Update app.py
Browse files
app.py
CHANGED
|
@@ -1,798 +1,542 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
import torch.nn.functional as F
|
| 5 |
-
from PIL import Image
|
| 6 |
import numpy as np
|
| 7 |
-
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
# Create PIL Image and resize to original dimensions
|
| 66 |
-
pil_im = Image.fromarray(result_np, mode='L')
|
| 67 |
-
pil_im = pil_im.resize(im_size, Image.LANCZOS)
|
| 68 |
-
|
| 69 |
-
return pil_im
|
| 70 |
-
|
| 71 |
-
# ============================================================================
|
| 72 |
-
# MODEL ARCHITECTURE DEFINITION
|
| 73 |
-
# ============================================================================
|
| 74 |
-
|
| 75 |
-
class REBNCONV(nn.Module):
|
| 76 |
-
def __init__(self, in_ch=3, out_ch=3, dirate=1, stride=1):
|
| 77 |
-
super(REBNCONV, self).__init__()
|
| 78 |
-
self.conv_s1 = nn.Conv2d(in_ch, out_ch, 3, padding=1*dirate, dilation=1*dirate, stride=stride)
|
| 79 |
-
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
| 80 |
-
self.relu_s1 = nn.ReLU(inplace=True)
|
| 81 |
-
|
| 82 |
-
def forward(self, x):
|
| 83 |
-
hx = x
|
| 84 |
-
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
| 85 |
-
return xout
|
| 86 |
-
|
| 87 |
-
def _upsample_like(src, tar):
|
| 88 |
-
src = F.interpolate(src, size=tar.shape[2:], mode='bilinear', align_corners=False)
|
| 89 |
-
return src
|
| 90 |
-
|
| 91 |
-
class RSU7(nn.Module):
|
| 92 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512):
|
| 93 |
-
super(RSU7, self).__init__()
|
| 94 |
-
self.in_ch = in_ch
|
| 95 |
-
self.mid_ch = mid_ch
|
| 96 |
-
self.out_ch = out_ch
|
| 97 |
-
|
| 98 |
-
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
| 99 |
-
|
| 100 |
-
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
| 101 |
-
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 102 |
-
|
| 103 |
-
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
| 104 |
-
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 105 |
-
|
| 106 |
-
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
| 107 |
-
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 108 |
-
|
| 109 |
-
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
| 110 |
-
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 111 |
-
|
| 112 |
-
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
| 113 |
-
self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 114 |
-
|
| 115 |
-
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
| 116 |
-
|
| 117 |
-
self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
| 118 |
-
|
| 119 |
-
self.rebnconv6d = REBNCONV(mid_ch*2, mid_ch, dirate=1)
|
| 120 |
-
self.rebnconv5d = REBNCONV(mid_ch*2, mid_ch, dirate=1)
|
| 121 |
-
self.rebnconv4d = REBNCONV(mid_ch*2, mid_ch, dirate=1)
|
| 122 |
-
self.rebnconv3d = REBNCONV(mid_ch*2, mid_ch, dirate=1)
|
| 123 |
-
self.rebnconv2d = REBNCONV(mid_ch*2, mid_ch, dirate=1)
|
| 124 |
-
self.rebnconv1d = REBNCONV(mid_ch*2, out_ch, dirate=1)
|
| 125 |
-
|
| 126 |
-
def forward(self, x):
|
| 127 |
-
b, c, h, w = x.shape
|
| 128 |
-
|
| 129 |
-
hx = x
|
| 130 |
-
hxin = self.rebnconvin(hx)
|
| 131 |
-
|
| 132 |
-
hx1 = self.rebnconv1(hxin)
|
| 133 |
-
hx = self.pool1(hx1)
|
| 134 |
-
|
| 135 |
-
hx2 = self.rebnconv2(hx)
|
| 136 |
-
hx = self.pool2(hx2)
|
| 137 |
-
|
| 138 |
-
hx3 = self.rebnconv3(hx)
|
| 139 |
-
hx = self.pool3(hx3)
|
| 140 |
-
|
| 141 |
-
hx4 = self.rebnconv4(hx)
|
| 142 |
-
hx = self.pool4(hx4)
|
| 143 |
-
|
| 144 |
-
hx5 = self.rebnconv5(hx)
|
| 145 |
-
hx = self.pool5(hx5)
|
| 146 |
-
|
| 147 |
-
hx6 = self.rebnconv6(hx)
|
| 148 |
-
|
| 149 |
-
hx7 = self.rebnconv7(hx6)
|
| 150 |
-
|
| 151 |
-
hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1))
|
| 152 |
-
hx6dup = _upsample_like(hx6d, hx5)
|
| 153 |
-
|
| 154 |
-
hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1))
|
| 155 |
-
hx5dup = _upsample_like(hx5d, hx4)
|
| 156 |
-
|
| 157 |
-
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
| 158 |
-
hx4dup = _upsample_like(hx4d, hx3)
|
| 159 |
-
|
| 160 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
| 161 |
-
hx3dup = _upsample_like(hx3d, hx2)
|
| 162 |
-
|
| 163 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
| 164 |
-
hx2dup = _upsample_like(hx2d, hx1)
|
| 165 |
-
|
| 166 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
| 167 |
-
|
| 168 |
-
return hx1d + hxin
|
| 169 |
-
|
| 170 |
-
class RSU6(nn.Module):
|
| 171 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 172 |
-
super(RSU6, self).__init__()
|
| 173 |
-
|
| 174 |
-
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
| 175 |
-
|
| 176 |
-
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
| 177 |
-
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 178 |
-
|
| 179 |
-
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
| 180 |
-
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 181 |
-
|
| 182 |
-
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
| 183 |
-
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 184 |
-
|
| 185 |
-
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
| 186 |
-
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 187 |
-
|
| 188 |
-
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
| 189 |
-
|
| 190 |
-
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
| 191 |
-
|
| 192 |
-
self.rebnconv5d = REBNCONV(mid_ch*2, mid_ch, dirate=1)
|
| 193 |
-
self.rebnconv4d = REBNCONV(mid_ch*2, mid_ch, dirate=1)
|
| 194 |
-
self.rebnconv3d = REBNCONV(mid_ch*2, mid_ch, dirate=1)
|
| 195 |
-
self.rebnconv2d = REBNCONV(mid_ch*2, mid_ch, dirate=1)
|
| 196 |
-
self.rebnconv1d = REBNCONV(mid_ch*2, out_ch, dirate=1)
|
| 197 |
-
|
| 198 |
-
def forward(self, x):
|
| 199 |
-
hx = x
|
| 200 |
-
|
| 201 |
-
hxin = self.rebnconvin(hx)
|
| 202 |
-
|
| 203 |
-
hx1 = self.rebnconv1(hxin)
|
| 204 |
-
hx = self.pool1(hx1)
|
| 205 |
-
|
| 206 |
-
hx2 = self.rebnconv2(hx)
|
| 207 |
-
hx = self.pool2(hx2)
|
| 208 |
-
|
| 209 |
-
hx3 = self.rebnconv3(hx)
|
| 210 |
-
hx = self.pool3(hx3)
|
| 211 |
-
|
| 212 |
-
hx4 = self.rebnconv4(hx)
|
| 213 |
-
hx = self.pool4(hx4)
|
| 214 |
-
|
| 215 |
-
hx5 = self.rebnconv5(hx)
|
| 216 |
-
|
| 217 |
-
hx6 = self.rebnconv6(hx5)
|
| 218 |
-
|
| 219 |
-
hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1))
|
| 220 |
-
hx5dup = _upsample_like(hx5d, hx4)
|
| 221 |
-
|
| 222 |
-
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
| 223 |
-
hx4dup = _upsample_like(hx4d, hx3)
|
| 224 |
-
|
| 225 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
| 226 |
-
hx3dup = _upsample_like(hx3d, hx2)
|
| 227 |
-
|
| 228 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
| 229 |
-
hx2dup = _upsample_like(hx2d, hx1)
|
| 230 |
-
|
| 231 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
| 232 |
-
|
| 233 |
-
return hx1d + hxin
|
| 234 |
-
|
| 235 |
-
class RSU5(nn.Module):
|
| 236 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 237 |
-
super(RSU5, self).__init__()
|
| 238 |
-
|
| 239 |
-
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
| 240 |
-
|
| 241 |
-
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
| 242 |
-
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 243 |
-
|
| 244 |
-
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
| 245 |
-
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 246 |
-
|
| 247 |
-
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
| 248 |
-
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 249 |
-
|
| 250 |
-
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
| 251 |
-
|
| 252 |
-
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
| 253 |
-
|
| 254 |
-
self.rebnconv4d = REBNCONV(mid_ch*2, mid_ch, dirate=1)
|
| 255 |
-
self.rebnconv3d = REBNCONV(mid_ch*2, mid_ch, dirate=1)
|
| 256 |
-
self.rebnconv2d = REBNCONV(mid_ch*2, mid_ch, dirate=1)
|
| 257 |
-
self.rebnconv1d = REBNCONV(mid_ch*2, out_ch, dirate=1)
|
| 258 |
-
|
| 259 |
-
def forward(self, x):
|
| 260 |
-
hx = x
|
| 261 |
-
|
| 262 |
-
hxin = self.rebnconvin(hx)
|
| 263 |
-
|
| 264 |
-
hx1 = self.rebnconv1(hxin)
|
| 265 |
-
hx = self.pool1(hx1)
|
| 266 |
-
|
| 267 |
-
hx2 = self.rebnconv2(hx)
|
| 268 |
-
hx = self.pool2(hx2)
|
| 269 |
-
|
| 270 |
-
hx3 = self.rebnconv3(hx)
|
| 271 |
-
hx = self.pool3(hx3)
|
| 272 |
-
|
| 273 |
-
hx4 = self.rebnconv4(hx)
|
| 274 |
-
|
| 275 |
-
hx5 = self.rebnconv5(hx4)
|
| 276 |
-
|
| 277 |
-
hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1))
|
| 278 |
-
hx4dup = _upsample_like(hx4d, hx3)
|
| 279 |
-
|
| 280 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
| 281 |
-
hx3dup = _upsample_like(hx3d, hx2)
|
| 282 |
-
|
| 283 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
| 284 |
-
hx2dup = _upsample_like(hx2d, hx1)
|
| 285 |
-
|
| 286 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
| 287 |
-
|
| 288 |
-
return hx1d + hxin
|
| 289 |
-
|
| 290 |
-
class RSU4(nn.Module):
|
| 291 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 292 |
-
super(RSU4, self).__init__()
|
| 293 |
-
|
| 294 |
-
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
| 295 |
-
|
| 296 |
-
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
| 297 |
-
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 298 |
-
|
| 299 |
-
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
| 300 |
-
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 301 |
-
|
| 302 |
-
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
| 303 |
-
|
| 304 |
-
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
| 305 |
-
|
| 306 |
-
self.rebnconv3d = REBNCONV(mid_ch*2, mid_ch, dirate=1)
|
| 307 |
-
self.rebnconv2d = REBNCONV(mid_ch*2, mid_ch, dirate=1)
|
| 308 |
-
self.rebnconv1d = REBNCONV(mid_ch*2, out_ch, dirate=1)
|
| 309 |
-
|
| 310 |
-
def forward(self, x):
|
| 311 |
-
hx = x
|
| 312 |
-
|
| 313 |
-
hxin = self.rebnconvin(hx)
|
| 314 |
-
|
| 315 |
-
hx1 = self.rebnconv1(hxin)
|
| 316 |
-
hx = self.pool1(hx1)
|
| 317 |
-
|
| 318 |
-
hx2 = self.rebnconv2(hx)
|
| 319 |
-
hx = self.pool2(hx2)
|
| 320 |
-
|
| 321 |
-
hx3 = self.rebnconv3(hx)
|
| 322 |
-
|
| 323 |
-
hx4 = self.rebnconv4(hx3)
|
| 324 |
-
|
| 325 |
-
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
| 326 |
-
hx3dup = _upsample_like(hx3d, hx2)
|
| 327 |
-
|
| 328 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
| 329 |
-
hx2dup = _upsample_like(hx2d, hx1)
|
| 330 |
-
|
| 331 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
| 332 |
-
|
| 333 |
-
return hx1d + hxin
|
| 334 |
-
|
| 335 |
-
class RSU4F(nn.Module):
|
| 336 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 337 |
-
super(RSU4F, self).__init__()
|
| 338 |
-
|
| 339 |
-
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
| 340 |
-
|
| 341 |
-
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
| 342 |
-
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
| 343 |
-
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4)
|
| 344 |
-
|
| 345 |
-
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8)
|
| 346 |
-
|
| 347 |
-
self.rebnconv3d = REBNCONV(mid_ch*2, mid_ch, dirate=4)
|
| 348 |
-
self.rebnconv2d = REBNCONV(mid_ch*2, mid_ch, dirate=2)
|
| 349 |
-
self.rebnconv1d = REBNCONV(mid_ch*2, out_ch, dirate=1)
|
| 350 |
-
|
| 351 |
-
def forward(self, x):
|
| 352 |
-
hx = x
|
| 353 |
-
|
| 354 |
-
hxin = self.rebnconvin(hx)
|
| 355 |
-
|
| 356 |
-
hx1 = self.rebnconv1(hxin)
|
| 357 |
-
hx2 = self.rebnconv2(hx1)
|
| 358 |
-
hx3 = self.rebnconv3(hx2)
|
| 359 |
-
|
| 360 |
-
hx4 = self.rebnconv4(hx3)
|
| 361 |
-
|
| 362 |
-
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
| 363 |
-
hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1))
|
| 364 |
-
hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1))
|
| 365 |
-
|
| 366 |
-
return hx1d + hxin
|
| 367 |
-
|
| 368 |
-
class BriaRMBG(nn.Module):
|
| 369 |
-
"""
|
| 370 |
-
BRIA RMBG Model for background removal.
|
| 371 |
-
"""
|
| 372 |
-
def __init__(self, config=None):
|
| 373 |
-
super(BriaRMBG, self).__init__()
|
| 374 |
-
|
| 375 |
-
in_ch = 3
|
| 376 |
-
out_ch = 1
|
| 377 |
-
|
| 378 |
-
self.conv_in = nn.Conv2d(in_ch, 64, 3, stride=2, padding=1)
|
| 379 |
-
self.pool_in = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 380 |
-
|
| 381 |
-
self.stage1 = RSU7(64, 32, 64)
|
| 382 |
-
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 383 |
-
|
| 384 |
-
self.stage2 = RSU6(64, 32, 128)
|
| 385 |
-
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 386 |
-
|
| 387 |
-
self.stage3 = RSU5(128, 64, 256)
|
| 388 |
-
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 389 |
-
|
| 390 |
-
self.stage4 = RSU4(256, 128, 512)
|
| 391 |
-
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 392 |
-
|
| 393 |
-
self.stage5 = RSU4F(512, 256, 512)
|
| 394 |
-
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 395 |
-
|
| 396 |
-
self.stage6 = RSU4F(512, 256, 512)
|
| 397 |
-
|
| 398 |
-
# decoder
|
| 399 |
-
self.stage5d = RSU4F(1024, 256, 512)
|
| 400 |
-
self.stage4d = RSU4(1024, 128, 256)
|
| 401 |
-
self.stage3d = RSU5(512, 64, 128)
|
| 402 |
-
self.stage2d = RSU6(256, 32, 64)
|
| 403 |
-
self.stage1d = RSU7(128, 16, 64)
|
| 404 |
-
|
| 405 |
-
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1)
|
| 406 |
-
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1)
|
| 407 |
-
self.side3 = nn.Conv2d(128, out_ch, 3, padding=1)
|
| 408 |
-
self.side4 = nn.Conv2d(256, out_ch, 3, padding=1)
|
| 409 |
-
self.side5 = nn.Conv2d(512, out_ch, 3, padding=1)
|
| 410 |
-
self.side6 = nn.Conv2d(512, out_ch, 3, padding=1)
|
| 411 |
-
|
| 412 |
-
self.outconv = nn.Conv2d(6, out_ch, 1)
|
| 413 |
-
|
| 414 |
-
def forward(self, x):
|
| 415 |
-
hx = x
|
| 416 |
-
|
| 417 |
-
hxin = self.conv_in(hx)
|
| 418 |
-
hxin = self.pool_in(hxin)
|
| 419 |
-
|
| 420 |
-
# stage 1
|
| 421 |
-
hx1 = self.stage1(hxin)
|
| 422 |
-
hx = self.pool12(hx1)
|
| 423 |
-
|
| 424 |
-
# stage 2
|
| 425 |
-
hx2 = self.stage2(hx)
|
| 426 |
-
hx = self.pool23(hx2)
|
| 427 |
-
|
| 428 |
-
# stage 3
|
| 429 |
-
hx3 = self.stage3(hx)
|
| 430 |
-
hx = self.pool34(hx3)
|
| 431 |
-
|
| 432 |
-
# stage 4
|
| 433 |
-
hx4 = self.stage4(hx)
|
| 434 |
-
hx = self.pool45(hx4)
|
| 435 |
-
|
| 436 |
-
# stage 5
|
| 437 |
-
hx5 = self.stage5(hx)
|
| 438 |
-
hx = self.pool56(hx5)
|
| 439 |
-
|
| 440 |
-
# stage 6
|
| 441 |
-
hx6 = self.stage6(hx)
|
| 442 |
-
hx6up = _upsample_like(hx6, hx5)
|
| 443 |
-
|
| 444 |
-
# decoder
|
| 445 |
-
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
|
| 446 |
-
hx5dup = _upsample_like(hx5d, hx4)
|
| 447 |
-
|
| 448 |
-
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
|
| 449 |
-
hx4dup = _upsample_like(hx4d, hx3)
|
| 450 |
-
|
| 451 |
-
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
|
| 452 |
-
hx3dup = _upsample_like(hx3d, hx2)
|
| 453 |
-
|
| 454 |
-
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
|
| 455 |
-
hx2dup = _upsample_like(hx2d, hx1)
|
| 456 |
-
|
| 457 |
-
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
|
| 458 |
-
|
| 459 |
-
# side output
|
| 460 |
-
d1 = self.side1(hx1d)
|
| 461 |
-
d1 = _upsample_like(d1, x)
|
| 462 |
-
|
| 463 |
-
d2 = self.side2(hx2d)
|
| 464 |
-
d2 = _upsample_like(d2, x)
|
| 465 |
-
|
| 466 |
-
d3 = self.side3(hx3d)
|
| 467 |
-
d3 = _upsample_like(d3, x)
|
| 468 |
-
|
| 469 |
-
d4 = self.side4(hx4d)
|
| 470 |
-
d4 = _upsample_like(d4, x)
|
| 471 |
-
|
| 472 |
-
d5 = self.side5(hx5d)
|
| 473 |
-
d5 = _upsample_like(d5, x)
|
| 474 |
-
|
| 475 |
-
d6 = self.side6(hx6)
|
| 476 |
-
d6 = _upsample_like(d6, x)
|
| 477 |
-
|
| 478 |
-
d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1))
|
| 479 |
-
|
| 480 |
-
return torch.sigmoid(d0), torch.sigmoid(d1), torch.sigmoid(d2), torch.sigmoid(d3), torch.sigmoid(d4), torch.sigmoid(d5), torch.sigmoid(d6)
|
| 481 |
-
|
| 482 |
-
# ============================================================================
|
| 483 |
-
# MODEL LOADING AND INITIALIZATION
|
| 484 |
-
# ============================================================================
|
| 485 |
-
|
| 486 |
-
print("Loading BRIA RMBG model...")
|
| 487 |
-
|
| 488 |
-
# Load the model
|
| 489 |
-
model_path = "./model.pth"
|
| 490 |
-
if not os.path.exists(model_path):
|
| 491 |
-
print("Model not found locally, downloading from HuggingFace...")
|
| 492 |
-
from huggingface_hub import hf_hub_download
|
| 493 |
-
model_path = hf_hub_download(
|
| 494 |
-
repo_id="briaai/RMBG-1.4",
|
| 495 |
-
filename="model.pth",
|
| 496 |
-
repo_type="model"
|
| 497 |
-
)
|
| 498 |
-
print(f"Model downloaded to: {model_path}")
|
| 499 |
-
|
| 500 |
-
# Initialize model
|
| 501 |
-
net = BriaRMBG()
|
| 502 |
-
|
| 503 |
-
# Load state dict with error handling
|
| 504 |
-
try:
|
| 505 |
-
state_dict = torch.load(model_path, map_location=device)
|
| 506 |
-
|
| 507 |
-
# Check if we need to adjust the state dict
|
| 508 |
-
if 'outconv.weight' not in state_dict:
|
| 509 |
-
print("Adjusting model state dict keys...")
|
| 510 |
-
# The model might have different key names, let's check
|
| 511 |
-
for key in list(state_dict.keys()):
|
| 512 |
-
if 'outconv' in key:
|
| 513 |
-
print(f"Found outconv key: {key}")
|
| 514 |
|
| 515 |
-
net.load_state_dict(state_dict, strict=False)
|
| 516 |
-
print("Model weights loaded successfully!")
|
| 517 |
-
except Exception as e:
|
| 518 |
-
print(f"Warning: Could not load all model weights: {e}")
|
| 519 |
-
print("Attempting to load with strict=False...")
|
| 520 |
try:
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 525 |
raise
|
| 526 |
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 534 |
|
| 535 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 536 |
"""
|
| 537 |
-
Main
|
| 538 |
-
Returns RGBA image with transparent background.
|
| 539 |
"""
|
| 540 |
-
|
| 541 |
-
|
|
|
|
|
|
|
| 542 |
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
.logo-container {
|
| 603 |
-
text-align: center;
|
| 604 |
-
padding: 25px 0;
|
| 605 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 606 |
-
border-radius: 15px;
|
| 607 |
-
margin-bottom: 25px;
|
| 608 |
-
box-shadow: 0 10px 30px rgba(0,0,0,0.2);
|
| 609 |
-
}
|
| 610 |
-
.logo-title {
|
| 611 |
-
color: white;
|
| 612 |
-
font-size: 3em;
|
| 613 |
-
font-weight: bold;
|
| 614 |
-
text-shadow: 3px 3px 6px rgba(0,0,0,0.3);
|
| 615 |
-
margin-bottom: 10px;
|
| 616 |
-
}
|
| 617 |
-
.logo-subtitle {
|
| 618 |
-
color: rgba(255,255,255,0.95);
|
| 619 |
-
font-size: 1.3em;
|
| 620 |
-
margin-top: 10px;
|
| 621 |
-
font-weight: 300;
|
| 622 |
-
}
|
| 623 |
-
.powered-by {
|
| 624 |
-
text-align: center;
|
| 625 |
-
color: #666;
|
| 626 |
-
font-size: 0.9em;
|
| 627 |
-
margin-top: 20px;
|
| 628 |
-
padding: 10px;
|
| 629 |
-
background: rgba(0,0,0,0.05);
|
| 630 |
-
border-radius: 5px;
|
| 631 |
-
}
|
| 632 |
-
.features-grid {
|
| 633 |
-
display: grid;
|
| 634 |
-
grid-template-columns: repeat(3, 1fr);
|
| 635 |
-
gap: 20px;
|
| 636 |
-
margin: 20px 0;
|
| 637 |
-
}
|
| 638 |
-
.feature-card {
|
| 639 |
-
text-align: center;
|
| 640 |
-
padding: 15px;
|
| 641 |
-
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
| 642 |
-
border-radius: 10px;
|
| 643 |
-
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
|
| 644 |
-
}
|
| 645 |
-
.feature-icon {
|
| 646 |
-
font-size: 2em;
|
| 647 |
-
margin-bottom: 10px;
|
| 648 |
-
}
|
| 649 |
-
.feature-title {
|
| 650 |
-
font-weight: bold;
|
| 651 |
-
color: #333;
|
| 652 |
-
margin-bottom: 5px;
|
| 653 |
-
}
|
| 654 |
-
.feature-desc {
|
| 655 |
-
color: #666;
|
| 656 |
-
font-size: 0.9em;
|
| 657 |
-
}
|
| 658 |
-
"""
|
| 659 |
-
|
| 660 |
-
print("Creating Gradio interface...")
|
| 661 |
-
|
| 662 |
-
# Create Gradio interface with logo and enhanced UI
|
| 663 |
-
with gr.Blocks(css=custom_css, title="MyAvatars.dk - AI Background Remover") as demo:
|
| 664 |
-
# Logo header
|
| 665 |
-
gr.HTML("""
|
| 666 |
-
<div class="logo-container">
|
| 667 |
-
<div class="logo-title">🎨 MyAvatars.dk</div>
|
| 668 |
-
<div class="logo-subtitle">Professional AI-Powered Background Removal</div>
|
| 669 |
-
</div>
|
| 670 |
-
""")
|
| 671 |
-
|
| 672 |
-
# Features grid
|
| 673 |
-
gr.HTML("""
|
| 674 |
-
<div class="features-grid">
|
| 675 |
-
<div class="feature-card">
|
| 676 |
-
<div class="feature-icon">⚡</div>
|
| 677 |
-
<div class="feature-title">Lightning Fast</div>
|
| 678 |
-
<div class="feature-desc">Process images in seconds</div>
|
| 679 |
-
</div>
|
| 680 |
-
<div class="feature-card">
|
| 681 |
-
<div class="feature-icon">🎯</div>
|
| 682 |
-
<div class="feature-title">High Precision</div>
|
| 683 |
-
<div class="feature-desc">AI-powered edge detection</div>
|
| 684 |
-
</div>
|
| 685 |
-
<div class="feature-card">
|
| 686 |
-
<div class="feature-icon">🔒</div>
|
| 687 |
-
<div class="feature-title">Privacy First</div>
|
| 688 |
-
<div class="feature-desc">Images processed locally</div>
|
| 689 |
-
</div>
|
| 690 |
-
</div>
|
| 691 |
-
""")
|
| 692 |
-
|
| 693 |
-
gr.Markdown("## Remove backgrounds instantly with state-of-the-art AI")
|
| 694 |
-
gr.Markdown("Upload any image and get a perfect transparent background version. Ideal for avatars, product photos, and creative projects!")
|
| 695 |
-
|
| 696 |
-
with gr.Row():
|
| 697 |
-
with gr.Column():
|
| 698 |
-
input_image = gr.Image(
|
| 699 |
-
label="📤 Upload Image",
|
| 700 |
-
type="pil",
|
| 701 |
-
height=400,
|
| 702 |
-
elem_id="input_image"
|
| 703 |
-
)
|
| 704 |
-
|
| 705 |
-
with gr.Row():
|
| 706 |
-
clear_btn = gr.Button("🗑️ Clear", variant="secondary", size="sm")
|
| 707 |
-
process_btn = gr.Button("✨ Remove Background", variant="primary", size="lg")
|
| 708 |
|
| 709 |
-
|
| 710 |
-
output_image = gr.Image(
|
| 711 |
-
label="📥 Result (Transparent Background)",
|
| 712 |
-
type="pil",
|
| 713 |
-
height=400,
|
| 714 |
-
image_mode="RGBA",
|
| 715 |
-
elem_id="output_image"
|
| 716 |
-
)
|
| 717 |
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 744 |
|
| 745 |
-
|
| 746 |
-
with gr.Accordion("📖 How to use", open=False):
|
| 747 |
gr.Markdown("""
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
|
|
|
|
|
|
|
|
|
|
| 752 |
|
| 753 |
-
**
|
| 754 |
-
**Max resolution:** 4096x4096 pixels
|
| 755 |
-
**Output format:** PNG with transparency (RGBA)
|
| 756 |
""")
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 791 |
if __name__ == "__main__":
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# ========================= PRE-IMPORT ENV GUARDS =========================
|
| 3 |
+
import os
|
| 4 |
+
os.environ.pop("OMP_NUM_THREADS", None)
|
| 5 |
+
os.environ.setdefault("MKL_NUM_THREADS", "1")
|
| 6 |
+
os.environ.setdefault("OPENBLAS_NUM_THREADS", "1")
|
| 7 |
+
os.environ.setdefault("VECLIB_MAXIMUM_THREADS", "1")
|
| 8 |
+
os.environ.setdefault("NUMEXPR_NUM_THREADS", "1")
|
| 9 |
+
|
| 10 |
+
# ========================= IMPORTS =========================
|
| 11 |
+
import gc
|
| 12 |
+
import sys
|
| 13 |
+
import cv2
|
| 14 |
import torch
|
|
|
|
|
|
|
|
|
|
| 15 |
import numpy as np
|
| 16 |
+
import gradio as gr
|
| 17 |
+
import tempfile
|
| 18 |
+
import time
|
| 19 |
+
from pathlib import Path
|
| 20 |
+
import logging
|
| 21 |
+
import traceback
|
| 22 |
+
from datetime import datetime
|
| 23 |
+
import psutil
|
| 24 |
+
import warnings
|
| 25 |
+
warnings.filterwarnings("ignore")
|
| 26 |
+
|
| 27 |
+
# Import the properly implemented functions from utilities
|
| 28 |
+
from utilities import (
|
| 29 |
+
segment_person_hq,
|
| 30 |
+
refine_mask_hq,
|
| 31 |
+
replace_background_hq,
|
| 32 |
+
load_background_image,
|
| 33 |
+
resize_background_to_match,
|
| 34 |
+
apply_temporal_smoothing,
|
| 35 |
+
smooth_edges,
|
| 36 |
+
estimate_foreground
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Import two-stage processor for advanced mode
|
| 40 |
+
from two_stage_processor import TwoStageProcessor
|
| 41 |
+
|
| 42 |
+
# Import UI components
|
| 43 |
+
from ui_components import create_ui, get_example_videos, get_example_backgrounds
|
| 44 |
+
|
| 45 |
+
# ========================= LOGGING SETUP =========================
|
| 46 |
+
logging.basicConfig(
|
| 47 |
+
level=logging.INFO,
|
| 48 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 49 |
+
)
|
| 50 |
+
logger = logging.getLogger(__name__)
|
| 51 |
+
|
| 52 |
+
# ========================= GPU/DEVICE SETUP =========================
|
| 53 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 54 |
+
logger.info(f"Using device: {device}")
|
| 55 |
+
|
| 56 |
+
if device.type == "cuda":
|
| 57 |
+
torch.cuda.empty_cache()
|
| 58 |
+
# Optimize CUDA settings for memory efficiency
|
| 59 |
+
torch.backends.cudnn.benchmark = False
|
| 60 |
+
torch.backends.cudnn.deterministic = True
|
| 61 |
+
torch.cuda.set_per_process_memory_fraction(0.8) # Limit to 80% of VRAM
|
| 62 |
+
|
| 63 |
+
# ========================= GLOBAL MODELS =========================
|
| 64 |
+
# Models will be loaded on demand to save RAM
|
| 65 |
+
sam2_model = None
|
| 66 |
+
matta_model = None
|
| 67 |
+
two_stage_processor = None
|
| 68 |
+
|
| 69 |
+
# ========================= MODEL LOADING =========================
|
| 70 |
+
def load_models_on_demand(use_two_stage=False):
|
| 71 |
+
"""Load models only when needed, with proper memory management"""
|
| 72 |
+
global sam2_model, matta_model, two_stage_processor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
try:
|
| 75 |
+
# Clear any existing models first
|
| 76 |
+
clear_models_from_memory()
|
| 77 |
+
|
| 78 |
+
if use_two_stage and two_stage_processor is None:
|
| 79 |
+
logger.info("Loading Two-Stage Processor (SAM2 + MattA)...")
|
| 80 |
+
two_stage_processor = TwoStageProcessor(device=device)
|
| 81 |
+
logger.info("Two-Stage Processor loaded successfully")
|
| 82 |
+
elif not use_two_stage:
|
| 83 |
+
# Load individual models for single-stage processing
|
| 84 |
+
if sam2_model is None:
|
| 85 |
+
logger.info("Loading SAM2 model...")
|
| 86 |
+
# This should be imported from your SAM2 implementation
|
| 87 |
+
from sam2_integration import load_sam2_model
|
| 88 |
+
sam2_model = load_sam2_model(device=device)
|
| 89 |
+
logger.info("SAM2 model loaded")
|
| 90 |
+
|
| 91 |
+
if matta_model is None:
|
| 92 |
+
logger.info("Loading MattingAnything model...")
|
| 93 |
+
# This should be imported from your MattA implementation
|
| 94 |
+
from matta_integration import load_matta_model
|
| 95 |
+
matta_model = load_matta_model(device=device)
|
| 96 |
+
logger.info("MattingAnything model loaded")
|
| 97 |
+
|
| 98 |
+
# Force garbage collection after loading
|
| 99 |
+
gc.collect()
|
| 100 |
+
if device.type == "cuda":
|
| 101 |
+
torch.cuda.empty_cache()
|
| 102 |
+
|
| 103 |
+
except Exception as e:
|
| 104 |
+
logger.error(f"Error loading models: {str(e)}")
|
| 105 |
raise
|
| 106 |
|
| 107 |
+
def clear_models_from_memory():
|
| 108 |
+
"""Clear models from memory to free up RAM"""
|
| 109 |
+
global sam2_model, matta_model, two_stage_processor
|
| 110 |
+
|
| 111 |
+
if sam2_model is not None:
|
| 112 |
+
del sam2_model
|
| 113 |
+
sam2_model = None
|
| 114 |
+
|
| 115 |
+
if matta_model is not None:
|
| 116 |
+
del matta_model
|
| 117 |
+
matta_model = None
|
| 118 |
+
|
| 119 |
+
if two_stage_processor is not None:
|
| 120 |
+
del two_stage_processor
|
| 121 |
+
two_stage_processor = None
|
| 122 |
+
|
| 123 |
+
gc.collect()
|
| 124 |
+
if device.type == "cuda":
|
| 125 |
+
torch.cuda.empty_cache()
|
| 126 |
+
|
| 127 |
+
# ========================= MEMORY MONITORING =========================
|
| 128 |
+
def log_memory_usage(stage=""):
|
| 129 |
+
"""Log current memory usage"""
|
| 130 |
+
process = psutil.Process()
|
| 131 |
+
mem_info = process.memory_info()
|
| 132 |
+
ram_usage = mem_info.rss / 1024 / 1024 / 1024 # GB
|
| 133 |
+
|
| 134 |
+
if device.type == "cuda":
|
| 135 |
+
vram_usage = torch.cuda.memory_allocated() / 1024 / 1024 / 1024 # GB
|
| 136 |
+
vram_reserved = torch.cuda.memory_reserved() / 1024 / 1024 / 1024 # GB
|
| 137 |
+
logger.info(f"[{stage}] RAM: {ram_usage:.2f}GB | VRAM: {vram_usage:.2f}GB (reserved: {vram_reserved:.2f}GB)")
|
| 138 |
+
else:
|
| 139 |
+
logger.info(f"[{stage}] RAM: {ram_usage:.2f}GB")
|
| 140 |
|
| 141 |
+
# ========================= PROGRESS TRACKING =========================
|
| 142 |
+
def write_progress_info(info_dict):
|
| 143 |
+
"""Write formatted progress information to temp file for UI display"""
|
| 144 |
+
try:
|
| 145 |
+
progress_file = "/tmp/processing_info.txt"
|
| 146 |
+
with open(progress_file, "w") as f:
|
| 147 |
+
if "error" in info_dict:
|
| 148 |
+
f.write(f"❌ ERROR\n{info_dict['error']}\n")
|
| 149 |
+
elif "complete" in info_dict:
|
| 150 |
+
f.write(f"✅ COMPLETE\n")
|
| 151 |
+
f.write(f"Total Frames: {info_dict.get('total_frames', 'N/A')}\n")
|
| 152 |
+
f.write(f"Processing Time: {info_dict.get('time', 'N/A')}\n")
|
| 153 |
+
f.write(f"Average FPS: {info_dict.get('fps', 'N/A')}\n")
|
| 154 |
+
f.write(f"Resolution: {info_dict.get('resolution', 'N/A')}\n")
|
| 155 |
+
f.write(f"Background: {info_dict.get('background', 'N/A')}\n")
|
| 156 |
+
else:
|
| 157 |
+
f.write(f"📊 PROCESSING STATUS\n")
|
| 158 |
+
f.write(f"━━━━━━━━━━━━━━━━━━━━━━━━━━\n")
|
| 159 |
+
f.write(f"🎬 Frame {info_dict.get('current_frame', 0)}/{info_dict.get('total_frames', 0)}\n")
|
| 160 |
+
f.write(f"⏱️ Elapsed: {info_dict.get('elapsed', '0s')}\n")
|
| 161 |
+
f.write(f"⚡ Speed: {info_dict.get('speed', '0')} fps\n")
|
| 162 |
+
f.write(f"🎯 ETA: {info_dict.get('eta', 'calculating...')}\n")
|
| 163 |
+
f.write(f"━━━━━━━━━━━━━━━━━━━━━━━━━━\n")
|
| 164 |
+
f.write(f"📈 Progress: {info_dict.get('progress', 0):.1f}%\n")
|
| 165 |
+
except Exception as e:
|
| 166 |
+
logger.error(f"Error writing progress: {e}")
|
| 167 |
+
|
| 168 |
+
# ========================= MAIN PROCESSING FUNCTION =========================
|
| 169 |
+
def process_video(
|
| 170 |
+
input_video,
|
| 171 |
+
background_image,
|
| 172 |
+
use_two_stage=False,
|
| 173 |
+
use_mask_refinement=True,
|
| 174 |
+
use_temporal_smoothing=True,
|
| 175 |
+
mask_blur=5,
|
| 176 |
+
edge_smoothing=5,
|
| 177 |
+
background_type="Color",
|
| 178 |
+
background_color="#00FF00",
|
| 179 |
+
progress=gr.Progress()
|
| 180 |
+
):
|
| 181 |
"""
|
| 182 |
+
Main video processing function with proper SAM2+MattA integration
|
|
|
|
| 183 |
"""
|
| 184 |
+
temp_dir = None
|
| 185 |
+
cap = None
|
| 186 |
+
out = None
|
| 187 |
+
start_time = time.time()
|
| 188 |
|
| 189 |
+
try:
|
| 190 |
+
# Initial setup
|
| 191 |
+
logger.info("Starting video processing...")
|
| 192 |
+
log_memory_usage("Start")
|
| 193 |
+
|
| 194 |
+
# Validate inputs
|
| 195 |
+
if input_video is None:
|
| 196 |
+
raise ValueError("No input video provided")
|
| 197 |
+
|
| 198 |
+
# Load models based on processing mode
|
| 199 |
+
load_models_on_demand(use_two_stage=use_two_stage)
|
| 200 |
+
log_memory_usage("Models Loaded")
|
| 201 |
+
|
| 202 |
+
# Setup video capture
|
| 203 |
+
cap = cv2.VideoCapture(input_video)
|
| 204 |
+
if not cap.isOpened():
|
| 205 |
+
raise ValueError(f"Failed to open video: {input_video}")
|
| 206 |
+
|
| 207 |
+
# Get video properties
|
| 208 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 209 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 210 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 211 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 212 |
+
|
| 213 |
+
logger.info(f"Video info: {width}x{height}, {fps} fps, {total_frames} frames")
|
| 214 |
+
|
| 215 |
+
# Prepare background
|
| 216 |
+
if background_type == "Color":
|
| 217 |
+
background = np.full((height, width, 3),
|
| 218 |
+
tuple(int(background_color[i:i+2], 16) for i in (5, 3, 1)),
|
| 219 |
+
dtype=np.uint8)
|
| 220 |
+
elif background_type == "Image" and background_image is not None:
|
| 221 |
+
background = load_background_image(background_image)
|
| 222 |
+
background = resize_background_to_match(background, (width, height))
|
| 223 |
+
elif background_type == "Blur":
|
| 224 |
+
# Will be handled per frame
|
| 225 |
+
background = None
|
| 226 |
+
else:
|
| 227 |
+
background = np.full((height, width, 3), (0, 255, 0), dtype=np.uint8)
|
| 228 |
+
|
| 229 |
+
# Setup output video
|
| 230 |
+
temp_dir = tempfile.mkdtemp()
|
| 231 |
+
output_path = os.path.join(temp_dir, "output_video.mp4")
|
| 232 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 233 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 234 |
+
|
| 235 |
+
# Process frames
|
| 236 |
+
frame_idx = 0
|
| 237 |
+
processed_frames = []
|
| 238 |
+
masks_history = [] # For temporal smoothing
|
| 239 |
+
|
| 240 |
+
# Batch processing for memory efficiency
|
| 241 |
+
BATCH_SIZE = 10 if device.type == "cuda" else 5
|
| 242 |
+
frame_batch = []
|
| 243 |
+
|
| 244 |
+
while True:
|
| 245 |
+
ret, frame = cap.read()
|
| 246 |
+
if not ret:
|
| 247 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
| 249 |
+
frame_batch.append(frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
+
# Process batch when full or at end
|
| 252 |
+
if len(frame_batch) == BATCH_SIZE or frame_idx == total_frames - 1:
|
| 253 |
+
|
| 254 |
+
for batch_frame in frame_batch:
|
| 255 |
+
# Update progress
|
| 256 |
+
progress(frame_idx / total_frames, f"Processing frame {frame_idx}/{total_frames}")
|
| 257 |
+
|
| 258 |
+
# Calculate and write detailed progress info
|
| 259 |
+
elapsed_time = time.time() - start_time
|
| 260 |
+
if frame_idx > 0:
|
| 261 |
+
fps_current = frame_idx / elapsed_time
|
| 262 |
+
eta = (total_frames - frame_idx) / fps_current
|
| 263 |
+
write_progress_info({
|
| 264 |
+
'current_frame': frame_idx,
|
| 265 |
+
'total_frames': total_frames,
|
| 266 |
+
'elapsed': f"{elapsed_time:.1f}s",
|
| 267 |
+
'speed': f"{fps_current:.1f}",
|
| 268 |
+
'eta': f"{eta:.0f}s",
|
| 269 |
+
'progress': (frame_idx / total_frames) * 100
|
| 270 |
+
})
|
| 271 |
+
|
| 272 |
+
# Process frame based on mode
|
| 273 |
+
if use_two_stage:
|
| 274 |
+
# Use integrated two-stage processor
|
| 275 |
+
processed_frame, mask = two_stage_processor.process_frame(
|
| 276 |
+
batch_frame,
|
| 277 |
+
background if background is not None else batch_frame,
|
| 278 |
+
use_refinement=use_mask_refinement,
|
| 279 |
+
mask_blur=mask_blur
|
| 280 |
+
)
|
| 281 |
+
else:
|
| 282 |
+
# Use utilities functions (properly implemented with transparency fix)
|
| 283 |
+
# Step 1: Segment person using SAM2
|
| 284 |
+
mask = segment_person_hq(batch_frame, sam2_model)
|
| 285 |
+
|
| 286 |
+
# Step 2: Refine mask using MattA if enabled
|
| 287 |
+
if use_mask_refinement and matta_model is not None:
|
| 288 |
+
mask = refine_mask_hq(batch_frame, mask, matta_model)
|
| 289 |
+
|
| 290 |
+
# Step 3: Apply temporal smoothing if enabled
|
| 291 |
+
if use_temporal_smoothing and len(masks_history) > 0:
|
| 292 |
+
mask = apply_temporal_smoothing(mask, masks_history, window_size=5)
|
| 293 |
+
|
| 294 |
+
# Store mask for temporal smoothing
|
| 295 |
+
masks_history.append(mask)
|
| 296 |
+
if len(masks_history) > 10: # Keep only recent masks
|
| 297 |
+
masks_history.pop(0)
|
| 298 |
+
|
| 299 |
+
# Step 4: Apply edge smoothing
|
| 300 |
+
if edge_smoothing > 0:
|
| 301 |
+
mask = smooth_edges(mask, edge_smoothing)
|
| 302 |
+
|
| 303 |
+
# Step 5: Handle background
|
| 304 |
+
if background_type == "Blur":
|
| 305 |
+
background_frame = cv2.GaussianBlur(batch_frame, (21, 21), 0)
|
| 306 |
+
else:
|
| 307 |
+
background_frame = background
|
| 308 |
+
|
| 309 |
+
# Step 6: Replace background with proper alpha handling
|
| 310 |
+
processed_frame = replace_background_hq(
|
| 311 |
+
batch_frame,
|
| 312 |
+
mask,
|
| 313 |
+
background_frame
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
# Write frame
|
| 317 |
+
out.write(processed_frame)
|
| 318 |
+
processed_frames.append(processed_frame)
|
| 319 |
+
frame_idx += 1
|
| 320 |
+
|
| 321 |
+
# Memory management - clear every 100 frames
|
| 322 |
+
if frame_idx % 100 == 0:
|
| 323 |
+
gc.collect()
|
| 324 |
+
if device.type == "cuda":
|
| 325 |
+
torch.cuda.empty_cache()
|
| 326 |
+
log_memory_usage(f"Frame {frame_idx}")
|
| 327 |
+
|
| 328 |
+
# Clear batch
|
| 329 |
+
frame_batch = []
|
| 330 |
+
|
| 331 |
+
# Finalize
|
| 332 |
+
cap.release()
|
| 333 |
+
out.release()
|
| 334 |
+
|
| 335 |
+
# Write completion info
|
| 336 |
+
total_time = time.time() - start_time
|
| 337 |
+
avg_fps = total_frames / total_time if total_time > 0 else 0
|
| 338 |
+
write_progress_info({
|
| 339 |
+
'complete': True,
|
| 340 |
+
'total_frames': total_frames,
|
| 341 |
+
'time': f"{total_time:.1f}s",
|
| 342 |
+
'fps': f"{avg_fps:.1f}",
|
| 343 |
+
'resolution': f"{width}x{height}",
|
| 344 |
+
'background': background_type
|
| 345 |
+
})
|
| 346 |
+
|
| 347 |
+
logger.info(f"Processing complete: {total_frames} frames in {total_time:.1f}s ({avg_fps:.1f} fps)")
|
| 348 |
+
log_memory_usage("Complete")
|
| 349 |
+
|
| 350 |
+
return output_path
|
| 351 |
+
|
| 352 |
+
except Exception as e:
|
| 353 |
+
logger.error(f"Processing error: {str(e)}\n{traceback.format_exc()}")
|
| 354 |
+
write_progress_info({'error': str(e)})
|
| 355 |
+
raise gr.Error(f"Processing failed: {str(e)}")
|
| 356 |
+
|
| 357 |
+
finally:
|
| 358 |
+
# Cleanup
|
| 359 |
+
if cap is not None:
|
| 360 |
+
cap.release()
|
| 361 |
+
if out is not None:
|
| 362 |
+
out.release()
|
| 363 |
+
|
| 364 |
+
# Clear models to free memory
|
| 365 |
+
clear_models_from_memory()
|
| 366 |
+
|
| 367 |
+
# Final garbage collection
|
| 368 |
+
gc.collect()
|
| 369 |
+
if device.type == "cuda":
|
| 370 |
+
torch.cuda.empty_cache()
|
| 371 |
+
|
| 372 |
+
# ========================= GRADIO APP =========================
|
| 373 |
+
def create_app():
|
| 374 |
+
"""Create and configure the Gradio application"""
|
| 375 |
|
| 376 |
+
with gr.Blocks(title="Video Background Replacement - SAM2+MattA", theme=gr.themes.Soft()) as app:
|
|
|
|
| 377 |
gr.Markdown("""
|
| 378 |
+
# 🎬 Video Background Replacement
|
| 379 |
+
### Powered by SAM2 + MattingAnything
|
| 380 |
+
|
| 381 |
+
Upload a video and replace the background with:
|
| 382 |
+
- 🎨 Solid colors
|
| 383 |
+
- 🖼️ Custom images
|
| 384 |
+
- 🌫️ Blurred background
|
| 385 |
|
| 386 |
+
**Two-Stage Mode**: Combines SAM2 segmentation with MattA refinement for best quality
|
|
|
|
|
|
|
| 387 |
""")
|
| 388 |
+
|
| 389 |
+
with gr.Tabs():
|
| 390 |
+
with gr.TabItem("🎥 Process Video"):
|
| 391 |
+
with gr.Row():
|
| 392 |
+
with gr.Column(scale=1):
|
| 393 |
+
input_video = gr.Video(label="Input Video", height=300)
|
| 394 |
+
|
| 395 |
+
with gr.Accordion("⚙️ Processing Options", open=True):
|
| 396 |
+
use_two_stage = gr.Checkbox(
|
| 397 |
+
label="Use Two-Stage Processing (SAM2→MattA)",
|
| 398 |
+
value=True,
|
| 399 |
+
info="Better quality but slower"
|
| 400 |
+
)
|
| 401 |
+
use_mask_refinement = gr.Checkbox(
|
| 402 |
+
label="Refine Masks",
|
| 403 |
+
value=True,
|
| 404 |
+
info="Use MattA for better edges"
|
| 405 |
+
)
|
| 406 |
+
use_temporal_smoothing = gr.Checkbox(
|
| 407 |
+
label="Temporal Smoothing",
|
| 408 |
+
value=True,
|
| 409 |
+
info="Reduce flickering between frames"
|
| 410 |
+
)
|
| 411 |
+
mask_blur = gr.Slider(
|
| 412 |
+
minimum=0,
|
| 413 |
+
maximum=21,
|
| 414 |
+
value=5,
|
| 415 |
+
step=2,
|
| 416 |
+
label="Mask Blur"
|
| 417 |
+
)
|
| 418 |
+
edge_smoothing = gr.Slider(
|
| 419 |
+
minimum=0,
|
| 420 |
+
maximum=21,
|
| 421 |
+
value=5,
|
| 422 |
+
step=2,
|
| 423 |
+
label="Edge Smoothing"
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
with gr.Accordion("🎨 Background Options", open=True):
|
| 427 |
+
background_type = gr.Radio(
|
| 428 |
+
choices=["Color", "Image", "Blur"],
|
| 429 |
+
value="Color",
|
| 430 |
+
label="Background Type"
|
| 431 |
+
)
|
| 432 |
+
background_color = gr.ColorPicker(
|
| 433 |
+
label="Background Color",
|
| 434 |
+
value="#00FF00",
|
| 435 |
+
visible=True
|
| 436 |
+
)
|
| 437 |
+
background_image = gr.Image(
|
| 438 |
+
label="Background Image",
|
| 439 |
+
type="filepath",
|
| 440 |
+
visible=False
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
# Show/hide based on background type
|
| 444 |
+
def update_background_inputs(bg_type):
|
| 445 |
+
return (
|
| 446 |
+
gr.update(visible=bg_type == "Color"),
|
| 447 |
+
gr.update(visible=bg_type == "Image")
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
background_type.change(
|
| 451 |
+
update_background_inputs,
|
| 452 |
+
inputs=[background_type],
|
| 453 |
+
outputs=[background_color, background_image]
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
with gr.Column(scale=1):
|
| 457 |
+
output_video = gr.Video(label="Output Video", height=300)
|
| 458 |
+
|
| 459 |
+
process_btn = gr.Button("🚀 Process Video", variant="primary", size="lg")
|
| 460 |
+
|
| 461 |
+
processing_info = gr.Textbox(
|
| 462 |
+
label="📊 Processing Info",
|
| 463 |
+
lines=10,
|
| 464 |
+
max_lines=15,
|
| 465 |
+
interactive=False,
|
| 466 |
+
placeholder="Processing status will appear here...",
|
| 467 |
+
elem_id="processing-info"
|
| 468 |
+
)
|
| 469 |
+
|
| 470 |
+
# Connect processing
|
| 471 |
+
process_btn.click(
|
| 472 |
+
fn=process_video,
|
| 473 |
+
inputs=[
|
| 474 |
+
input_video,
|
| 475 |
+
background_image,
|
| 476 |
+
use_two_stage,
|
| 477 |
+
use_mask_refinement,
|
| 478 |
+
use_temporal_smoothing,
|
| 479 |
+
mask_blur,
|
| 480 |
+
edge_smoothing,
|
| 481 |
+
background_type,
|
| 482 |
+
background_color
|
| 483 |
+
],
|
| 484 |
+
outputs=[output_video]
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
with gr.TabItem("📚 Examples"):
|
| 488 |
+
gr.Examples(
|
| 489 |
+
examples=get_example_videos(),
|
| 490 |
+
inputs=input_video,
|
| 491 |
+
label="Sample Videos"
|
| 492 |
+
)
|
| 493 |
+
gr.Examples(
|
| 494 |
+
examples=get_example_backgrounds(),
|
| 495 |
+
inputs=background_image,
|
| 496 |
+
label="Sample Backgrounds"
|
| 497 |
+
)
|
| 498 |
+
|
| 499 |
+
with gr.TabItem("ℹ️ About"):
|
| 500 |
+
gr.Markdown("""
|
| 501 |
+
### Technology Stack
|
| 502 |
+
|
| 503 |
+
- **SAM2**: Segment Anything Model 2 for accurate person segmentation
|
| 504 |
+
- **MattingAnything**: Advanced alpha matting for refined edges
|
| 505 |
+
- **Two-Stage Processing**: Combines both models for optimal quality
|
| 506 |
+
|
| 507 |
+
### Tips for Best Results
|
| 508 |
+
|
| 509 |
+
1. **Use Two-Stage Mode** for highest quality output
|
| 510 |
+
2. **Enable Temporal Smoothing** to reduce flickering
|
| 511 |
+
3. **Adjust Edge Smoothing** for softer transitions
|
| 512 |
+
4. **High contrast backgrounds** work best
|
| 513 |
+
|
| 514 |
+
### Performance Notes
|
| 515 |
+
|
| 516 |
+
- Processing speed depends on video resolution and length
|
| 517 |
+
- GPU recommended for faster processing
|
| 518 |
+
- Two-stage mode is slower but produces better results
|
| 519 |
+
""")
|
| 520 |
+
|
| 521 |
+
return app
|
| 522 |
+
|
| 523 |
+
# ========================= MAIN ENTRY POINT =========================
|
| 524 |
if __name__ == "__main__":
|
| 525 |
+
try:
|
| 526 |
+
# Create and launch app
|
| 527 |
+
app = create_app()
|
| 528 |
+
|
| 529 |
+
# Configure for HuggingFace Spaces
|
| 530 |
+
app.queue(max_size=5)
|
| 531 |
+
app.launch(
|
| 532 |
+
server_name="0.0.0.0",
|
| 533 |
+
server_port=7860,
|
| 534 |
+
share=False,
|
| 535 |
+
debug=False,
|
| 536 |
+
show_error=True
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
except Exception as e:
|
| 540 |
+
logger.error(f"Failed to start application: {str(e)}")
|
| 541 |
+
traceback.print_exc()
|
| 542 |
+
sys.exit(1)
|