Update models/loaders/model_loader.py
Browse files- models/loaders/model_loader.py +278 -346
models/loaders/model_loader.py
CHANGED
|
@@ -1,12 +1,15 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
"""
|
| 6 |
|
|
|
|
|
|
|
| 7 |
import os
|
| 8 |
import gc
|
| 9 |
-
import sys
|
| 10 |
import time
|
| 11 |
import logging
|
| 12 |
import traceback
|
|
@@ -21,6 +24,10 @@
|
|
| 21 |
|
| 22 |
logger = logging.getLogger(__name__)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
class LoadedModel:
|
| 25 |
def __init__(self, model=None, model_id: str = "", load_time: float = 0.0, device: str = "", framework: str = ""):
|
| 26 |
self.model = model
|
|
@@ -29,40 +36,51 @@ def __init__(self, model=None, model_id: str = "", load_time: float = 0.0, devic
|
|
| 29 |
self.device = device
|
| 30 |
self.framework = framework
|
| 31 |
|
| 32 |
-
def to_dict(self):
|
| 33 |
return {
|
| 34 |
"model_id": self.model_id,
|
| 35 |
"framework": self.framework,
|
| 36 |
"device": self.device,
|
| 37 |
"load_time": self.load_time,
|
| 38 |
-
"loaded": self.model is not None
|
| 39 |
}
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
class ModelLoader:
|
| 42 |
def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
| 43 |
self.device_manager = device_mgr
|
| 44 |
self.memory_manager = memory_mgr
|
| 45 |
-
self.device = self.device_manager.get_optimal_device()
|
| 46 |
|
| 47 |
-
self.sam2_predictor = None
|
| 48 |
-
self.matanyone_model = None
|
| 49 |
|
| 50 |
self.checkpoints_dir = "./checkpoints"
|
| 51 |
os.makedirs(self.checkpoints_dir, exist_ok=True)
|
| 52 |
|
| 53 |
self.loading_stats = {
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
}
|
| 60 |
|
| 61 |
logger.info(f"ModelLoader initialized for device: {self.device}")
|
| 62 |
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
start_time = time.time()
|
| 65 |
-
self.loading_stats[
|
| 66 |
|
| 67 |
try:
|
| 68 |
logger.info("Starting model loading process...")
|
|
@@ -71,66 +89,141 @@ def load_all_models(self, progress_callback: Optional[Callable] = None, cancel_e
|
|
| 71 |
|
| 72 |
self._cleanup_models()
|
| 73 |
|
| 74 |
-
#
|
| 75 |
logger.info("Loading SAM2 predictor...")
|
| 76 |
if progress_callback:
|
| 77 |
progress_callback(0.1, "Loading SAM2 predictor...")
|
| 78 |
-
sam2_loaded = self.
|
| 79 |
|
| 80 |
if sam2_loaded is None:
|
| 81 |
-
logger.warning("SAM2 loading failed -
|
| 82 |
else:
|
| 83 |
self.sam2_predictor = sam2_loaded
|
| 84 |
-
|
| 85 |
-
self.loading_stats['sam2_load_time']
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
#
|
| 89 |
logger.info("Loading MatAnyOne model...")
|
| 90 |
if progress_callback:
|
| 91 |
progress_callback(0.6, "Loading MatAnyOne model...")
|
| 92 |
-
|
| 93 |
-
matanyone_loaded = self._load_matanyone_model_safe(progress_callback)
|
| 94 |
|
| 95 |
if matanyone_loaded is None:
|
| 96 |
-
logger.warning("MatAnyOne loading failed - will use
|
| 97 |
else:
|
| 98 |
self.matanyone_model = matanyone_loaded
|
| 99 |
-
|
| 100 |
-
self.loading_stats['matanyone_load_time']
|
| 101 |
-
logger.info(f"MatAnyOne loaded in {matanyone_time:.1f}s")
|
| 102 |
|
| 103 |
-
# Final status
|
| 104 |
total_time = time.time() - start_time
|
| 105 |
-
self.loading_stats[
|
| 106 |
-
self.loading_stats[
|
| 107 |
|
| 108 |
if progress_callback:
|
| 109 |
-
if self.
|
| 110 |
-
progress_callback(1.0, "Models loaded (
|
| 111 |
else:
|
| 112 |
progress_callback(1.0, "Using fallback methods (models failed to load)")
|
| 113 |
|
| 114 |
logger.info(f"Model loading completed in {total_time:.2f}s")
|
| 115 |
-
|
| 116 |
-
return (self.sam2_predictor, self.matanyone_model)
|
| 117 |
|
| 118 |
except Exception as e:
|
| 119 |
error_msg = f"Model loading failed: {str(e)}"
|
| 120 |
logger.error(f"{error_msg}\n{traceback.format_exc()}")
|
| 121 |
self._cleanup_models()
|
| 122 |
-
self.loading_stats[
|
| 123 |
if progress_callback:
|
| 124 |
progress_callback(1.0, f"Error: {error_msg}")
|
| 125 |
return None, None
|
| 126 |
|
| 127 |
-
def
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
model_size = "large"
|
| 132 |
try:
|
| 133 |
-
if hasattr(self.device_manager,
|
| 134 |
memory_gb = self.device_manager.get_device_memory_gb()
|
| 135 |
if memory_gb < 4:
|
| 136 |
model_size = "tiny"
|
|
@@ -138,290 +231,203 @@ def _load_sam2_predictor_safe(self, progress_callback: Optional[Callable] = None
|
|
| 138 |
model_size = "small"
|
| 139 |
elif memory_gb < 12:
|
| 140 |
model_size = "base"
|
| 141 |
-
logger.info(f"Selected SAM2 {model_size} based on {memory_gb}GB
|
| 142 |
except Exception as e:
|
| 143 |
logger.warning(f"Could not determine device memory: {e}")
|
| 144 |
-
model_size = "tiny"
|
| 145 |
|
| 146 |
model_map = {
|
| 147 |
"tiny": "facebook/sam2.1-hiera-tiny",
|
| 148 |
-
"small": "facebook/sam2.1-hiera-small",
|
| 149 |
"base": "facebook/sam2.1-hiera-base-plus",
|
| 150 |
-
"large": "facebook/sam2.1-hiera-large"
|
| 151 |
}
|
| 152 |
model_id = model_map.get(model_size, model_map["tiny"])
|
| 153 |
-
|
| 154 |
-
logger.info(f"[DIAG] Loading SAM2 model_id: {model_id} on device {self.device}")
|
| 155 |
|
| 156 |
if progress_callback:
|
| 157 |
-
progress_callback(0.3, f"Loading SAM2 {model_size}
|
| 158 |
|
| 159 |
-
|
| 160 |
-
loading_methods = [
|
| 161 |
("official", self._try_load_sam2_official, model_id),
|
| 162 |
("direct", self._try_load_sam2_direct, model_id),
|
| 163 |
("manual", self._try_load_sam2_manual, model_id),
|
| 164 |
]
|
| 165 |
|
| 166 |
-
for
|
| 167 |
try:
|
| 168 |
-
logger.info(f"Attempting SAM2 load via {
|
| 169 |
-
result =
|
| 170 |
if result is not None:
|
| 171 |
-
logger.info(f"SAM2 loaded successfully via {
|
| 172 |
return result
|
| 173 |
-
except IndexError as e:
|
| 174 |
-
logger.error(f"SAM2 {method_name} method - IndexError: {e}")
|
| 175 |
-
logger.debug(f"Full traceback:\n{traceback.format_exc()}")
|
| 176 |
-
continue
|
| 177 |
except Exception as e:
|
| 178 |
-
logger.error(f"SAM2 {
|
|
|
|
| 179 |
continue
|
| 180 |
|
| 181 |
logger.error("All SAM2 loading methods failed")
|
| 182 |
return None
|
| 183 |
|
| 184 |
-
def _try_load_sam2_official(self, model_id: str):
|
| 185 |
-
"""
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
# Set environment variables that might help in Spaces
|
| 190 |
-
os.environ['HF_HUB_DISABLE_SYMLINKS'] = '1'
|
| 191 |
-
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '0'
|
| 192 |
-
|
| 193 |
-
t0 = time.time()
|
| 194 |
-
|
| 195 |
-
# Try with explicit cache directory
|
| 196 |
-
cache_dir = os.path.join(self.checkpoints_dir, "sam2_cache")
|
| 197 |
-
os.makedirs(cache_dir, exist_ok=True)
|
| 198 |
-
|
| 199 |
-
# Log what we're about to do
|
| 200 |
-
logger.debug(f"Calling SAM2ImagePredictor.from_pretrained('{model_id}')")
|
| 201 |
-
|
| 202 |
-
# This is where the IndexError likely happens
|
| 203 |
-
predictor = SAM2ImagePredictor.from_pretrained(
|
| 204 |
-
model_id,
|
| 205 |
-
cache_dir=cache_dir,
|
| 206 |
-
local_files_only=False,
|
| 207 |
-
trust_remote_code=True
|
| 208 |
-
)
|
| 209 |
-
|
| 210 |
-
if hasattr(predictor, 'model'):
|
| 211 |
-
predictor.model = predictor.model.to(self.device)
|
| 212 |
-
|
| 213 |
-
t1 = time.time()
|
| 214 |
-
|
| 215 |
-
return LoadedModel(
|
| 216 |
-
model=predictor,
|
| 217 |
-
model_id=model_id,
|
| 218 |
-
load_time=t1-t0,
|
| 219 |
-
device=str(self.device),
|
| 220 |
-
framework="sam2"
|
| 221 |
-
)
|
| 222 |
-
except Exception as e:
|
| 223 |
-
logger.error(f"Official SAM2 loading failed: {e}")
|
| 224 |
-
raise
|
| 225 |
-
|
| 226 |
-
def _try_load_sam2_direct(self, model_id: str):
|
| 227 |
-
"""Try loading SAM2 using transformers AutoModel"""
|
| 228 |
-
try:
|
| 229 |
-
from transformers import AutoModel, AutoProcessor
|
| 230 |
-
|
| 231 |
-
t0 = time.time()
|
| 232 |
-
|
| 233 |
-
# Try loading as a standard transformers model
|
| 234 |
-
model = AutoModel.from_pretrained(
|
| 235 |
-
model_id,
|
| 236 |
-
trust_remote_code=True,
|
| 237 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 238 |
-
).to(self.device)
|
| 239 |
-
|
| 240 |
-
# Try to get processor
|
| 241 |
-
try:
|
| 242 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
| 243 |
-
except:
|
| 244 |
-
processor = None
|
| 245 |
-
|
| 246 |
-
t1 = time.time()
|
| 247 |
-
|
| 248 |
-
# Wrap in a compatible interface
|
| 249 |
-
class SAM2Wrapper:
|
| 250 |
-
def __init__(self, model, processor=None):
|
| 251 |
-
self.model = model
|
| 252 |
-
self.processor = processor
|
| 253 |
-
|
| 254 |
-
def set_image(self, image):
|
| 255 |
-
self.current_image = image
|
| 256 |
-
|
| 257 |
-
def predict(self, *args, **kwargs):
|
| 258 |
-
# Basic prediction interface
|
| 259 |
-
return self.model(*args, **kwargs)
|
| 260 |
-
|
| 261 |
-
wrapped = SAM2Wrapper(model, processor)
|
| 262 |
-
|
| 263 |
-
return LoadedModel(
|
| 264 |
-
model=wrapped,
|
| 265 |
-
model_id=model_id,
|
| 266 |
-
load_time=t1-t0,
|
| 267 |
-
device=str(self.device),
|
| 268 |
-
framework="sam2-transformers"
|
| 269 |
-
)
|
| 270 |
-
except Exception as e:
|
| 271 |
-
logger.error(f"Direct SAM2 loading failed: {e}")
|
| 272 |
-
raise
|
| 273 |
-
|
| 274 |
-
def _try_load_sam2_manual(self, model_id: str):
|
| 275 |
-
"""Try manual model construction as last resort"""
|
| 276 |
-
try:
|
| 277 |
-
# This is a fallback - create a dummy model that at least won't crash
|
| 278 |
-
logger.warning("Using manual SAM2 construction (limited functionality)")
|
| 279 |
-
|
| 280 |
-
class DummySAM2:
|
| 281 |
-
def __init__(self, device):
|
| 282 |
-
self.device = device
|
| 283 |
-
self.model = None
|
| 284 |
-
|
| 285 |
-
def set_image(self, image):
|
| 286 |
-
self.current_image = image
|
| 287 |
-
|
| 288 |
-
def predict(self, point_coords=None, point_labels=None, box=None, **kwargs):
|
| 289 |
-
# Return a dummy mask
|
| 290 |
-
import numpy as np
|
| 291 |
-
if hasattr(self, 'current_image'):
|
| 292 |
-
h, w = self.current_image.shape[:2]
|
| 293 |
-
else:
|
| 294 |
-
h, w = 512, 512
|
| 295 |
-
return {
|
| 296 |
-
'masks': np.ones((1, h, w), dtype=np.float32),
|
| 297 |
-
'scores': np.array([0.5]),
|
| 298 |
-
'logits': np.ones((1, h, w), dtype=np.float32)
|
| 299 |
-
}
|
| 300 |
-
|
| 301 |
-
dummy = DummySAM2(self.device)
|
| 302 |
-
|
| 303 |
-
return LoadedModel(
|
| 304 |
-
model=dummy,
|
| 305 |
-
model_id=f"{model_id}-fallback",
|
| 306 |
-
load_time=0.1,
|
| 307 |
-
device=str(self.device),
|
| 308 |
-
framework="sam2-fallback"
|
| 309 |
-
)
|
| 310 |
-
except Exception as e:
|
| 311 |
-
logger.error(f"Manual SAM2 construction failed: {e}")
|
| 312 |
-
raise
|
| 313 |
-
|
| 314 |
-
def _load_matanyone_model_safe(self, progress_callback: Optional[Callable] = None):
|
| 315 |
-
"""Load MatAnyOne with comprehensive error handling"""
|
| 316 |
-
|
| 317 |
-
loading_methods = [
|
| 318 |
-
("official", self._try_load_matanyone_official),
|
| 319 |
-
("alternative", self._try_load_matanyone_alternative),
|
| 320 |
-
("fallback", self._try_load_matanyone_fallback),
|
| 321 |
-
]
|
| 322 |
-
|
| 323 |
-
for method_name, method_func in loading_methods:
|
| 324 |
-
try:
|
| 325 |
-
logger.info(f"Attempting MatAnyOne load via {method_name} method...")
|
| 326 |
-
result = method_func(progress_callback)
|
| 327 |
-
if result is not None:
|
| 328 |
-
logger.info(f"MatAnyOne loaded successfully via {method_name} method")
|
| 329 |
-
return result
|
| 330 |
-
except IndexError as e:
|
| 331 |
-
logger.error(f"MatAnyOne {method_name} method - IndexError: {e}")
|
| 332 |
-
logger.debug(f"Full traceback:\n{traceback.format_exc()}")
|
| 333 |
-
continue
|
| 334 |
-
except Exception as e:
|
| 335 |
-
logger.error(f"MatAnyOne {method_name} method failed: {e}")
|
| 336 |
-
continue
|
| 337 |
|
| 338 |
-
|
| 339 |
-
|
|
|
|
| 340 |
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
if progress_callback:
|
| 344 |
-
progress_callback(0.7, "Loading MatAnyOne model (official)...")
|
| 345 |
|
| 346 |
-
from matanyone import InferenceCore
|
| 347 |
t0 = time.time()
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
processor = InferenceCore(
|
| 354 |
-
repo_id="PeiqingYang/MatAnyone",
|
| 355 |
-
device=self.device,
|
| 356 |
-
dtype=torch.float32,
|
| 357 |
-
cache_dir=cache_dir
|
| 358 |
)
|
| 359 |
-
|
|
|
|
| 360 |
t1 = time.time()
|
| 361 |
-
|
| 362 |
return LoadedModel(
|
| 363 |
-
model=
|
| 364 |
-
model_id="PeiqingYang/MatAnyone",
|
| 365 |
-
load_time=t1-t0,
|
| 366 |
-
device=str(self.device),
|
| 367 |
-
framework="matanyone"
|
| 368 |
)
|
| 369 |
|
| 370 |
-
def
|
| 371 |
-
"""
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
from transformers import AutoModel
|
| 377 |
-
|
| 378 |
t0 = time.time()
|
| 379 |
model = AutoModel.from_pretrained(
|
| 380 |
-
|
| 381 |
trust_remote_code=True,
|
| 382 |
-
torch_dtype=torch.float32
|
| 383 |
).to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
t1 = time.time()
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
def __init__(self, model):
|
| 389 |
self.model = model
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
return LoadedModel(
|
| 395 |
-
model=
|
| 396 |
-
model_id=
|
| 397 |
-
load_time=t1-t0,
|
| 398 |
device=str(self.device),
|
| 399 |
-
framework="
|
| 400 |
)
|
| 401 |
|
| 402 |
-
def
|
| 403 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
if progress_callback:
|
| 405 |
-
progress_callback(0.7, "
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
class FallbackMatAnyone:
|
| 410 |
def __init__(self, device):
|
| 411 |
self.device = device
|
| 412 |
-
|
| 413 |
def process(self, image, mask):
|
| 414 |
-
#
|
| 415 |
return mask
|
| 416 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
return LoadedModel(
|
| 418 |
-
model=
|
| 419 |
-
model_id="MatAnyone-fallback",
|
| 420 |
-
load_time=0.1,
|
| 421 |
-
device=str(self.device),
|
| 422 |
-
framework="matanyone-fallback"
|
| 423 |
)
|
| 424 |
|
|
|
|
|
|
|
| 425 |
def _cleanup_models(self):
|
| 426 |
if self.sam2_predictor is not None:
|
| 427 |
del self.sam2_predictor
|
|
@@ -433,77 +439,3 @@ def _cleanup_models(self):
|
|
| 433 |
torch.cuda.empty_cache()
|
| 434 |
gc.collect()
|
| 435 |
logger.debug("Model cleanup completed")
|
| 436 |
-
|
| 437 |
-
def cleanup(self):
|
| 438 |
-
self._cleanup_models()
|
| 439 |
-
logger.info("ModelLoader cleanup completed")
|
| 440 |
-
|
| 441 |
-
def get_model_info(self) -> Dict[str, Any]:
|
| 442 |
-
info = {
|
| 443 |
-
'models_loaded': self.loading_stats['models_loaded'],
|
| 444 |
-
'sam2_loaded': self.sam2_predictor is not None,
|
| 445 |
-
'matanyone_loaded': self.matanyone_model is not None,
|
| 446 |
-
'device': str(self.device),
|
| 447 |
-
'loading_stats': self.loading_stats.copy()
|
| 448 |
-
}
|
| 449 |
-
if self.sam2_predictor is not None:
|
| 450 |
-
info['sam2_model_type'] = type(self.sam2_predictor.model).__name__
|
| 451 |
-
info['sam2_metadata'] = self.sam2_predictor.to_dict()
|
| 452 |
-
if self.matanyone_model is not None:
|
| 453 |
-
info['matanyone_model_type'] = type(self.matanyone_model.model).__name__
|
| 454 |
-
info['matanyone_metadata'] = self.matanyone_model.to_dict()
|
| 455 |
-
return info
|
| 456 |
-
|
| 457 |
-
def get_load_summary(self) -> str:
|
| 458 |
-
if not self.loading_stats['models_loaded']:
|
| 459 |
-
return "Models not loaded"
|
| 460 |
-
sam2_time = self.loading_stats['sam2_load_time']
|
| 461 |
-
matanyone_time = self.loading_stats['matanyone_load_time']
|
| 462 |
-
total_time = self.loading_stats['total_load_time']
|
| 463 |
-
summary = f"Models loaded in {total_time:.1f}s\n"
|
| 464 |
-
if self.sam2_predictor:
|
| 465 |
-
summary += f"✓ SAM2: {sam2_time:.1f}s (ID: {self.sam2_predictor.model_id})\n"
|
| 466 |
-
else:
|
| 467 |
-
summary += f"✗ SAM2: Failed (using fallback)\n"
|
| 468 |
-
if self.matanyone_model:
|
| 469 |
-
summary += f"✓ MatAnyOne: {matanyone_time:.1f}s (ID: {self.matanyone_model.model_id})\n"
|
| 470 |
-
else:
|
| 471 |
-
summary += f"✗ MatAnyOne: Failed (using OpenCV)\n"
|
| 472 |
-
summary += f"Device: {self.device}"
|
| 473 |
-
return summary
|
| 474 |
-
|
| 475 |
-
def get_matanyone(self):
|
| 476 |
-
# Return the actual model from inside the LoadedModel wrapper
|
| 477 |
-
if self.matanyone_model is not None:
|
| 478 |
-
return self.matanyone_model.model if hasattr(self.matanyone_model, 'model') else None
|
| 479 |
-
return None
|
| 480 |
-
|
| 481 |
-
def get_sam2(self):
|
| 482 |
-
# Return the actual model from inside the LoadedModel wrapper
|
| 483 |
-
if self.sam2_predictor is not None:
|
| 484 |
-
return self.sam2_predictor.model if hasattr(self.sam2_predictor, 'model') else None
|
| 485 |
-
return None
|
| 486 |
-
|
| 487 |
-
def validate_models(self) -> bool:
|
| 488 |
-
try:
|
| 489 |
-
has_valid_model = False
|
| 490 |
-
if self.sam2_predictor is not None:
|
| 491 |
-
model = self.sam2_predictor.model
|
| 492 |
-
if hasattr(model, 'set_image') or hasattr(model, 'predict'):
|
| 493 |
-
has_valid_model = True
|
| 494 |
-
if self.matanyone_model is not None:
|
| 495 |
-
has_valid_model = True
|
| 496 |
-
return has_valid_model
|
| 497 |
-
except Exception as e:
|
| 498 |
-
logger.error(f"Model validation failed: {e}")
|
| 499 |
-
return False
|
| 500 |
-
|
| 501 |
-
def reload_models(self, progress_callback: Optional[Callable] = None) -> Tuple[Any, Any]:
|
| 502 |
-
logger.info("Reloading models...")
|
| 503 |
-
self._cleanup_models()
|
| 504 |
-
self.loading_stats['models_loaded'] = False
|
| 505 |
-
return self.load_all_models(progress_callback)
|
| 506 |
-
|
| 507 |
-
@property
|
| 508 |
-
def models_ready(self) -> bool:
|
| 509 |
-
return self.sam2_predictor is not None or self.matanyone_model is not None
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
Model Loader for Hugging Face Spaces
|
| 4 |
+
- Robust SAM2 loader with multiple strategies
|
| 5 |
+
- Correct MatAnyOne loader via official InferenceCore (no transformers)
|
| 6 |
+
- Clean progress reporting, cleanup, and diagnostics
|
| 7 |
"""
|
| 8 |
|
| 9 |
+
from __future__ import annotations
|
| 10 |
+
|
| 11 |
import os
|
| 12 |
import gc
|
|
|
|
| 13 |
import time
|
| 14 |
import logging
|
| 15 |
import traceback
|
|
|
|
| 24 |
|
| 25 |
logger = logging.getLogger(__name__)
|
| 26 |
|
| 27 |
+
|
| 28 |
+
# ------------------------------
|
| 29 |
+
# Data wrapper
|
| 30 |
+
# ------------------------------
|
| 31 |
class LoadedModel:
|
| 32 |
def __init__(self, model=None, model_id: str = "", load_time: float = 0.0, device: str = "", framework: str = ""):
|
| 33 |
self.model = model
|
|
|
|
| 36 |
self.device = device
|
| 37 |
self.framework = framework
|
| 38 |
|
| 39 |
+
def to_dict(self) -> Dict[str, Any]:
|
| 40 |
return {
|
| 41 |
"model_id": self.model_id,
|
| 42 |
"framework": self.framework,
|
| 43 |
"device": self.device,
|
| 44 |
"load_time": self.load_time,
|
| 45 |
+
"loaded": self.model is not None,
|
| 46 |
}
|
| 47 |
|
| 48 |
+
|
| 49 |
+
# ------------------------------
|
| 50 |
+
# Loader
|
| 51 |
+
# ------------------------------
|
| 52 |
class ModelLoader:
|
| 53 |
def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
| 54 |
self.device_manager = device_mgr
|
| 55 |
self.memory_manager = memory_mgr
|
| 56 |
+
self.device = self.device_manager.get_optimal_device() # e.g., cuda:0 or cpu
|
| 57 |
|
| 58 |
+
self.sam2_predictor: Optional[LoadedModel] = None
|
| 59 |
+
self.matanyone_model: Optional[LoadedModel] = None
|
| 60 |
|
| 61 |
self.checkpoints_dir = "./checkpoints"
|
| 62 |
os.makedirs(self.checkpoints_dir, exist_ok=True)
|
| 63 |
|
| 64 |
self.loading_stats = {
|
| 65 |
+
"sam2_load_time": 0.0,
|
| 66 |
+
"matanyone_load_time": 0.0,
|
| 67 |
+
"total_load_time": 0.0,
|
| 68 |
+
"models_loaded": False,
|
| 69 |
+
"loading_attempts": 0,
|
| 70 |
}
|
| 71 |
|
| 72 |
logger.info(f"ModelLoader initialized for device: {self.device}")
|
| 73 |
|
| 74 |
+
# ---------- Public API ----------
|
| 75 |
+
|
| 76 |
+
def load_all_models(
|
| 77 |
+
self, progress_callback: Optional[Callable[[float, str], None]] = None, cancel_event=None
|
| 78 |
+
) -> Tuple[Optional[LoadedModel], Optional[LoadedModel]]:
|
| 79 |
+
"""
|
| 80 |
+
Loads SAM2 + MatAnyOne. Returns (LoadedModel|None, LoadedModel|None).
|
| 81 |
+
"""
|
| 82 |
start_time = time.time()
|
| 83 |
+
self.loading_stats["loading_attempts"] += 1
|
| 84 |
|
| 85 |
try:
|
| 86 |
logger.info("Starting model loading process...")
|
|
|
|
| 89 |
|
| 90 |
self._cleanup_models()
|
| 91 |
|
| 92 |
+
# ---- SAM2 ----
|
| 93 |
logger.info("Loading SAM2 predictor...")
|
| 94 |
if progress_callback:
|
| 95 |
progress_callback(0.1, "Loading SAM2 predictor...")
|
| 96 |
+
sam2_loaded = self._load_sam2_predictor(progress_callback)
|
| 97 |
|
| 98 |
if sam2_loaded is None:
|
| 99 |
+
logger.warning("SAM2 loading failed - a limited fallback will be used at runtime if needed.")
|
| 100 |
else:
|
| 101 |
self.sam2_predictor = sam2_loaded
|
| 102 |
+
self.loading_stats["sam2_load_time"] = self.sam2_predictor.load_time
|
| 103 |
+
logger.info(f"SAM2 loaded in {self.loading_stats['sam2_load_time']:.2f}s")
|
| 104 |
+
|
| 105 |
+
# Early exit if cancelled
|
| 106 |
+
if cancel_event is not None and getattr(cancel_event, "is_set", lambda: False)():
|
| 107 |
+
if progress_callback:
|
| 108 |
+
progress_callback(1.0, "Model loading cancelled")
|
| 109 |
+
return self.sam2_predictor, None
|
| 110 |
|
| 111 |
+
# ---- MatAnyOne ----
|
| 112 |
logger.info("Loading MatAnyOne model...")
|
| 113 |
if progress_callback:
|
| 114 |
progress_callback(0.6, "Loading MatAnyOne model...")
|
| 115 |
+
matanyone_loaded = self._load_matanyone(progress_callback)
|
|
|
|
| 116 |
|
| 117 |
if matanyone_loaded is None:
|
| 118 |
+
logger.warning("MatAnyOne loading failed - will use simple refinement fallbacks.")
|
| 119 |
else:
|
| 120 |
self.matanyone_model = matanyone_loaded
|
| 121 |
+
self.loading_stats["matanyone_load_time"] = self.matanyone_model.load_time
|
| 122 |
+
logger.info(f"MatAnyOne loaded in {self.loading_stats['matanyone_load_time']:.2f}s")
|
|
|
|
| 123 |
|
| 124 |
+
# ---- Final status ----
|
| 125 |
total_time = time.time() - start_time
|
| 126 |
+
self.loading_stats["total_load_time"] = total_time
|
| 127 |
+
self.loading_stats["models_loaded"] = bool(self.sam2_predictor or self.matanyone_model)
|
| 128 |
|
| 129 |
if progress_callback:
|
| 130 |
+
if self.loading_stats["models_loaded"]:
|
| 131 |
+
progress_callback(1.0, "Models loaded (fallbacks available if any model failed)")
|
| 132 |
else:
|
| 133 |
progress_callback(1.0, "Using fallback methods (models failed to load)")
|
| 134 |
|
| 135 |
logger.info(f"Model loading completed in {total_time:.2f}s")
|
| 136 |
+
return self.sam2_predictor, self.matanyone_model
|
|
|
|
| 137 |
|
| 138 |
except Exception as e:
|
| 139 |
error_msg = f"Model loading failed: {str(e)}"
|
| 140 |
logger.error(f"{error_msg}\n{traceback.format_exc()}")
|
| 141 |
self._cleanup_models()
|
| 142 |
+
self.loading_stats["models_loaded"] = False
|
| 143 |
if progress_callback:
|
| 144 |
progress_callback(1.0, f"Error: {error_msg}")
|
| 145 |
return None, None
|
| 146 |
|
| 147 |
+
def reload_models(self, progress_callback: Optional[Callable[[float, str], None]] = None) -> Tuple[
|
| 148 |
+
Optional[LoadedModel], Optional[LoadedModel]
|
| 149 |
+
]:
|
| 150 |
+
logger.info("Reloading models...")
|
| 151 |
+
self._cleanup_models()
|
| 152 |
+
self.loading_stats["models_loaded"] = False
|
| 153 |
+
return self.load_all_models(progress_callback)
|
| 154 |
+
|
| 155 |
+
@property
|
| 156 |
+
def models_ready(self) -> bool:
|
| 157 |
+
return self.sam2_predictor is not None or self.matanyone_model is not None
|
| 158 |
+
|
| 159 |
+
def get_sam2(self):
|
| 160 |
+
return self.sam2_predictor.model if self.sam2_predictor is not None else None
|
| 161 |
+
|
| 162 |
+
def get_matanyone(self):
|
| 163 |
+
return self.matanyone_model.model if self.matanyone_model is not None else None
|
| 164 |
+
|
| 165 |
+
def validate_models(self) -> bool:
|
| 166 |
+
try:
|
| 167 |
+
ok = False
|
| 168 |
+
if self.sam2_predictor is not None:
|
| 169 |
+
model = self.sam2_predictor.model
|
| 170 |
+
if hasattr(model, "set_image") or hasattr(model, "predict"):
|
| 171 |
+
ok = True
|
| 172 |
+
if self.matanyone_model is not None:
|
| 173 |
+
ok = True
|
| 174 |
+
return ok
|
| 175 |
+
except Exception as e:
|
| 176 |
+
logger.error(f"Model validation failed: {e}")
|
| 177 |
+
return False
|
| 178 |
+
|
| 179 |
+
def get_model_info(self) -> Dict[str, Any]:
|
| 180 |
+
info = {
|
| 181 |
+
"models_loaded": self.loading_stats["models_loaded"],
|
| 182 |
+
"sam2_loaded": self.sam2_predictor is not None,
|
| 183 |
+
"matanyone_loaded": self.matanyone_model is not None,
|
| 184 |
+
"device": str(self.device),
|
| 185 |
+
"loading_stats": self.loading_stats.copy(),
|
| 186 |
+
}
|
| 187 |
+
if self.sam2_predictor is not None:
|
| 188 |
+
info["sam2_model_type"] = type(self.sam2_predictor.model).__name__
|
| 189 |
+
info["sam2_metadata"] = self.sam2_predictor.to_dict()
|
| 190 |
+
if self.matanyone_model is not None:
|
| 191 |
+
info["matanyone_model_type"] = type(self.matanyone_model.model).__name__
|
| 192 |
+
info["matanyone_metadata"] = self.matanyone_model.to_dict()
|
| 193 |
+
return info
|
| 194 |
+
|
| 195 |
+
def get_load_summary(self) -> str:
|
| 196 |
+
if not self.loading_stats["models_loaded"]:
|
| 197 |
+
return "Models not loaded"
|
| 198 |
+
sam2_time = self.loading_stats["sam2_load_time"]
|
| 199 |
+
matanyone_time = self.loading_stats["matanyone_load_time"]
|
| 200 |
+
total_time = self.loading_stats["total_load_time"]
|
| 201 |
+
summary = f"Models loaded in {total_time:.1f}s\n"
|
| 202 |
+
if self.sam2_predictor:
|
| 203 |
+
summary += f"✓ SAM2: {sam2_time:.1f}s (ID: {self.sam2_predictor.model_id})\n"
|
| 204 |
+
else:
|
| 205 |
+
summary += "✗ SAM2: Failed (using fallback)\n"
|
| 206 |
+
if self.matanyone_model:
|
| 207 |
+
summary += f"✓ MatAnyOne: {matanyone_time:.1f}s (ID: {self.matanyone_model.model_id})\n"
|
| 208 |
+
else:
|
| 209 |
+
summary += "✗ MatAnyOne: Failed (using simple refinement)\n"
|
| 210 |
+
summary += f"Device: {self.device}"
|
| 211 |
+
return summary
|
| 212 |
+
|
| 213 |
+
def cleanup(self):
|
| 214 |
+
self._cleanup_models()
|
| 215 |
+
logger.info("ModelLoader cleanup completed")
|
| 216 |
+
|
| 217 |
+
# ---------- Internal: SAM2 ----------
|
| 218 |
+
|
| 219 |
+
def _load_sam2_predictor(self, progress_callback: Optional[Callable[[float, str], None]] = None) -> Optional[LoadedModel]:
|
| 220 |
+
"""
|
| 221 |
+
Try multiple SAM2 loading strategies: official -> transformers -> dummy fallback.
|
| 222 |
+
"""
|
| 223 |
+
# Choose model size heuristically
|
| 224 |
model_size = "large"
|
| 225 |
try:
|
| 226 |
+
if hasattr(self.device_manager, "get_device_memory_gb"):
|
| 227 |
memory_gb = self.device_manager.get_device_memory_gb()
|
| 228 |
if memory_gb < 4:
|
| 229 |
model_size = "tiny"
|
|
|
|
| 231 |
model_size = "small"
|
| 232 |
elif memory_gb < 12:
|
| 233 |
model_size = "base"
|
| 234 |
+
logger.info(f"Selected SAM2 {model_size} based on {memory_gb}GB VRAM")
|
| 235 |
except Exception as e:
|
| 236 |
logger.warning(f"Could not determine device memory: {e}")
|
| 237 |
+
model_size = "tiny"
|
| 238 |
|
| 239 |
model_map = {
|
| 240 |
"tiny": "facebook/sam2.1-hiera-tiny",
|
| 241 |
+
"small": "facebook/sam2.1-hiera-small",
|
| 242 |
"base": "facebook/sam2.1-hiera-base-plus",
|
| 243 |
+
"large": "facebook/sam2.1-hiera-large",
|
| 244 |
}
|
| 245 |
model_id = model_map.get(model_size, model_map["tiny"])
|
|
|
|
|
|
|
| 246 |
|
| 247 |
if progress_callback:
|
| 248 |
+
progress_callback(0.3, f"Loading SAM2 ({model_size})...")
|
| 249 |
|
| 250 |
+
methods = [
|
|
|
|
| 251 |
("official", self._try_load_sam2_official, model_id),
|
| 252 |
("direct", self._try_load_sam2_direct, model_id),
|
| 253 |
("manual", self._try_load_sam2_manual, model_id),
|
| 254 |
]
|
| 255 |
|
| 256 |
+
for name, fn, mid in methods:
|
| 257 |
try:
|
| 258 |
+
logger.info(f"Attempting SAM2 load via {name} method ({mid})...")
|
| 259 |
+
result = fn(mid)
|
| 260 |
if result is not None:
|
| 261 |
+
logger.info(f"SAM2 loaded successfully via {name} method")
|
| 262 |
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
except Exception as e:
|
| 264 |
+
logger.error(f"SAM2 {name} method failed: {e}")
|
| 265 |
+
logger.debug(traceback.format_exc())
|
| 266 |
continue
|
| 267 |
|
| 268 |
logger.error("All SAM2 loading methods failed")
|
| 269 |
return None
|
| 270 |
|
| 271 |
+
def _try_load_sam2_official(self, model_id: str) -> Optional[LoadedModel]:
|
| 272 |
+
"""
|
| 273 |
+
Official predictor path (Meta's SAM2ImagePredictor).
|
| 274 |
+
"""
|
| 275 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
|
| 277 |
+
# Space-specific hub flags
|
| 278 |
+
os.environ["HF_HUB_DISABLE_SYMLINKS"] = "1"
|
| 279 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
|
| 280 |
|
| 281 |
+
cache_dir = os.path.join(self.checkpoints_dir, "sam2_cache")
|
| 282 |
+
os.makedirs(cache_dir, exist_ok=True)
|
|
|
|
|
|
|
| 283 |
|
|
|
|
| 284 |
t0 = time.time()
|
| 285 |
+
predictor = SAM2ImagePredictor.from_pretrained(
|
| 286 |
+
model_id,
|
| 287 |
+
cache_dir=cache_dir,
|
| 288 |
+
local_files_only=False,
|
| 289 |
+
trust_remote_code=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
)
|
| 291 |
+
if hasattr(predictor, "model"):
|
| 292 |
+
predictor.model = predictor.model.to(self.device)
|
| 293 |
t1 = time.time()
|
| 294 |
+
|
| 295 |
return LoadedModel(
|
| 296 |
+
model=predictor, model_id=model_id, load_time=t1 - t0, device=str(self.device), framework="sam2"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
)
|
| 298 |
|
| 299 |
+
def _try_load_sam2_direct(self, model_id: str) -> Optional[LoadedModel]:
|
| 300 |
+
"""
|
| 301 |
+
Transformers AutoModel path (best-effort; API may vary).
|
| 302 |
+
"""
|
| 303 |
+
from transformers import AutoModel, AutoProcessor
|
| 304 |
+
|
|
|
|
|
|
|
| 305 |
t0 = time.time()
|
| 306 |
model = AutoModel.from_pretrained(
|
| 307 |
+
model_id,
|
| 308 |
trust_remote_code=True,
|
| 309 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 310 |
).to(self.device)
|
| 311 |
+
|
| 312 |
+
try:
|
| 313 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 314 |
+
except Exception:
|
| 315 |
+
processor = None
|
| 316 |
+
|
| 317 |
t1 = time.time()
|
| 318 |
+
|
| 319 |
+
class SAM2Wrapper:
|
| 320 |
+
def __init__(self, model, processor=None):
|
|
|
|
| 321 |
self.model = model
|
| 322 |
+
self.processor = processor
|
| 323 |
+
|
| 324 |
+
def set_image(self, image):
|
| 325 |
+
self.current_image = image
|
| 326 |
+
|
| 327 |
+
def predict(self, *args, **kwargs):
|
| 328 |
+
return self.model(*args, **kwargs)
|
| 329 |
+
|
| 330 |
+
wrapped = SAM2Wrapper(model, processor)
|
| 331 |
+
|
| 332 |
return LoadedModel(
|
| 333 |
+
model=wrapped,
|
| 334 |
+
model_id=model_id,
|
| 335 |
+
load_time=t1 - t0,
|
| 336 |
device=str(self.device),
|
| 337 |
+
framework="sam2-transformers",
|
| 338 |
)
|
| 339 |
|
| 340 |
+
def _try_load_sam2_manual(self, model_id: str) -> Optional[LoadedModel]:
|
| 341 |
+
"""
|
| 342 |
+
Dummy fallback that won't crash the app.
|
| 343 |
+
"""
|
| 344 |
+
class DummySAM2:
|
| 345 |
+
def __init__(self, device):
|
| 346 |
+
self.device = device
|
| 347 |
+
self.model = None
|
| 348 |
+
|
| 349 |
+
def set_image(self, image):
|
| 350 |
+
self.current_image = image
|
| 351 |
+
|
| 352 |
+
def predict(self, point_coords=None, point_labels=None, box=None, **kwargs):
|
| 353 |
+
import numpy as np
|
| 354 |
+
if hasattr(self, "current_image"):
|
| 355 |
+
h, w = self.current_image.shape[:2]
|
| 356 |
+
else:
|
| 357 |
+
h, w = 512, 512
|
| 358 |
+
return {
|
| 359 |
+
"masks": np.ones((1, h, w), dtype=np.float32),
|
| 360 |
+
"scores": np.array([0.5]),
|
| 361 |
+
"logits": np.ones((1, h, w), dtype=np.float32),
|
| 362 |
+
}
|
| 363 |
+
|
| 364 |
+
t0 = time.time()
|
| 365 |
+
dummy = DummySAM2(self.device)
|
| 366 |
+
t1 = time.time()
|
| 367 |
+
|
| 368 |
+
logger.warning("Using manual SAM2 fallback (limited functionality)")
|
| 369 |
+
return LoadedModel(
|
| 370 |
+
model=dummy, model_id=f"{model_id}-fallback", load_time=t1 - t0, device=str(self.device), framework="sam2-fallback"
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
# ---------- Internal: MatAnyOne ----------
|
| 374 |
+
|
| 375 |
+
def _load_matanyone(self, progress_callback: Optional[Callable[[float, str], None]] = None) -> Optional[LoadedModel]:
|
| 376 |
+
"""
|
| 377 |
+
Correct MatAnyOne loader using official package API.
|
| 378 |
+
"""
|
| 379 |
if progress_callback:
|
| 380 |
+
progress_callback(0.7, "Loading MatAnyOne (InferenceCore)...")
|
| 381 |
+
try:
|
| 382 |
+
return self._try_load_matanyone_official()
|
| 383 |
+
except Exception as e:
|
| 384 |
+
logger.error(f"MatAnyOne official loader failed: {e}")
|
| 385 |
+
logger.debug(traceback.format_exc())
|
| 386 |
+
logger.warning("Falling back to simple MatAnyOne placeholder.")
|
| 387 |
+
return self._try_load_matanyone_fallback()
|
| 388 |
+
|
| 389 |
+
def _try_load_matanyone_official(self) -> Optional[LoadedModel]:
|
| 390 |
+
"""
|
| 391 |
+
Official MatAnyOne via package's InferenceCore.
|
| 392 |
+
IMPORTANT: pass model id POSITIONALLY; do NOT use repo_id= or transformers.
|
| 393 |
+
"""
|
| 394 |
+
from matanyone import InferenceCore
|
| 395 |
+
|
| 396 |
+
t0 = time.time()
|
| 397 |
+
processor = InferenceCore("PeiqingYang/MatAnyone")
|
| 398 |
+
t1 = time.time()
|
| 399 |
+
|
| 400 |
+
return LoadedModel(
|
| 401 |
+
model=processor,
|
| 402 |
+
model_id="PeiqingYang/MatAnyone",
|
| 403 |
+
load_time=t1 - t0,
|
| 404 |
+
device=str(self.device),
|
| 405 |
+
framework="matanyone",
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
def _try_load_matanyone_fallback(self) -> Optional[LoadedModel]:
|
| 409 |
+
"""
|
| 410 |
+
Minimal placeholder that safely passes masks through.
|
| 411 |
+
"""
|
| 412 |
class FallbackMatAnyone:
|
| 413 |
def __init__(self, device):
|
| 414 |
self.device = device
|
| 415 |
+
|
| 416 |
def process(self, image, mask):
|
| 417 |
+
# Identity pass-through (keeps pipeline alive)
|
| 418 |
return mask
|
| 419 |
+
|
| 420 |
+
t0 = time.time()
|
| 421 |
+
model = FallbackMatAnyone(self.device)
|
| 422 |
+
t1 = time.time()
|
| 423 |
+
|
| 424 |
+
logger.warning("Using MatAnyOne fallback (limited functionality)")
|
| 425 |
return LoadedModel(
|
| 426 |
+
model=model, model_id="MatAnyone-fallback", load_time=t1 - t0, device=str(self.device), framework="matanyone-fallback"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
)
|
| 428 |
|
| 429 |
+
# ---------- Internal: cleanup ----------
|
| 430 |
+
|
| 431 |
def _cleanup_models(self):
|
| 432 |
if self.sam2_predictor is not None:
|
| 433 |
del self.sam2_predictor
|
|
|
|
| 439 |
torch.cuda.empty_cache()
|
| 440 |
gc.collect()
|
| 441 |
logger.debug("Model cleanup completed")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|