask_to_2d(mask: np.ndarray) -> np.ndarray:
|
|
|
|
| 81 |
Handles HWC/CHW/B1HW/1HW/HW, etc.
|
| 82 |
"""
|
| 83 |
m = np.asarray(mask)
|
| 84 |
+
|
| 85 |
+
# CHW with single channel
|
| 86 |
if m.ndim == 3 and m.shape[0] == 1 and (m.shape[1] > 1 and m.shape[2] > 1):
|
| 87 |
m = m[0]
|
| 88 |
+
# HWC with single channel
|
| 89 |
if m.ndim == 3 and m.shape[-1] == 1:
|
| 90 |
m = m[..., 0]
|
| 91 |
+
# generic 3D -> take first channel
|
| 92 |
if m.ndim == 3:
|
| 93 |
m = m[..., 0] if m.shape[-1] in (1, 3, 4) else m[0]
|
| 94 |
+
|
| 95 |
m = np.squeeze(m)
|
| 96 |
if m.ndim != 2:
|
| 97 |
+
# fall back to neutral 0.5 mask
|
| 98 |
h = int(m.shape[-2]) if m.ndim >= 2 else 512
|
| 99 |
w = int(m.shape[-1]) if m.ndim >= 2 else 512
|
| 100 |
logger.warning(f"_mask_to_2d: unexpected shape {mask.shape}, creating neutral mask.")
|
| 101 |
m = np.full((h, w), 0.5, dtype=np.float32)
|
| 102 |
+
|
| 103 |
if m.dtype == np.uint8:
|
| 104 |
m = m.astype(np.float32) / 255.0
|
| 105 |
elif m.dtype != np.float32:
|
| 106 |
m = m.astype(np.float32)
|
| 107 |
+
|
| 108 |
+
return np.ascontiguousarray(np.clip(m, 0.0, 1.0))
|
| 109 |
|
| 110 |
def _feather(mask01: np.ndarray, k: int = 2) -> np.ndarray:
|
| 111 |
if mask01.ndim == 3:
|
|
|
|
| 145 |
return _vertical_gradient(dark, color, width, height)
|
| 146 |
|
| 147 |
# ----------------------------------------------------------------------------
|
| 148 |
+
# Improved Segmentation (expects RGB input)
|
| 149 |
# ----------------------------------------------------------------------------
|
| 150 |
+
def _simple_person_segmentation(frame_rgb: np.ndarray) -> np.ndarray:
|
| 151 |
+
"""Basic fallback segmentation using color detection on RGB frames."""
|
| 152 |
+
h, w = frame_rgb.shape[:2]
|
| 153 |
+
hsv = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2HSV)
|
| 154 |
|
| 155 |
lower_skin = np.array([0, 20, 70], dtype=np.uint8)
|
| 156 |
upper_skin = np.array([20, 255, 255], dtype=np.uint8)
|
| 157 |
skin_mask = cv2.inRange(hsv, lower_skin, upper_skin)
|
| 158 |
|
| 159 |
+
# detect greenscreen-ish
|
| 160 |
lower_green = np.array([40, 40, 40], dtype=np.uint8)
|
| 161 |
upper_green = np.array([80, 255, 255], dtype=np.uint8)
|
| 162 |
green_mask = cv2.inRange(hsv, lower_green, upper_green)
|
|
|
|
| 184 |
**_compat_kwargs,
|
| 185 |
) -> np.ndarray:
|
| 186 |
"""
|
| 187 |
+
High-quality person segmentation with proper SAM2 handling.
|
| 188 |
+
Expects RGB frame (H,W,3), uint8 or float in [0,1].
|
| 189 |
"""
|
| 190 |
+
frame_rgb = _ensure_rgb(frame)
|
| 191 |
+
h, w = frame_rgb.shape[:2]
|
| 192 |
|
| 193 |
if use_sam2 is False:
|
| 194 |
+
return _simple_person_segmentation(frame_rgb)
|
| 195 |
|
| 196 |
if predictor is not None:
|
| 197 |
try:
|
| 198 |
if hasattr(predictor, "set_image") and hasattr(predictor, "predict"):
|
| 199 |
+
# Predictor adapter expects RGB uint8; convert if needed
|
| 200 |
+
if frame_rgb.dtype != np.uint8:
|
| 201 |
+
rgb_u8 = np.clip(frame_rgb * (255.0 if frame_rgb.dtype != np.uint8 else 1.0), 0, 255).astype(np.uint8) \
|
| 202 |
+
if np.issubdtype(frame_rgb.dtype, np.floating) else frame_rgb.astype(np.uint8)
|
| 203 |
+
else:
|
| 204 |
+
rgb_u8 = frame_rgb
|
| 205 |
|
| 206 |
+
predictor.set_image(rgb_u8)
|
|
|
|
|
|
|
| 207 |
|
| 208 |
+
# Center + a couple of body-biased prompts
|
| 209 |
+
points = np.array([
|
| 210 |
+
[w // 2, h // 2],
|
| 211 |
+
[w // 2, h // 4],
|
| 212 |
+
[w // 2, h // 2 + h // 8],
|
| 213 |
+
], dtype=np.float32)
|
| 214 |
+
labels = np.array([1, 1, 1], dtype=np.int32)
|
| 215 |
|
| 216 |
result = predictor.predict(
|
| 217 |
+
point_coords=points,
|
| 218 |
+
point_labels=labels,
|
| 219 |
multimask_output=True
|
| 220 |
)
|
| 221 |
|
| 222 |
+
# normalize outputs
|
| 223 |
if isinstance(result, dict):
|
| 224 |
masks = result.get("masks", None)
|
| 225 |
scores = result.get("scores", None)
|
| 226 |
+
elif isinstance(result, (tuple, list)) and len(result) >= 2:
|
| 227 |
masks, scores = result[0], result[1]
|
| 228 |
else:
|
| 229 |
+
masks, scores = result, None
|
|
|
|
| 230 |
|
| 231 |
if masks is not None:
|
| 232 |
+
masks = np.asarray(masks)
|
| 233 |
+
if masks.ndim == 2:
|
| 234 |
+
mask = masks
|
| 235 |
+
elif masks.ndim == 3 and masks.shape[0] > 0:
|
| 236 |
+
if scores is not None:
|
| 237 |
+
best_idx = int(np.argmax(np.asarray(scores)))
|
| 238 |
+
mask = masks[best_idx]
|
| 239 |
+
else:
|
| 240 |
+
mask = masks[0]
|
| 241 |
+
elif masks.ndim == 4 and masks.shape[1] == 1:
|
| 242 |
+
# (N,1,H,W)
|
| 243 |
+
if scores is not None:
|
| 244 |
+
best_idx = int(np.argmax(np.asarray(scores)))
|
| 245 |
+
mask = masks[best_idx, 0]
|
| 246 |
+
else:
|
| 247 |
+
mask = masks[0, 0]
|
| 248 |
+
else:
|
| 249 |
+
logger.warning(f"Unexpected mask shape from SAM2: {masks.shape}")
|
| 250 |
+
mask = None
|
| 251 |
+
|
| 252 |
+
if mask is not None:
|
| 253 |
+
mask = _to_mask01(mask)
|
| 254 |
+
if float(mask.max()) > 0.1:
|
| 255 |
+
return np.ascontiguousarray(mask)
|
| 256 |
else:
|
| 257 |
+
logger.warning("SAM2 mask too weak, using fallback")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
else:
|
| 259 |
logger.warning("SAM2 returned no masks")
|
| 260 |
|
|
|
|
| 263 |
|
| 264 |
if fallback_enabled:
|
| 265 |
logger.debug("Using fallback segmentation")
|
| 266 |
+
return _simple_person_segmentation(frame_rgb)
|
| 267 |
else:
|
| 268 |
return np.ones((h, w), dtype=np.float32)
|
| 269 |
|
|
|
|
| 301 |
|
| 302 |
if matanyone is not None and callable(matanyone):
|
| 303 |
try:
|
| 304 |
+
rgb01 = _ensure_rgb01(frame) # RGB float32 in [0,1]
|
| 305 |
|
| 306 |
# Stateful path (preferred)
|
| 307 |
if frame_idx is not None:
|
|
|
|
| 310 |
else:
|
| 311 |
refined = matanyone(rgb01) # propagate without mask
|
| 312 |
refined = _mask_to_2d(refined)
|
| 313 |
+
if float(refined.max()) > 0.1:
|
| 314 |
return _postprocess_mask(refined)
|
| 315 |
logger.warning("MatAnyone stateful refinement produced empty/weak mask; falling back.")
|
| 316 |
|
|
|
|
| 340 |
except Exception as e:
|
| 341 |
logger.debug(f"MatAnyone process failed: {e}")
|
| 342 |
|
| 343 |
+
if refined is not None and float(refined.max()) > 0.1:
|
| 344 |
return _postprocess_mask(refined)
|
| 345 |
else:
|
| 346 |
logger.warning("MatAnyone refinement failed or produced empty mask")
|
|
|
|
| 356 |
|
| 357 |
def _postprocess_mask(mask01: np.ndarray) -> np.ndarray:
|
| 358 |
"""Post-process mask to clean edges and remove artifacts"""
|
| 359 |
+
mask_uint8 = (np.clip(mask01, 0, 1) * 255).astype(np.uint8)
|
| 360 |
|
| 361 |
kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
| 362 |
mask_uint8 = cv2.morphologyEx(mask_uint8, cv2.MORPH_CLOSE, kernel_close)
|
|
|
|
| 367 |
|
| 368 |
mask_uint8 = cv2.GaussianBlur(mask_uint8, (5, 5), 1)
|
| 369 |
|
| 370 |
+
out = mask_uint8.astype(np.float32) / 255.0
|
| 371 |
+
return np.ascontiguousarray(out)
|
| 372 |
|
| 373 |
def _fallback_refine(mask01: np.ndarray) -> np.ndarray:
|
| 374 |
"""Simple fallback refinement"""
|
| 375 |
+
mask_uint8 = (np.clip(mask01, 0, 1) * 255).astype(np.uint8)
|
| 376 |
|
| 377 |
mask_uint8 = cv2.bilateralFilter(mask_uint8, 9, 75, 75)
|
| 378 |
|
|
|
|
| 382 |
|
| 383 |
mask_uint8 = cv2.GaussianBlur(mask_uint8, (5, 5), 1)
|
| 384 |
|
| 385 |
+
out = mask_uint8.astype(np.float32) / 255.0
|
| 386 |
+
return np.ascontiguousarray(out)
|
| 387 |
|
| 388 |
# ----------------------------------------------------------------------------
|
| 389 |
+
# Compositing (expects RGB inputs)
|
| 390 |
# ----------------------------------------------------------------------------
|
| 391 |
def replace_background_hq(
|
| 392 |
frame: np.ndarray,
|
|
|
|
| 395 |
fallback_enabled: bool = True,
|
| 396 |
**_compat,
|
| 397 |
) -> np.ndarray:
|
| 398 |
+
"""High-quality background replacement with alpha blending (RGB in/out)."""
|
| 399 |
try:
|
| 400 |
H, W = frame.shape[:2]
|
| 401 |
|