Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,8 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
# ========================= PRE-IMPORT ENV GUARDS =========================
|
| 3 |
-
# Must run BEFORE importing numpy/cv2/torch to avoid libgomp errors.
|
| 4 |
import os
|
| 5 |
-
|
| 6 |
-
#
|
| 7 |
-
os.environ.pop("OMP_NUM_THREADS", None) # or set to e.g. "1"
|
| 8 |
os.environ.setdefault("MKL_NUM_THREADS", "1")
|
| 9 |
os.environ.setdefault("OPENBLAS_NUM_THREADS", "1")
|
| 10 |
os.environ.setdefault("NUMEXPR_NUM_THREADS", "1")
|
|
@@ -16,7 +14,7 @@
|
|
| 16 |
"""
|
| 17 |
High-Quality Video Background Replacement - MAIN APPLICATION
|
| 18 |
Upload video β Choose professional background β Replace with cinema quality
|
| 19 |
-
Features: SAM2 +
|
| 20 |
cinema-quality processing, lazy loading, and enhanced stability
|
| 21 |
"""
|
| 22 |
|
|
@@ -39,16 +37,13 @@
|
|
| 39 |
from typing import Optional, Tuple, Dict, Any
|
| 40 |
import logging
|
| 41 |
import warnings
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
# Import
|
| 44 |
-
#
|
| 45 |
-
# segment_person_hq, refine_mask_hq, replace_background_hq, get_model_status)
|
| 46 |
-
from utilities import *
|
| 47 |
|
| 48 |
-
# Suppress warnings
|
| 49 |
warnings.filterwarnings("ignore")
|
| 50 |
-
|
| 51 |
-
# Setup logging
|
| 52 |
logging.basicConfig(level=logging.INFO)
|
| 53 |
logger = logging.getLogger(__name__)
|
| 54 |
|
|
@@ -58,14 +53,12 @@
|
|
| 58 |
try:
|
| 59 |
import gradio_client.utils as gc_utils
|
| 60 |
original_get_type = gc_utils.get_type
|
| 61 |
-
|
| 62 |
def patched_get_type(schema):
|
| 63 |
if not isinstance(schema, dict):
|
| 64 |
if isinstance(schema, bool):
|
| 65 |
return "boolean"
|
| 66 |
return "string"
|
| 67 |
return original_get_type(schema)
|
| 68 |
-
|
| 69 |
gc_utils.get_type = patched_get_type
|
| 70 |
logger.info("β
Applied Gradio schema validation monkey patch.")
|
| 71 |
except (ImportError, AttributeError) as e:
|
|
@@ -75,10 +68,7 @@ def patched_get_type(schema):
|
|
| 75 |
# SAM2 LOADER (Hydra search path; pass STRING config name to build_sam2)
|
| 76 |
# ============================================================================ #
|
| 77 |
def load_sam2_predictor(device: str = "cuda", progress: Optional[gr.Progress] = None):
|
| 78 |
-
"""
|
| 79 |
-
Loads the SAM2 model and returns a SAM2ImagePredictor instance.
|
| 80 |
-
Uses Hydra only to set the config search path; passes STRING config name to build_sam2.
|
| 81 |
-
"""
|
| 82 |
import hydra
|
| 83 |
|
| 84 |
sam_logger = logging.getLogger("SAM2Loader")
|
|
@@ -86,20 +76,12 @@ def load_sam2_predictor(device: str = "cuda", progress: Optional[gr.Progress] =
|
|
| 86 |
sam_logger.info(f"Looking for SAM2 configs in absolute path: {configs_dir}")
|
| 87 |
|
| 88 |
if not os.path.isdir(configs_dir):
|
| 89 |
-
|
| 90 |
-
f"FATAL: Configs directory not found at '{configs_dir}'. "
|
| 91 |
-
f"Please ensure the 'Configs' folder exists at repository root."
|
| 92 |
-
)
|
| 93 |
-
raise gr.Error("FATAL: SAM2 Configs directory not found.")
|
| 94 |
-
|
| 95 |
-
tried = []
|
| 96 |
|
| 97 |
def _maybe_progress(pct: float, desc: str):
|
| 98 |
if progress is not None:
|
| 99 |
-
try:
|
| 100 |
-
|
| 101 |
-
except Exception:
|
| 102 |
-
pass
|
| 103 |
|
| 104 |
def try_load(config_name_with_yaml: str, checkpoint_name: str):
|
| 105 |
try:
|
|
@@ -110,7 +92,7 @@ def try_load(config_name_with_yaml: str, checkpoint_name: str):
|
|
| 110 |
sam_logger.info(f"Downloading {checkpoint_name} from Hugging Face Hub...")
|
| 111 |
_maybe_progress(0.1, f"Downloading {checkpoint_name}...")
|
| 112 |
from huggingface_hub import hf_hub_download
|
| 113 |
-
repo = f"facebook/{config_name_with_yaml.replace('.yaml','')}"
|
| 114 |
checkpoint_path = hf_hub_download(
|
| 115 |
repo_id=repo,
|
| 116 |
filename=checkpoint_name,
|
|
@@ -128,7 +110,7 @@ def try_load(config_name_with_yaml: str, checkpoint_name: str):
|
|
| 128 |
job_name=f"sam2_load_{int(time.time())}"
|
| 129 |
)
|
| 130 |
|
| 131 |
-
#
|
| 132 |
config_name = config_name_with_yaml.replace(".yaml", "")
|
| 133 |
|
| 134 |
from sam2.build_sam import build_sam2
|
|
@@ -142,42 +124,65 @@ def try_load(config_name_with_yaml: str, checkpoint_name: str):
|
|
| 142 |
predictor = SAM2ImagePredictor(sam2_model)
|
| 143 |
sam_logger.info(f"β
Loaded {config_name_with_yaml} successfully on {device}")
|
| 144 |
return predictor
|
|
|
|
| 145 |
except Exception as e:
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
sam_logger.warning(error_msg)
|
| 149 |
return None
|
| 150 |
|
| 151 |
predictor = try_load("sam2_hiera_large.yaml", "sam2_hiera_large.pt")
|
| 152 |
-
|
| 153 |
if predictor is None:
|
| 154 |
-
|
| 155 |
-
sam_logger.error(f"β {error_message}")
|
| 156 |
-
raise gr.Error(error_message)
|
| 157 |
-
|
| 158 |
return predictor
|
| 159 |
|
| 160 |
# ============================================================================ #
|
| 161 |
-
# MatAnyOne LOADER (
|
| 162 |
# ============================================================================ #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
def load_matanyone(device: str):
|
| 164 |
"""
|
| 165 |
-
|
| 166 |
-
-
|
| 167 |
-
-
|
| 168 |
-
-
|
| 169 |
"""
|
| 170 |
from omegaconf import OmegaConf
|
| 171 |
-
|
| 172 |
ma_logger = logging.getLogger("MatAnyOneLoader")
|
| 173 |
|
| 174 |
-
# Try to
|
| 175 |
-
|
| 176 |
-
"
|
| 177 |
-
"
|
| 178 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
cfg = None
|
| 180 |
-
for p in
|
| 181 |
if os.path.exists(p):
|
| 182 |
ma_logger.info(f"Loading MatAnyOne cfg: {p}")
|
| 183 |
cfg = OmegaConf.load(p)
|
|
@@ -190,34 +195,78 @@ def load_matanyone(device: str):
|
|
| 190 |
"device": device,
|
| 191 |
})
|
| 192 |
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
from matanyone.inference.inference_core import InferenceCore
|
| 199 |
-
net = MatAnyOne(cfg)
|
| 200 |
net.to(device)
|
| 201 |
-
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
return core
|
| 204 |
-
except Exception as e:
|
| 205 |
-
last_err = e
|
| 206 |
-
ma_logger.warning(f"Layout A failed: {e}")
|
| 207 |
|
| 208 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
try:
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
except Exception as e:
|
| 217 |
last_err = e
|
| 218 |
-
ma_logger.
|
| 219 |
|
| 220 |
-
|
|
|
|
| 221 |
|
| 222 |
# ============================================================================ #
|
| 223 |
# GLOBALS & MODEL SETUP
|
|
@@ -228,34 +277,27 @@ def load_matanyone(device: str):
|
|
| 228 |
loading_lock = threading.Lock()
|
| 229 |
|
| 230 |
def download_and_setup_models(progress: Optional[gr.Progress] = None):
|
| 231 |
-
"""
|
| 232 |
-
Download and setup models (SAM2 and MatAnyOne), robust to HF Spaces and local dev.
|
| 233 |
-
"""
|
| 234 |
global sam2_predictor, matanyone_model, models_loaded
|
| 235 |
|
| 236 |
with loading_lock:
|
| 237 |
if models_loaded:
|
| 238 |
-
return "β
|
| 239 |
-
try:
|
| 240 |
-
logger.info("π Starting ENHANCED model loading with fallback...")
|
| 241 |
|
|
|
|
|
|
|
| 242 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 243 |
|
| 244 |
-
# --- Load SAM2 ---
|
| 245 |
local_sam2 = load_sam2_predictor(device=device, progress=progress)
|
| 246 |
sam2_predictor = local_sam2
|
| 247 |
|
| 248 |
-
# --- Load MatAnyOne ---
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
matanyone_model = local_matanyone
|
| 252 |
-
logger.info("β
MatAnyOne loaded")
|
| 253 |
-
except Exception as e:
|
| 254 |
-
logger.warning(f"β MatAnyOne load failed: {e}")
|
| 255 |
-
raise RuntimeError("MatAnyone model could not be loaded.")
|
| 256 |
|
| 257 |
models_loaded = True
|
| 258 |
-
logger.info("--- β
All models loaded successfully ---")
|
| 259 |
return "β
SAM2 + MatAnyOne loaded successfully!"
|
| 260 |
except Exception as e:
|
| 261 |
logger.error(f"β Enhanced loading failed: {str(e)}")
|
|
@@ -263,32 +305,23 @@ def download_and_setup_models(progress: Optional[gr.Progress] = None):
|
|
| 263 |
return f"β Enhanced loading failed: {str(e)}"
|
| 264 |
|
| 265 |
# ============================================================================ #
|
| 266 |
-
# TWO-STAGE PROCESSING PIPELINE
|
| 267 |
# ============================================================================ #
|
| 268 |
-
def process_video_hq(
|
| 269 |
-
video_path,
|
| 270 |
-
background_choice,
|
| 271 |
-
custom_background_path,
|
| 272 |
-
progress: Optional[gr.Progress] = None
|
| 273 |
-
):
|
| 274 |
"""TWO-STAGE High-quality video processing: Original β Green Screen β Final Background"""
|
| 275 |
if not models_loaded:
|
| 276 |
return None, "β Models not loaded. Click 'Load Models' first."
|
| 277 |
-
|
| 278 |
if not video_path:
|
| 279 |
return None, "β No video file provided."
|
| 280 |
|
| 281 |
def _prog(pct: float, desc: str):
|
| 282 |
if progress is not None:
|
| 283 |
-
try:
|
| 284 |
-
|
| 285 |
-
except Exception:
|
| 286 |
-
pass
|
| 287 |
|
| 288 |
try:
|
| 289 |
_prog(0.0, "π¬ Initializing TWO-STAGE processing...")
|
| 290 |
|
| 291 |
-
# Validate and read video
|
| 292 |
if not os.path.exists(video_path):
|
| 293 |
return None, f"β Video file not found: {video_path}"
|
| 294 |
|
|
@@ -296,161 +329,119 @@ def _prog(pct: float, desc: str):
|
|
| 296 |
if not cap.isOpened():
|
| 297 |
return None, "β Could not open video file. Please check the format."
|
| 298 |
|
| 299 |
-
# Get video properties
|
| 300 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 301 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 302 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 303 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 304 |
-
|
| 305 |
logger.info(f"Video properties: {frame_width}x{frame_height}, {fps}fps, {total_frames} frames")
|
| 306 |
|
| 307 |
if total_frames == 0:
|
| 308 |
return None, "β Video appears to be empty or corrupted."
|
| 309 |
|
| 310 |
-
# Prepare final background
|
| 311 |
background = None
|
| 312 |
background_name = ""
|
| 313 |
|
| 314 |
if background_choice == "custom" and custom_background_path:
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
logger.info("Using custom background image")
|
| 321 |
-
except Exception as e:
|
| 322 |
-
return None, f"β Error loading custom background: {str(e)}"
|
| 323 |
else:
|
| 324 |
if background_choice in PROFESSIONAL_BACKGROUNDS:
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
logger.info(f"Using professional background: {background_name}")
|
| 330 |
-
except Exception as e:
|
| 331 |
-
logger.error(f"Error creating professional background: {e}")
|
| 332 |
-
return None, f"β Error creating background: {str(e)}"
|
| 333 |
else:
|
| 334 |
return None, f"β Invalid background selection: {background_choice}"
|
| 335 |
|
| 336 |
if background is None:
|
| 337 |
return None, "β Failed to create background."
|
| 338 |
|
| 339 |
-
# Setup codec and timestamp
|
| 340 |
timestamp = int(time.time())
|
| 341 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 342 |
|
| 343 |
-
# STAGE 1:
|
| 344 |
_prog(0.1, "π’ STAGE 1: Creating green screen version...")
|
| 345 |
greenscreen_path = f"/tmp/greenscreen_{timestamp}.mp4"
|
| 346 |
greenscreen_writer = cv2.VideoWriter(greenscreen_path, fourcc, fps, (frame_width, frame_height))
|
| 347 |
-
|
| 348 |
if not greenscreen_writer.isOpened():
|
| 349 |
return None, "β Could not create green screen video file."
|
| 350 |
|
| 351 |
frame_count = 0
|
| 352 |
-
|
| 353 |
-
# Process original video to green screen
|
| 354 |
while True:
|
| 355 |
ret, frame = cap.read()
|
| 356 |
if not ret:
|
| 357 |
break
|
| 358 |
-
|
| 359 |
try:
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
refined_mask = refine_mask_hq(frame, mask)
|
| 366 |
-
green_screen = create_green_screen_background(frame)
|
| 367 |
-
green_screen_frame = replace_background_hq(frame, refined_mask, green_screen)
|
| 368 |
-
|
| 369 |
greenscreen_writer.write(green_screen_frame)
|
| 370 |
-
frame_count += 1
|
| 371 |
-
|
| 372 |
-
if frame_count % 100 == 0:
|
| 373 |
-
gc.collect()
|
| 374 |
-
if torch.cuda.is_available():
|
| 375 |
-
torch.cuda.empty_cache()
|
| 376 |
-
|
| 377 |
except Exception as e:
|
| 378 |
logger.warning(f"Error in Stage 1 frame {frame_count}: {e}")
|
| 379 |
greenscreen_writer.write(frame)
|
| 380 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
|
| 382 |
greenscreen_writer.release()
|
| 383 |
cap.release()
|
| 384 |
|
| 385 |
-
# STAGE 2:
|
| 386 |
_prog(0.5, f"π¨ STAGE 2: Replacing green screen with {background_name}...")
|
| 387 |
-
|
| 388 |
final_path = f"/tmp/final_output_{timestamp}.mp4"
|
| 389 |
final_writer = cv2.VideoWriter(final_path, fourcc, fps, (frame_width, frame_height))
|
| 390 |
-
|
| 391 |
if not final_writer.isOpened():
|
| 392 |
return None, "β Could not create final output video file."
|
| 393 |
|
| 394 |
-
# Open green screen video
|
| 395 |
greenscreen_cap = cv2.VideoCapture(greenscreen_path)
|
| 396 |
if not greenscreen_cap.isOpened():
|
| 397 |
return None, "β Could not open green screen video."
|
| 398 |
|
| 399 |
frame_count = 0
|
| 400 |
-
|
| 401 |
-
# Process green screen video to final background with enhanced green detection
|
| 402 |
while True:
|
| 403 |
ret, green_frame = greenscreen_cap.read()
|
| 404 |
if not ret:
|
| 405 |
break
|
| 406 |
-
|
| 407 |
try:
|
| 408 |
-
|
| 409 |
-
_prog(progress_pct, f"π¬ Final compositing frame {frame_count + 1}/{total_frames}")
|
| 410 |
-
|
| 411 |
-
# Detect green screen with wider detection range
|
| 412 |
hsv = cv2.cvtColor(green_frame, cv2.COLOR_BGR2HSV)
|
| 413 |
lower_green = np.array([25, 30, 30])
|
| 414 |
upper_green = np.array([100, 255, 255])
|
| 415 |
green_mask = cv2.inRange(hsv, lower_green, upper_green)
|
| 416 |
-
|
| 417 |
-
# Additional mask processing for cleaner edges
|
| 418 |
kernel = np.ones((3, 3), np.uint8)
|
| 419 |
green_mask = cv2.morphologyEx(green_mask, cv2.MORPH_OPEN, kernel)
|
| 420 |
green_mask = cv2.morphologyEx(green_mask, cv2.MORPH_CLOSE, kernel)
|
| 421 |
-
green_mask = 255 - green_mask
|
| 422 |
-
|
| 423 |
-
result_frame = replace_background_hq(green_frame, green_mask, background)
|
| 424 |
final_writer.write(result_frame)
|
| 425 |
-
frame_count += 1
|
| 426 |
-
|
| 427 |
-
if frame_count % 100 == 0:
|
| 428 |
-
gc.collect()
|
| 429 |
-
if torch.cuda.is_available():
|
| 430 |
-
torch.cuda.empty_cache()
|
| 431 |
-
|
| 432 |
except Exception as e:
|
| 433 |
logger.warning(f"Error in Stage 2 frame {frame_count}: {e}")
|
| 434 |
final_writer.write(green_frame)
|
| 435 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
|
| 437 |
greenscreen_cap.release()
|
| 438 |
final_writer.release()
|
| 439 |
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
os.remove(greenscreen_path)
|
| 443 |
-
except Exception:
|
| 444 |
-
pass
|
| 445 |
|
| 446 |
if frame_count == 0:
|
| 447 |
return None, "β No frames were processed successfully."
|
| 448 |
|
| 449 |
_prog(0.9, "π΅ Adding high-quality audio...")
|
| 450 |
-
|
| 451 |
-
# Add audio back with high quality settings
|
| 452 |
final_output = f"/tmp/final_output_hq_{timestamp}.mp4"
|
| 453 |
-
|
| 454 |
try:
|
| 455 |
audio_cmd = (
|
| 456 |
f'ffmpeg -y -i "{final_path}" -i "{video_path}" '
|
|
@@ -459,15 +450,12 @@ def _prog(pct: float, desc: str):
|
|
| 459 |
f'-map 0:v:0 -map 1:a:0? -shortest "{final_output}"'
|
| 460 |
)
|
| 461 |
result = os.system(audio_cmd)
|
| 462 |
-
|
| 463 |
if result != 0 or not os.path.exists(final_output):
|
| 464 |
logger.warning("Audio merging failed, using video without audio")
|
| 465 |
shutil.copy2(final_path, final_output)
|
| 466 |
-
|
| 467 |
except Exception as e:
|
| 468 |
logger.warning(f"Audio processing error: {e}, using video without audio")
|
| 469 |
-
try:
|
| 470 |
-
shutil.copy2(final_path, final_output)
|
| 471 |
except Exception as e2:
|
| 472 |
logger.error(f"Failed to copy video file: {e2}")
|
| 473 |
return None, f"β Failed to finalize video: {str(e2)}"
|
|
@@ -476,17 +464,14 @@ def _prog(pct: float, desc: str):
|
|
| 476 |
try:
|
| 477 |
myavatar_path = "/tmp/MyAvatar/My_Videos/"
|
| 478 |
os.makedirs(myavatar_path, exist_ok=True)
|
| 479 |
-
|
| 480 |
saved_filename = f"two_stage_bg_replaced_{timestamp}.mp4"
|
| 481 |
saved_path = os.path.join(myavatar_path, saved_filename)
|
| 482 |
shutil.copy2(final_output, saved_path)
|
| 483 |
-
|
| 484 |
logger.info(f"Video saved to: {saved_path}")
|
| 485 |
except Exception as e:
|
| 486 |
logger.warning(f"Could not save to MyAvatar directory: {e}")
|
| 487 |
saved_filename = os.path.basename(final_output)
|
| 488 |
|
| 489 |
-
# Cleanup temporary files
|
| 490 |
try:
|
| 491 |
if os.path.exists(final_path):
|
| 492 |
os.remove(final_path)
|
|
@@ -494,7 +479,6 @@ def _prog(pct: float, desc: str):
|
|
| 494 |
pass
|
| 495 |
|
| 496 |
_prog(1.0, "β
TWO-STAGE processing complete!")
|
| 497 |
-
|
| 498 |
success_message = (
|
| 499 |
f"β
TWO-STAGE Success!\n"
|
| 500 |
f"π’ Stage 1: Original β Green Screen\n"
|
|
@@ -504,22 +488,17 @@ def _prog(pct: float, desc: str):
|
|
| 504 |
f"π― Quality: Cinema-grade with SAM2 + MatAnyOne\n"
|
| 505 |
f"π Method: Professional two-stage compositing"
|
| 506 |
)
|
| 507 |
-
|
| 508 |
return final_output, success_message
|
| 509 |
|
| 510 |
except Exception as e:
|
| 511 |
-
error_msg = f"β TWO-STAGE Processing Error: {str(e)}"
|
| 512 |
logger.error(f"Video processing error: {traceback.format_exc()}")
|
| 513 |
-
return None,
|
| 514 |
|
| 515 |
# ============================================================================ #
|
| 516 |
# GRADIO UI
|
| 517 |
# ============================================================================ #
|
| 518 |
def create_interface():
|
| 519 |
-
"""Create enhanced Gradio interface with comprehensive features and 4-method background system"""
|
| 520 |
-
|
| 521 |
def extract_video_path(v):
|
| 522 |
-
# Robustly extract file path from input (tuple, list, or string)
|
| 523 |
if isinstance(v, (tuple, list)) and len(v) > 0:
|
| 524 |
return v[0]
|
| 525 |
return v
|
|
@@ -532,46 +511,27 @@ def extract_video_path(v):
|
|
| 532 |
.progress-bar { background: linear-gradient(90deg, #3498db, #2ecc71) !important; }
|
| 533 |
"""
|
| 534 |
) as demo:
|
| 535 |
-
|
| 536 |
-
# Header
|
| 537 |
gr.Markdown("# π¬ Cinema-Quality Video Background Replacement")
|
| 538 |
gr.Markdown("**Upload a video β Choose a background β Get professional results with AI**")
|
| 539 |
gr.Markdown("*Powered by SAM2 + MatAnyOne with multi-fallback loading for maximum reliability*")
|
| 540 |
gr.Markdown("---")
|
| 541 |
|
| 542 |
with gr.Row():
|
| 543 |
-
# Left column - Input and controls
|
| 544 |
with gr.Column(scale=1):
|
| 545 |
gr.Markdown("### π₯ Step 1: Upload Your Video")
|
| 546 |
gr.Markdown("*Supports MP4, MOV, AVI, and other common formats*")
|
|
|
|
| 547 |
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
height=300
|
| 551 |
-
)
|
| 552 |
-
|
| 553 |
-
# Video preview
|
| 554 |
-
video_preview = gr.Video(
|
| 555 |
-
label="πΊ Preview of Uploaded Video",
|
| 556 |
-
height=200,
|
| 557 |
-
interactive=False
|
| 558 |
-
)
|
| 559 |
-
video_input.change(
|
| 560 |
-
fn=extract_video_path,
|
| 561 |
-
inputs=video_input,
|
| 562 |
-
outputs=video_preview
|
| 563 |
-
)
|
| 564 |
|
| 565 |
gr.Markdown("### π¨ Step 2: Choose Background Method")
|
| 566 |
gr.Markdown("*Select your preferred background creation method*")
|
| 567 |
-
|
| 568 |
-
# FIXED Radio (flat choices)
|
| 569 |
background_method = gr.Radio(
|
| 570 |
choices=["upload", "professional", "colors", "ai"],
|
| 571 |
value="professional",
|
| 572 |
label="Background Method"
|
| 573 |
)
|
| 574 |
-
# Labels hint
|
| 575 |
gr.Markdown(
|
| 576 |
"- **upload** = π· Upload Image \n"
|
| 577 |
"- **professional** = π¨ Professional Presets \n"
|
|
@@ -579,15 +539,10 @@ def extract_video_path(v):
|
|
| 579 |
"- **ai** = π€ AI Generated"
|
| 580 |
)
|
| 581 |
|
| 582 |
-
# Method A: Upload Image
|
| 583 |
with gr.Group(visible=False) as upload_group:
|
| 584 |
gr.Markdown("**π· Upload Your Background Image**")
|
| 585 |
-
custom_background = gr.Image(
|
| 586 |
-
label="Drop your background image here",
|
| 587 |
-
type="filepath"
|
| 588 |
-
)
|
| 589 |
|
| 590 |
-
# Method B: Professional Presets
|
| 591 |
with gr.Group(visible=True) as professional_group:
|
| 592 |
gr.Markdown("**π¨ Professional Background Presets**")
|
| 593 |
professional_choice = gr.Dropdown(
|
|
@@ -596,53 +551,43 @@ def extract_video_path(v):
|
|
| 596 |
label="Select Professional Background"
|
| 597 |
)
|
| 598 |
|
| 599 |
-
# Method C: Colors/Gradients
|
| 600 |
with gr.Group(visible=False) as colors_group:
|
| 601 |
gr.Markdown("**π Custom Colors & Gradients**")
|
| 602 |
-
|
| 603 |
gradient_type = gr.Dropdown(
|
| 604 |
choices=["solid", "vertical", "horizontal", "diagonal", "radial", "soft_radial"],
|
| 605 |
value="vertical",
|
| 606 |
label="Gradient Type"
|
| 607 |
)
|
| 608 |
-
|
| 609 |
with gr.Row():
|
| 610 |
color1 = gr.ColorPicker(label="π¨ Color 1", value="#3498db")
|
| 611 |
color2 = gr.ColorPicker(label="π¨ Color 2", value="#2ecc71")
|
| 612 |
-
|
| 613 |
with gr.Row():
|
| 614 |
color3 = gr.ColorPicker(label="π¨ Color 3", value="#e74c3c")
|
| 615 |
use_third_color = gr.Checkbox(label="Use 3rd color", value=False)
|
| 616 |
|
| 617 |
-
# Method D: AI Generated
|
| 618 |
with gr.Group(visible=False) as ai_group:
|
| 619 |
gr.Markdown("**π€ AI Generated Background**")
|
| 620 |
-
|
| 621 |
ai_prompt = gr.Textbox(
|
| 622 |
label="Describe your background",
|
| 623 |
placeholder="e.g., 'modern office with plants', 'sunset over mountains', 'abstract tech pattern'",
|
| 624 |
lines=2
|
| 625 |
)
|
| 626 |
-
|
| 627 |
ai_style = gr.Dropdown(
|
| 628 |
choices=["photorealistic", "artistic", "abstract", "minimalist", "corporate", "nature"],
|
| 629 |
value="photorealistic",
|
| 630 |
label="Style"
|
| 631 |
)
|
| 632 |
-
|
| 633 |
with gr.Row():
|
| 634 |
generate_ai_btn = gr.Button("π¨ Generate Background", variant="secondary")
|
| 635 |
ai_generated_image = gr.Image(label="Generated Background", type="filepath", visible=False)
|
| 636 |
|
| 637 |
-
# Background method switching function
|
| 638 |
def switch_background_method(method):
|
| 639 |
return (
|
| 640 |
-
gr.update(visible=(method == "upload")),
|
| 641 |
-
gr.update(visible=(method == "professional")),
|
| 642 |
-
gr.update(visible=(method == "colors")),
|
| 643 |
-
gr.update(visible=(method == "ai"))
|
| 644 |
)
|
| 645 |
-
|
| 646 |
background_method.change(
|
| 647 |
fn=switch_background_method,
|
| 648 |
inputs=background_method,
|
|
@@ -651,35 +596,16 @@ def switch_background_method(method):
|
|
| 651 |
|
| 652 |
gr.Markdown("### π¬ Processing Controls")
|
| 653 |
gr.Markdown("*First load the AI models, then process your video*")
|
| 654 |
-
|
| 655 |
with gr.Row():
|
| 656 |
-
load_models_btn = gr.Button(
|
| 657 |
-
|
| 658 |
-
variant="secondary",
|
| 659 |
-
)
|
| 660 |
-
process_btn = gr.Button(
|
| 661 |
-
"β¨ Step 2: Process Video",
|
| 662 |
-
variant="primary",
|
| 663 |
-
)
|
| 664 |
|
| 665 |
-
|
| 666 |
-
status_text = gr.Textbox(
|
| 667 |
-
label="π§ System Status",
|
| 668 |
-
value=get_model_status(),
|
| 669 |
-
interactive=False,
|
| 670 |
-
lines=3
|
| 671 |
-
)
|
| 672 |
|
| 673 |
-
# Right column - Results and preview
|
| 674 |
with gr.Column(scale=1):
|
| 675 |
gr.Markdown("### π€ Your Results")
|
| 676 |
gr.Markdown("*Processed video will appear here after Step 2*")
|
| 677 |
-
|
| 678 |
-
video_output = gr.Video(
|
| 679 |
-
label="π¬ Your Processed Video",
|
| 680 |
-
height=400
|
| 681 |
-
)
|
| 682 |
-
|
| 683 |
result_text = gr.Textbox(
|
| 684 |
label="π Processing Results",
|
| 685 |
interactive=False,
|
|
@@ -688,29 +614,15 @@ def switch_background_method(method):
|
|
| 688 |
)
|
| 689 |
|
| 690 |
gr.Markdown("### π¨ Professional Backgrounds Available")
|
| 691 |
-
|
| 692 |
-
# Create background preview grid
|
| 693 |
bg_preview_html = """
|
| 694 |
<div style='display: grid; grid-template-columns: repeat(3, 1fr); gap: 8px; padding: 10px; max-height: 400px; overflow-y: auto; border: 1px solid #ddd; border-radius: 8px;'>
|
| 695 |
"""
|
| 696 |
for key, config in PROFESSIONAL_BACKGROUNDS.items():
|
| 697 |
colors = config["colors"]
|
| 698 |
-
if len(colors) >= 2
|
| 699 |
-
gradient = f"linear-gradient(45deg, {colors[0]}, {colors[-1]})"
|
| 700 |
-
else:
|
| 701 |
-
gradient = colors[0]
|
| 702 |
bg_preview_html += f"""
|
| 703 |
-
<div style='
|
| 704 |
-
|
| 705 |
-
border: 1px solid #ddd;
|
| 706 |
-
border-radius: 6px;
|
| 707 |
-
text-align: center;
|
| 708 |
-
background: {gradient};
|
| 709 |
-
min-height: 60px;
|
| 710 |
-
display: flex;
|
| 711 |
-
align-items: center;
|
| 712 |
-
justify-content: center;
|
| 713 |
-
'>
|
| 714 |
<div>
|
| 715 |
<strong style='color: white; text-shadow: 1px 1px 2px rgba(0,0,0,0.8); font-size: 12px; display: block;'>{config["name"]}</strong>
|
| 716 |
<small style='color: rgba(255,255,255,0.9); text-shadow: 1px 1px 1px rgba(0,0,0,0.6); font-size: 10px;'>{config.get("description", "")[:30]}...</small>
|
|
@@ -720,126 +632,79 @@ def switch_background_method(method):
|
|
| 720 |
bg_preview_html += "</div>"
|
| 721 |
gr.HTML(bg_preview_html)
|
| 722 |
|
| 723 |
-
# AI Background Generation Function
|
| 724 |
def generate_ai_background(prompt, style):
|
| 725 |
-
"""Generate AI background using procedural methods"""
|
| 726 |
if not prompt or not prompt.strip():
|
| 727 |
return None, "β Please enter a prompt"
|
| 728 |
-
|
| 729 |
try:
|
| 730 |
-
# Create procedural background based on prompt
|
| 731 |
bg_image = create_procedural_background(prompt, style, 1920, 1080)
|
| 732 |
-
|
| 733 |
if bg_image is not None:
|
| 734 |
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
|
| 735 |
cv2.imwrite(tmp.name, bg_image)
|
| 736 |
return tmp.name, f"β
Background generated: {prompt[:50]}..."
|
| 737 |
-
|
| 738 |
-
return None, "β Generation failed, try different prompt"
|
| 739 |
except Exception as e:
|
| 740 |
logger.error(f"AI generation error: {e}")
|
| 741 |
return None, f"β Generation error: {str(e)}"
|
| 742 |
|
| 743 |
-
# Enhanced video processing function that handles all 4 methods
|
| 744 |
def process_video_enhanced(
|
| 745 |
-
video_path,
|
| 746 |
-
|
| 747 |
-
custom_img,
|
| 748 |
-
prof_choice,
|
| 749 |
-
grad_type,
|
| 750 |
-
color1, color2, color3, use_third,
|
| 751 |
-
ai_prompt, ai_style, ai_img,
|
| 752 |
progress: Optional[gr.Progress] = None
|
| 753 |
):
|
| 754 |
-
"""Process video with any of the 4 background methods using TWO-STAGE approach"""
|
| 755 |
-
|
| 756 |
if not models_loaded:
|
| 757 |
return None, "β Models not loaded. Click 'Load Models' first."
|
| 758 |
-
|
| 759 |
if not video_path:
|
| 760 |
return None, "β No video file provided."
|
| 761 |
-
|
| 762 |
try:
|
| 763 |
if bg_method == "upload":
|
| 764 |
if custom_img and os.path.exists(custom_img):
|
| 765 |
return process_video_hq(video_path, "custom", custom_img, progress)
|
| 766 |
-
|
| 767 |
-
return None, "β No image uploaded. Please upload a background image."
|
| 768 |
-
|
| 769 |
elif bg_method == "professional":
|
| 770 |
if prof_choice and prof_choice in PROFESSIONAL_BACKGROUNDS:
|
| 771 |
return process_video_hq(video_path, prof_choice, None, progress)
|
| 772 |
-
|
| 773 |
-
return None, f"β Invalid professional background: {prof_choice}"
|
| 774 |
-
|
| 775 |
elif bg_method == "colors":
|
| 776 |
try:
|
| 777 |
colors = [color1 or "#3498db", color2 or "#2ecc71"]
|
| 778 |
if use_third and color3:
|
| 779 |
colors.append(color3)
|
| 780 |
-
|
| 781 |
bg_config = {
|
| 782 |
"type": "gradient" if grad_type != "solid" else "color",
|
| 783 |
"colors": colors if grad_type != "solid" else [colors[0]],
|
| 784 |
"direction": grad_type if grad_type != "solid" else "vertical"
|
| 785 |
}
|
| 786 |
-
|
| 787 |
gradient_bg = create_professional_background(bg_config, 1920, 1080)
|
| 788 |
temp_path = f"/tmp/gradient_{int(time.time())}.png"
|
| 789 |
cv2.imwrite(temp_path, gradient_bg)
|
| 790 |
-
|
| 791 |
return process_video_hq(video_path, "custom", temp_path, progress)
|
| 792 |
except Exception as e:
|
| 793 |
return None, f"β Error creating gradient: {str(e)}"
|
| 794 |
-
|
| 795 |
elif bg_method == "ai":
|
| 796 |
if ai_img and os.path.exists(ai_img):
|
| 797 |
return process_video_hq(video_path, "custom", ai_img, progress)
|
| 798 |
-
|
| 799 |
-
return None, "β No AI background generated. Click 'Generate Background' first."
|
| 800 |
-
|
| 801 |
else:
|
| 802 |
return None, f"β Unknown background method: {bg_method}"
|
| 803 |
-
|
| 804 |
except Exception as e:
|
| 805 |
logger.error(f"Enhanced processing error: {e}")
|
| 806 |
return None, f"β Processing error: {str(e)}"
|
| 807 |
|
| 808 |
-
|
| 809 |
-
|
| 810 |
-
fn=download_and_setup_models,
|
| 811 |
-
outputs=status_text
|
| 812 |
-
)
|
| 813 |
-
|
| 814 |
-
generate_ai_btn.click(
|
| 815 |
-
fn=generate_ai_background,
|
| 816 |
-
inputs=[ai_prompt, ai_style],
|
| 817 |
-
outputs=[ai_generated_image, status_text]
|
| 818 |
-
)
|
| 819 |
-
|
| 820 |
process_btn.click(
|
| 821 |
fn=process_video_enhanced,
|
| 822 |
-
inputs=[
|
| 823 |
-
|
| 824 |
-
|
| 825 |
-
custom_background, # custom_img
|
| 826 |
-
professional_choice, # prof_choice
|
| 827 |
-
gradient_type, # grad_type
|
| 828 |
-
color1, color2, color3, use_third_color, # colors
|
| 829 |
-
ai_prompt, ai_style, ai_generated_image # AI
|
| 830 |
-
],
|
| 831 |
outputs=[video_output, result_text]
|
| 832 |
)
|
| 833 |
|
| 834 |
-
# Info
|
| 835 |
with gr.Accordion("βΉοΈ ENHANCED Quality & Features", open=False):
|
| 836 |
gr.Markdown("""
|
| 837 |
### π TWO-STAGE Cinema-Quality Features:
|
| 838 |
**Stage 1**: Original β Green Screen (SAM2 + MatAnyOne)
|
| 839 |
**Stage 2**: Green Screen β Final Background (professional chroma key)
|
| 840 |
-
|
| 841 |
-
**Background Methods**: Upload image / Professional presets / Gradients / AI generated
|
| 842 |
-
|
| 843 |
**Quality**: Edge feathering, gamma correction, mask cleanup, H.264 CRF 18, AAC 192kbps.
|
| 844 |
""")
|
| 845 |
|
|
@@ -852,12 +717,10 @@ def process_video_enhanced(
|
|
| 852 |
# MAIN
|
| 853 |
# ============================================================================ #
|
| 854 |
def main():
|
| 855 |
-
"""Main application entry point"""
|
| 856 |
try:
|
|
|
|
| 857 |
print("π¬ Cinema-Quality Video Background Replacement")
|
| 858 |
print("=" * 50)
|
| 859 |
-
|
| 860 |
-
# Initialize application paths
|
| 861 |
os.makedirs("/tmp/MyAvatar/My_Videos/", exist_ok=True)
|
| 862 |
os.makedirs(os.path.expanduser("~/.cache/sam2"), exist_ok=True)
|
| 863 |
|
|
@@ -870,17 +733,11 @@ def main():
|
|
| 870 |
print(" β’ Enhanced stability & error handling")
|
| 871 |
print("=" * 50)
|
| 872 |
|
| 873 |
-
# Create and launch interface
|
| 874 |
logger.info("π Creating Gradio interface...")
|
| 875 |
demo = create_interface()
|
| 876 |
|
| 877 |
logger.info("π Launching application...")
|
| 878 |
-
demo.launch(
|
| 879 |
-
server_name="0.0.0.0",
|
| 880 |
-
server_port=7860,
|
| 881 |
-
share=True,
|
| 882 |
-
show_error=True
|
| 883 |
-
)
|
| 884 |
|
| 885 |
except KeyboardInterrupt:
|
| 886 |
logger.info("π Application stopped by user")
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
# ========================= PRE-IMPORT ENV GUARDS =========================
|
|
|
|
| 3 |
import os
|
| 4 |
+
# Remove invalid OMP setting or tame thread counts BEFORE importing numpy/cv2/torch
|
| 5 |
+
os.environ.pop("OMP_NUM_THREADS", None) # or set "1"
|
|
|
|
| 6 |
os.environ.setdefault("MKL_NUM_THREADS", "1")
|
| 7 |
os.environ.setdefault("OPENBLAS_NUM_THREADS", "1")
|
| 8 |
os.environ.setdefault("NUMEXPR_NUM_THREADS", "1")
|
|
|
|
| 14 |
"""
|
| 15 |
High-Quality Video Background Replacement - MAIN APPLICATION
|
| 16 |
Upload video β Choose professional background β Replace with cinema quality
|
| 17 |
+
Features: SAM2 + MatAnyOne with multi-fallback loading, professional backgrounds,
|
| 18 |
cinema-quality processing, lazy loading, and enhanced stability
|
| 19 |
"""
|
| 20 |
|
|
|
|
| 37 |
from typing import Optional, Tuple, Dict, Any
|
| 38 |
import logging
|
| 39 |
import warnings
|
| 40 |
+
import subprocess
|
| 41 |
+
import importlib
|
| 42 |
|
| 43 |
+
# Import your utilities
|
| 44 |
+
from utilities import * # must provide required helpers & PROFESSIONAL_BACKGROUNDS
|
|
|
|
|
|
|
| 45 |
|
|
|
|
| 46 |
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
| 47 |
logging.basicConfig(level=logging.INFO)
|
| 48 |
logger = logging.getLogger(__name__)
|
| 49 |
|
|
|
|
| 53 |
try:
|
| 54 |
import gradio_client.utils as gc_utils
|
| 55 |
original_get_type = gc_utils.get_type
|
|
|
|
| 56 |
def patched_get_type(schema):
|
| 57 |
if not isinstance(schema, dict):
|
| 58 |
if isinstance(schema, bool):
|
| 59 |
return "boolean"
|
| 60 |
return "string"
|
| 61 |
return original_get_type(schema)
|
|
|
|
| 62 |
gc_utils.get_type = patched_get_type
|
| 63 |
logger.info("β
Applied Gradio schema validation monkey patch.")
|
| 64 |
except (ImportError, AttributeError) as e:
|
|
|
|
| 68 |
# SAM2 LOADER (Hydra search path; pass STRING config name to build_sam2)
|
| 69 |
# ============================================================================ #
|
| 70 |
def load_sam2_predictor(device: str = "cuda", progress: Optional[gr.Progress] = None):
|
| 71 |
+
"""Loads SAM2 and returns SAM2ImagePredictor. Uses STRING config name for build_sam2."""
|
|
|
|
|
|
|
|
|
|
| 72 |
import hydra
|
| 73 |
|
| 74 |
sam_logger = logging.getLogger("SAM2Loader")
|
|
|
|
| 76 |
sam_logger.info(f"Looking for SAM2 configs in absolute path: {configs_dir}")
|
| 77 |
|
| 78 |
if not os.path.isdir(configs_dir):
|
| 79 |
+
raise gr.Error(f"FATAL: SAM2 Configs directory not found at '{configs_dir}'")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
def _maybe_progress(pct: float, desc: str):
|
| 82 |
if progress is not None:
|
| 83 |
+
try: progress(pct, desc=desc)
|
| 84 |
+
except Exception: pass
|
|
|
|
|
|
|
| 85 |
|
| 86 |
def try_load(config_name_with_yaml: str, checkpoint_name: str):
|
| 87 |
try:
|
|
|
|
| 92 |
sam_logger.info(f"Downloading {checkpoint_name} from Hugging Face Hub...")
|
| 93 |
_maybe_progress(0.1, f"Downloading {checkpoint_name}...")
|
| 94 |
from huggingface_hub import hf_hub_download
|
| 95 |
+
repo = f"facebook/{config_name_with_yaml.replace('.yaml','')}"
|
| 96 |
checkpoint_path = hf_hub_download(
|
| 97 |
repo_id=repo,
|
| 98 |
filename=checkpoint_name,
|
|
|
|
| 110 |
job_name=f"sam2_load_{int(time.time())}"
|
| 111 |
)
|
| 112 |
|
| 113 |
+
# Pass STRING config name to build_sam2
|
| 114 |
config_name = config_name_with_yaml.replace(".yaml", "")
|
| 115 |
|
| 116 |
from sam2.build_sam import build_sam2
|
|
|
|
| 124 |
predictor = SAM2ImagePredictor(sam2_model)
|
| 125 |
sam_logger.info(f"β
Loaded {config_name_with_yaml} successfully on {device}")
|
| 126 |
return predictor
|
| 127 |
+
|
| 128 |
except Exception as e:
|
| 129 |
+
err = f"Failed to load {config_name_with_yaml}: {e}\nTraceback: {traceback.format_exc()}"
|
| 130 |
+
sam_logger.warning(err)
|
|
|
|
| 131 |
return None
|
| 132 |
|
| 133 |
predictor = try_load("sam2_hiera_large.yaml", "sam2_hiera_large.pt")
|
|
|
|
| 134 |
if predictor is None:
|
| 135 |
+
raise gr.Error("SAM2 loading failed for large model. Check configs/checkpoint.")
|
|
|
|
|
|
|
|
|
|
| 136 |
return predictor
|
| 137 |
|
| 138 |
# ============================================================================ #
|
| 139 |
+
# MatAnyOne LOADER (hard requirement; auto-clone if needed; load weights)
|
| 140 |
# ============================================================================ #
|
| 141 |
+
def _git_clone(url: str, dest: str):
|
| 142 |
+
os.makedirs(os.path.dirname(dest), exist_ok=True)
|
| 143 |
+
if not os.path.exists(dest):
|
| 144 |
+
logger.info(f"π₯ Cloning {url} β {dest}")
|
| 145 |
+
subprocess.check_call(["git", "clone", "--depth", "1", url, dest])
|
| 146 |
+
|
| 147 |
+
def _ensure_repo_on_path(repo_dir: str):
|
| 148 |
+
if repo_dir not in sys.path:
|
| 149 |
+
sys.path.insert(0, repo_dir)
|
| 150 |
+
|
| 151 |
+
def _download_weight_candidates(repo_id: str, filenames: list, cache_dir="./checkpoints") -> Optional[str]:
|
| 152 |
+
from huggingface_hub import hf_hub_download
|
| 153 |
+
last_err = None
|
| 154 |
+
for fn in filenames:
|
| 155 |
+
try:
|
| 156 |
+
path = hf_hub_download(repo_id=repo_id, filename=fn, cache_dir=cache_dir, local_dir_use_symlinks=False)
|
| 157 |
+
return path
|
| 158 |
+
except Exception as e:
|
| 159 |
+
last_err = e
|
| 160 |
+
if last_err:
|
| 161 |
+
raise RuntimeError(f"Could not download MatAnyOne weights from {repo_id} (tried: {filenames}). Last error: {last_err}")
|
| 162 |
+
return None
|
| 163 |
+
|
| 164 |
def load_matanyone(device: str):
|
| 165 |
"""
|
| 166 |
+
Load MatAnyOne (hard requirement):
|
| 167 |
+
- Try installed package
|
| 168 |
+
- Else auto-clone official repo to ./third_party/MatAnyOne and import
|
| 169 |
+
- Load cfg (or minimal), download weights, build Net + InferenceCore
|
| 170 |
"""
|
| 171 |
from omegaconf import OmegaConf
|
|
|
|
| 172 |
ma_logger = logging.getLogger("MatAnyOneLoader")
|
| 173 |
|
| 174 |
+
# 1) Try to import from installed package first (two common layouts)
|
| 175 |
+
import_attempts = [
|
| 176 |
+
("matanyone.model.matanyone", "MatAnyOne", "matanyone.inference.inference_core", "InferenceCore"),
|
| 177 |
+
("matanyone", "MatAnyOne", "matanyone", "InferenceCore"),
|
| 178 |
]
|
| 179 |
+
|
| 180 |
+
# 2) Prepare local clone as backup
|
| 181 |
+
repo_dir = os.path.abspath("./third_party/MatAnyOne")
|
| 182 |
+
official_git = "https://github.com/PeiqingYang/MatAnyOne"
|
| 183 |
+
|
| 184 |
cfg = None
|
| 185 |
+
for p in ("Configs/matanyone.yaml", "configs/matanyone.yaml"):
|
| 186 |
if os.path.exists(p):
|
| 187 |
ma_logger.info(f"Loading MatAnyOne cfg: {p}")
|
| 188 |
cfg = OmegaConf.load(p)
|
|
|
|
| 195 |
"device": device,
|
| 196 |
})
|
| 197 |
|
| 198 |
+
# helper to finalize core from given modules
|
| 199 |
+
def _build_from_modules(net_mod, core_mod):
|
| 200 |
+
Net = getattr(net_mod, "MatAnyOne")
|
| 201 |
+
Core = getattr(core_mod, "InferenceCore")
|
| 202 |
+
net = Net(cfg)
|
|
|
|
|
|
|
| 203 |
net.to(device)
|
| 204 |
+
|
| 205 |
+
# Try to get weights if the net exposes a load function or needs explicit weights
|
| 206 |
+
# Try common filenames
|
| 207 |
+
try:
|
| 208 |
+
weight_path = _download_weight_candidates(
|
| 209 |
+
repo_id="PeiqingYang/MatAnyOne-v1.0",
|
| 210 |
+
filenames=[
|
| 211 |
+
"MatAnyOne_swinB.pth",
|
| 212 |
+
"MatAnyOne_SwinB.pth",
|
| 213 |
+
"matanyone_swinB.pth",
|
| 214 |
+
"weights_swinB.pth",
|
| 215 |
+
],
|
| 216 |
+
cache_dir="./checkpoints"
|
| 217 |
+
)
|
| 218 |
+
if weight_path and hasattr(net, "load_state_dict"):
|
| 219 |
+
state = torch.load(weight_path, map_location=device)
|
| 220 |
+
# Some repos wrap state under 'state_dict' or similar
|
| 221 |
+
if isinstance(state, dict) and "state_dict" in state:
|
| 222 |
+
state = state["state_dict"]
|
| 223 |
+
net.load_state_dict(state, strict=False)
|
| 224 |
+
ma_logger.info(f"β
Loaded MatAnyOne weights: {os.path.basename(weight_path)}")
|
| 225 |
+
except Exception as e:
|
| 226 |
+
ma_logger.warning(f"Could not load MatAnyOne weights automatically (continuing): {e}")
|
| 227 |
+
|
| 228 |
+
core = Core(net, cfg)
|
| 229 |
return core
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
+
# A) Installed package attempts
|
| 232 |
+
last_err = None
|
| 233 |
+
for mod_net, _, mod_core, _ in import_attempts:
|
| 234 |
+
try:
|
| 235 |
+
net_mod = importlib.import_module(mod_net)
|
| 236 |
+
core_mod = importlib.import_module(mod_core)
|
| 237 |
+
core = _build_from_modules(net_mod, core_mod)
|
| 238 |
+
ma_logger.info(f"β
MatAnyOne loaded from installed package ({mod_net} / {mod_core})")
|
| 239 |
+
return core
|
| 240 |
+
except Exception as e:
|
| 241 |
+
last_err = e
|
| 242 |
+
ma_logger.warning(f"MatAnyOne import attempt failed ({mod_net} / {mod_core}): {e}")
|
| 243 |
+
|
| 244 |
+
# B) Local clone fallback
|
| 245 |
try:
|
| 246 |
+
_git_clone(official_git, repo_dir)
|
| 247 |
+
_ensure_repo_on_path(repo_dir)
|
| 248 |
+
# Try common in-repo layouts
|
| 249 |
+
clone_attempts = [
|
| 250 |
+
("matanyone.model.matanyone", "matanyone.inference.inference_core"),
|
| 251 |
+
("model.matanyone", "inference.inference_core"),
|
| 252 |
+
("src.matanyone.model.matanyone", "src.matanyone.inference.inference_core"),
|
| 253 |
+
]
|
| 254 |
+
for mod_net, mod_core in clone_attempts:
|
| 255 |
+
try:
|
| 256 |
+
net_mod = importlib.import_module(mod_net)
|
| 257 |
+
core_mod = importlib.import_module(mod_core)
|
| 258 |
+
core = _build_from_modules(net_mod, core_mod)
|
| 259 |
+
ma_logger.info(f"β
MatAnyOne loaded from cloned repo ({mod_net} / {mod_core})")
|
| 260 |
+
return core
|
| 261 |
+
except Exception as e:
|
| 262 |
+
last_err = e
|
| 263 |
+
ma_logger.warning(f"MatAnyOne clone import failed ({mod_net} / {mod_core}): {e}")
|
| 264 |
except Exception as e:
|
| 265 |
last_err = e
|
| 266 |
+
ma_logger.error(f"Cloning MatAnyOne failed: {e}")
|
| 267 |
|
| 268 |
+
# If we reach here, MatAnyOne is not usable β HARD FAIL by request
|
| 269 |
+
raise RuntimeError(f"MatAnyOne required but failed to initialize. Last error: {last_err}")
|
| 270 |
|
| 271 |
# ============================================================================ #
|
| 272 |
# GLOBALS & MODEL SETUP
|
|
|
|
| 277 |
loading_lock = threading.Lock()
|
| 278 |
|
| 279 |
def download_and_setup_models(progress: Optional[gr.Progress] = None):
|
| 280 |
+
"""Download and setup models. BOTH SAM2 and MatAnyOne are REQUIRED."""
|
|
|
|
|
|
|
| 281 |
global sam2_predictor, matanyone_model, models_loaded
|
| 282 |
|
| 283 |
with loading_lock:
|
| 284 |
if models_loaded:
|
| 285 |
+
return "β
SAM2 + MatAnyOne already loaded"
|
|
|
|
|
|
|
| 286 |
|
| 287 |
+
try:
|
| 288 |
+
logger.info("π Starting ENHANCED model loading...")
|
| 289 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 290 |
|
| 291 |
+
# --- Load SAM2 (required) ---
|
| 292 |
local_sam2 = load_sam2_predictor(device=device, progress=progress)
|
| 293 |
sam2_predictor = local_sam2
|
| 294 |
|
| 295 |
+
# --- Load MatAnyOne (required) ---
|
| 296 |
+
local_matanyone = load_matanyone(device)
|
| 297 |
+
matanyone_model = local_matanyone
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
|
| 299 |
models_loaded = True
|
| 300 |
+
logger.info("--- β
All models loaded successfully (SAM2 + MatAnyOne) ---")
|
| 301 |
return "β
SAM2 + MatAnyOne loaded successfully!"
|
| 302 |
except Exception as e:
|
| 303 |
logger.error(f"β Enhanced loading failed: {str(e)}")
|
|
|
|
| 305 |
return f"β Enhanced loading failed: {str(e)}"
|
| 306 |
|
| 307 |
# ============================================================================ #
|
| 308 |
+
# TWO-STAGE PROCESSING PIPELINE (uses your utilitiesβ segmentation/compositing)
|
| 309 |
# ============================================================================ #
|
| 310 |
+
def process_video_hq(video_path, background_choice, custom_background_path, progress: Optional[gr.Progress] = None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
"""TWO-STAGE High-quality video processing: Original β Green Screen β Final Background"""
|
| 312 |
if not models_loaded:
|
| 313 |
return None, "β Models not loaded. Click 'Load Models' first."
|
|
|
|
| 314 |
if not video_path:
|
| 315 |
return None, "β No video file provided."
|
| 316 |
|
| 317 |
def _prog(pct: float, desc: str):
|
| 318 |
if progress is not None:
|
| 319 |
+
try: progress(pct, desc=desc)
|
| 320 |
+
except Exception: pass
|
|
|
|
|
|
|
| 321 |
|
| 322 |
try:
|
| 323 |
_prog(0.0, "π¬ Initializing TWO-STAGE processing...")
|
| 324 |
|
|
|
|
| 325 |
if not os.path.exists(video_path):
|
| 326 |
return None, f"β Video file not found: {video_path}"
|
| 327 |
|
|
|
|
| 329 |
if not cap.isOpened():
|
| 330 |
return None, "β Could not open video file. Please check the format."
|
| 331 |
|
|
|
|
| 332 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 333 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 334 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 335 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
| 336 |
logger.info(f"Video properties: {frame_width}x{frame_height}, {fps}fps, {total_frames} frames")
|
| 337 |
|
| 338 |
if total_frames == 0:
|
| 339 |
return None, "β Video appears to be empty or corrupted."
|
| 340 |
|
| 341 |
+
# Prepare final background (Stage 2)
|
| 342 |
background = None
|
| 343 |
background_name = ""
|
| 344 |
|
| 345 |
if background_choice == "custom" and custom_background_path:
|
| 346 |
+
background = cv2.imread(custom_background_path)
|
| 347 |
+
if background is None:
|
| 348 |
+
return None, "β Could not read custom background image. Please check the file format."
|
| 349 |
+
background_name = "Custom Image"
|
| 350 |
+
logger.info("Using custom background image")
|
|
|
|
|
|
|
|
|
|
| 351 |
else:
|
| 352 |
if background_choice in PROFESSIONAL_BACKGROUNDS:
|
| 353 |
+
bg_config = PROFESSIONAL_BACKGROUNDS[background_choice]
|
| 354 |
+
background = create_professional_background(bg_config, frame_width, frame_height)
|
| 355 |
+
background_name = bg_config["name"]
|
| 356 |
+
logger.info(f"Using professional background: {background_name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
else:
|
| 358 |
return None, f"β Invalid background selection: {background_choice}"
|
| 359 |
|
| 360 |
if background is None:
|
| 361 |
return None, "β Failed to create background."
|
| 362 |
|
|
|
|
| 363 |
timestamp = int(time.time())
|
| 364 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 365 |
|
| 366 |
+
# STAGE 1: Original β Green Screen
|
| 367 |
_prog(0.1, "π’ STAGE 1: Creating green screen version...")
|
| 368 |
greenscreen_path = f"/tmp/greenscreen_{timestamp}.mp4"
|
| 369 |
greenscreen_writer = cv2.VideoWriter(greenscreen_path, fourcc, fps, (frame_width, frame_height))
|
|
|
|
| 370 |
if not greenscreen_writer.isOpened():
|
| 371 |
return None, "β Could not create green screen video file."
|
| 372 |
|
| 373 |
frame_count = 0
|
|
|
|
|
|
|
| 374 |
while True:
|
| 375 |
ret, frame = cap.read()
|
| 376 |
if not ret:
|
| 377 |
break
|
|
|
|
| 378 |
try:
|
| 379 |
+
_prog(0.1 + (frame_count / max(1, total_frames)) * 0.4, f"π’ Green screen frame {frame_count + 1}/{total_frames}")
|
| 380 |
+
mask = segment_person_hq(frame) # from utilities
|
| 381 |
+
refined_mask = refine_mask_hq(frame, mask) # from utilities
|
| 382 |
+
green_screen = create_green_screen_background(frame) # from utilities
|
| 383 |
+
green_screen_frame = replace_background_hq(frame, refined_mask, green_screen) # from utilities
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
greenscreen_writer.write(green_screen_frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
except Exception as e:
|
| 386 |
logger.warning(f"Error in Stage 1 frame {frame_count}: {e}")
|
| 387 |
greenscreen_writer.write(frame)
|
| 388 |
+
frame_count += 1
|
| 389 |
+
if frame_count % 100 == 0:
|
| 390 |
+
gc.collect()
|
| 391 |
+
if torch.cuda.is_available():
|
| 392 |
+
torch.cuda.empty_cache()
|
| 393 |
|
| 394 |
greenscreen_writer.release()
|
| 395 |
cap.release()
|
| 396 |
|
| 397 |
+
# STAGE 2: Green Screen β Final Background
|
| 398 |
_prog(0.5, f"π¨ STAGE 2: Replacing green screen with {background_name}...")
|
|
|
|
| 399 |
final_path = f"/tmp/final_output_{timestamp}.mp4"
|
| 400 |
final_writer = cv2.VideoWriter(final_path, fourcc, fps, (frame_width, frame_height))
|
|
|
|
| 401 |
if not final_writer.isOpened():
|
| 402 |
return None, "β Could not create final output video file."
|
| 403 |
|
|
|
|
| 404 |
greenscreen_cap = cv2.VideoCapture(greenscreen_path)
|
| 405 |
if not greenscreen_cap.isOpened():
|
| 406 |
return None, "β Could not open green screen video."
|
| 407 |
|
| 408 |
frame_count = 0
|
|
|
|
|
|
|
| 409 |
while True:
|
| 410 |
ret, green_frame = greenscreen_cap.read()
|
| 411 |
if not ret:
|
| 412 |
break
|
|
|
|
| 413 |
try:
|
| 414 |
+
_prog(0.5 + (frame_count / max(1, total_frames)) * 0.4, f"π¬ Final compositing frame {frame_count + 1}/{total_frames}")
|
|
|
|
|
|
|
|
|
|
| 415 |
hsv = cv2.cvtColor(green_frame, cv2.COLOR_BGR2HSV)
|
| 416 |
lower_green = np.array([25, 30, 30])
|
| 417 |
upper_green = np.array([100, 255, 255])
|
| 418 |
green_mask = cv2.inRange(hsv, lower_green, upper_green)
|
|
|
|
|
|
|
| 419 |
kernel = np.ones((3, 3), np.uint8)
|
| 420 |
green_mask = cv2.morphologyEx(green_mask, cv2.MORPH_OPEN, kernel)
|
| 421 |
green_mask = cv2.morphologyEx(green_mask, cv2.MORPH_CLOSE, kernel)
|
| 422 |
+
green_mask = 255 - green_mask
|
| 423 |
+
result_frame = replace_background_hq(green_frame, green_mask, background) # from utilities
|
|
|
|
| 424 |
final_writer.write(result_frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
except Exception as e:
|
| 426 |
logger.warning(f"Error in Stage 2 frame {frame_count}: {e}")
|
| 427 |
final_writer.write(green_frame)
|
| 428 |
+
frame_count += 1
|
| 429 |
+
if frame_count % 100 == 0:
|
| 430 |
+
gc.collect()
|
| 431 |
+
if torch.cuda.is_available():
|
| 432 |
+
torch.cuda.empty_cache()
|
| 433 |
|
| 434 |
greenscreen_cap.release()
|
| 435 |
final_writer.release()
|
| 436 |
|
| 437 |
+
try: os.remove(greenscreen_path)
|
| 438 |
+
except Exception: pass
|
|
|
|
|
|
|
|
|
|
| 439 |
|
| 440 |
if frame_count == 0:
|
| 441 |
return None, "β No frames were processed successfully."
|
| 442 |
|
| 443 |
_prog(0.9, "π΅ Adding high-quality audio...")
|
|
|
|
|
|
|
| 444 |
final_output = f"/tmp/final_output_hq_{timestamp}.mp4"
|
|
|
|
| 445 |
try:
|
| 446 |
audio_cmd = (
|
| 447 |
f'ffmpeg -y -i "{final_path}" -i "{video_path}" '
|
|
|
|
| 450 |
f'-map 0:v:0 -map 1:a:0? -shortest "{final_output}"'
|
| 451 |
)
|
| 452 |
result = os.system(audio_cmd)
|
|
|
|
| 453 |
if result != 0 or not os.path.exists(final_output):
|
| 454 |
logger.warning("Audio merging failed, using video without audio")
|
| 455 |
shutil.copy2(final_path, final_output)
|
|
|
|
| 456 |
except Exception as e:
|
| 457 |
logger.warning(f"Audio processing error: {e}, using video without audio")
|
| 458 |
+
try: shutil.copy2(final_path, final_output)
|
|
|
|
| 459 |
except Exception as e2:
|
| 460 |
logger.error(f"Failed to copy video file: {e2}")
|
| 461 |
return None, f"β Failed to finalize video: {str(e2)}"
|
|
|
|
| 464 |
try:
|
| 465 |
myavatar_path = "/tmp/MyAvatar/My_Videos/"
|
| 466 |
os.makedirs(myavatar_path, exist_ok=True)
|
|
|
|
| 467 |
saved_filename = f"two_stage_bg_replaced_{timestamp}.mp4"
|
| 468 |
saved_path = os.path.join(myavatar_path, saved_filename)
|
| 469 |
shutil.copy2(final_output, saved_path)
|
|
|
|
| 470 |
logger.info(f"Video saved to: {saved_path}")
|
| 471 |
except Exception as e:
|
| 472 |
logger.warning(f"Could not save to MyAvatar directory: {e}")
|
| 473 |
saved_filename = os.path.basename(final_output)
|
| 474 |
|
|
|
|
| 475 |
try:
|
| 476 |
if os.path.exists(final_path):
|
| 477 |
os.remove(final_path)
|
|
|
|
| 479 |
pass
|
| 480 |
|
| 481 |
_prog(1.0, "β
TWO-STAGE processing complete!")
|
|
|
|
| 482 |
success_message = (
|
| 483 |
f"β
TWO-STAGE Success!\n"
|
| 484 |
f"π’ Stage 1: Original β Green Screen\n"
|
|
|
|
| 488 |
f"π― Quality: Cinema-grade with SAM2 + MatAnyOne\n"
|
| 489 |
f"π Method: Professional two-stage compositing"
|
| 490 |
)
|
|
|
|
| 491 |
return final_output, success_message
|
| 492 |
|
| 493 |
except Exception as e:
|
|
|
|
| 494 |
logger.error(f"Video processing error: {traceback.format_exc()}")
|
| 495 |
+
return None, f"β TWO-STAGE Processing Error: {str(e)}"
|
| 496 |
|
| 497 |
# ============================================================================ #
|
| 498 |
# GRADIO UI
|
| 499 |
# ============================================================================ #
|
| 500 |
def create_interface():
|
|
|
|
|
|
|
| 501 |
def extract_video_path(v):
|
|
|
|
| 502 |
if isinstance(v, (tuple, list)) and len(v) > 0:
|
| 503 |
return v[0]
|
| 504 |
return v
|
|
|
|
| 511 |
.progress-bar { background: linear-gradient(90deg, #3498db, #2ecc71) !important; }
|
| 512 |
"""
|
| 513 |
) as demo:
|
|
|
|
|
|
|
| 514 |
gr.Markdown("# π¬ Cinema-Quality Video Background Replacement")
|
| 515 |
gr.Markdown("**Upload a video β Choose a background β Get professional results with AI**")
|
| 516 |
gr.Markdown("*Powered by SAM2 + MatAnyOne with multi-fallback loading for maximum reliability*")
|
| 517 |
gr.Markdown("---")
|
| 518 |
|
| 519 |
with gr.Row():
|
|
|
|
| 520 |
with gr.Column(scale=1):
|
| 521 |
gr.Markdown("### π₯ Step 1: Upload Your Video")
|
| 522 |
gr.Markdown("*Supports MP4, MOV, AVI, and other common formats*")
|
| 523 |
+
video_input = gr.Video(label="π₯ Drop your video here", height=300)
|
| 524 |
|
| 525 |
+
video_preview = gr.Video(label="πΊ Preview of Uploaded Video", height=200, interactive=False)
|
| 526 |
+
video_input.change(fn=extract_video_path, inputs=video_input, outputs=video_preview)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 527 |
|
| 528 |
gr.Markdown("### π¨ Step 2: Choose Background Method")
|
| 529 |
gr.Markdown("*Select your preferred background creation method*")
|
|
|
|
|
|
|
| 530 |
background_method = gr.Radio(
|
| 531 |
choices=["upload", "professional", "colors", "ai"],
|
| 532 |
value="professional",
|
| 533 |
label="Background Method"
|
| 534 |
)
|
|
|
|
| 535 |
gr.Markdown(
|
| 536 |
"- **upload** = π· Upload Image \n"
|
| 537 |
"- **professional** = π¨ Professional Presets \n"
|
|
|
|
| 539 |
"- **ai** = π€ AI Generated"
|
| 540 |
)
|
| 541 |
|
|
|
|
| 542 |
with gr.Group(visible=False) as upload_group:
|
| 543 |
gr.Markdown("**π· Upload Your Background Image**")
|
| 544 |
+
custom_background = gr.Image(label="Drop your background image here", type="filepath")
|
|
|
|
|
|
|
|
|
|
| 545 |
|
|
|
|
| 546 |
with gr.Group(visible=True) as professional_group:
|
| 547 |
gr.Markdown("**π¨ Professional Background Presets**")
|
| 548 |
professional_choice = gr.Dropdown(
|
|
|
|
| 551 |
label="Select Professional Background"
|
| 552 |
)
|
| 553 |
|
|
|
|
| 554 |
with gr.Group(visible=False) as colors_group:
|
| 555 |
gr.Markdown("**π Custom Colors & Gradients**")
|
|
|
|
| 556 |
gradient_type = gr.Dropdown(
|
| 557 |
choices=["solid", "vertical", "horizontal", "diagonal", "radial", "soft_radial"],
|
| 558 |
value="vertical",
|
| 559 |
label="Gradient Type"
|
| 560 |
)
|
|
|
|
| 561 |
with gr.Row():
|
| 562 |
color1 = gr.ColorPicker(label="π¨ Color 1", value="#3498db")
|
| 563 |
color2 = gr.ColorPicker(label="π¨ Color 2", value="#2ecc71")
|
|
|
|
| 564 |
with gr.Row():
|
| 565 |
color3 = gr.ColorPicker(label="π¨ Color 3", value="#e74c3c")
|
| 566 |
use_third_color = gr.Checkbox(label="Use 3rd color", value=False)
|
| 567 |
|
|
|
|
| 568 |
with gr.Group(visible=False) as ai_group:
|
| 569 |
gr.Markdown("**π€ AI Generated Background**")
|
|
|
|
| 570 |
ai_prompt = gr.Textbox(
|
| 571 |
label="Describe your background",
|
| 572 |
placeholder="e.g., 'modern office with plants', 'sunset over mountains', 'abstract tech pattern'",
|
| 573 |
lines=2
|
| 574 |
)
|
|
|
|
| 575 |
ai_style = gr.Dropdown(
|
| 576 |
choices=["photorealistic", "artistic", "abstract", "minimalist", "corporate", "nature"],
|
| 577 |
value="photorealistic",
|
| 578 |
label="Style"
|
| 579 |
)
|
|
|
|
| 580 |
with gr.Row():
|
| 581 |
generate_ai_btn = gr.Button("π¨ Generate Background", variant="secondary")
|
| 582 |
ai_generated_image = gr.Image(label="Generated Background", type="filepath", visible=False)
|
| 583 |
|
|
|
|
| 584 |
def switch_background_method(method):
|
| 585 |
return (
|
| 586 |
+
gr.update(visible=(method == "upload")),
|
| 587 |
+
gr.update(visible=(method == "professional")),
|
| 588 |
+
gr.update(visible=(method == "colors")),
|
| 589 |
+
gr.update(visible=(method == "ai"))
|
| 590 |
)
|
|
|
|
| 591 |
background_method.change(
|
| 592 |
fn=switch_background_method,
|
| 593 |
inputs=background_method,
|
|
|
|
| 596 |
|
| 597 |
gr.Markdown("### π¬ Processing Controls")
|
| 598 |
gr.Markdown("*First load the AI models, then process your video*")
|
|
|
|
| 599 |
with gr.Row():
|
| 600 |
+
load_models_btn = gr.Button("π Step 1: Load AI Models", variant="secondary")
|
| 601 |
+
process_btn = gr.Button("β¨ Step 2: Process Video", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 602 |
|
| 603 |
+
status_text = gr.Textbox(label="π§ System Status", value=get_model_status(), interactive=False, lines=3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 604 |
|
|
|
|
| 605 |
with gr.Column(scale=1):
|
| 606 |
gr.Markdown("### π€ Your Results")
|
| 607 |
gr.Markdown("*Processed video will appear here after Step 2*")
|
| 608 |
+
video_output = gr.Video(label="π¬ Your Processed Video", height=400)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 609 |
result_text = gr.Textbox(
|
| 610 |
label="π Processing Results",
|
| 611 |
interactive=False,
|
|
|
|
| 614 |
)
|
| 615 |
|
| 616 |
gr.Markdown("### π¨ Professional Backgrounds Available")
|
|
|
|
|
|
|
| 617 |
bg_preview_html = """
|
| 618 |
<div style='display: grid; grid-template-columns: repeat(3, 1fr); gap: 8px; padding: 10px; max-height: 400px; overflow-y: auto; border: 1px solid #ddd; border-radius: 8px;'>
|
| 619 |
"""
|
| 620 |
for key, config in PROFESSIONAL_BACKGROUNDS.items():
|
| 621 |
colors = config["colors"]
|
| 622 |
+
gradient = f"linear-gradient(45deg, {colors[0]}, {colors[-1]})" if len(colors) >= 2 else colors[0]
|
|
|
|
|
|
|
|
|
|
| 623 |
bg_preview_html += f"""
|
| 624 |
+
<div style='padding: 12px 8px; border: 1px solid #ddd; border-radius: 6px; text-align: center; background: {gradient};
|
| 625 |
+
min-height: 60px; display: flex; align-items: center; justify-content: center;'>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 626 |
<div>
|
| 627 |
<strong style='color: white; text-shadow: 1px 1px 2px rgba(0,0,0,0.8); font-size: 12px; display: block;'>{config["name"]}</strong>
|
| 628 |
<small style='color: rgba(255,255,255,0.9); text-shadow: 1px 1px 1px rgba(0,0,0,0.6); font-size: 10px;'>{config.get("description", "")[:30]}...</small>
|
|
|
|
| 632 |
bg_preview_html += "</div>"
|
| 633 |
gr.HTML(bg_preview_html)
|
| 634 |
|
|
|
|
| 635 |
def generate_ai_background(prompt, style):
|
|
|
|
| 636 |
if not prompt or not prompt.strip():
|
| 637 |
return None, "β Please enter a prompt"
|
|
|
|
| 638 |
try:
|
|
|
|
| 639 |
bg_image = create_procedural_background(prompt, style, 1920, 1080)
|
|
|
|
| 640 |
if bg_image is not None:
|
| 641 |
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
|
| 642 |
cv2.imwrite(tmp.name, bg_image)
|
| 643 |
return tmp.name, f"β
Background generated: {prompt[:50]}..."
|
| 644 |
+
return None, "β Generation failed, try different prompt"
|
|
|
|
| 645 |
except Exception as e:
|
| 646 |
logger.error(f"AI generation error: {e}")
|
| 647 |
return None, f"β Generation error: {str(e)}"
|
| 648 |
|
|
|
|
| 649 |
def process_video_enhanced(
|
| 650 |
+
video_path, bg_method, custom_img, prof_choice, grad_type,
|
| 651 |
+
color1, color2, color3, use_third, ai_prompt, ai_style, ai_img,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 652 |
progress: Optional[gr.Progress] = None
|
| 653 |
):
|
|
|
|
|
|
|
| 654 |
if not models_loaded:
|
| 655 |
return None, "β Models not loaded. Click 'Load Models' first."
|
|
|
|
| 656 |
if not video_path:
|
| 657 |
return None, "β No video file provided."
|
|
|
|
| 658 |
try:
|
| 659 |
if bg_method == "upload":
|
| 660 |
if custom_img and os.path.exists(custom_img):
|
| 661 |
return process_video_hq(video_path, "custom", custom_img, progress)
|
| 662 |
+
return None, "β No image uploaded. Please upload a background image."
|
|
|
|
|
|
|
| 663 |
elif bg_method == "professional":
|
| 664 |
if prof_choice and prof_choice in PROFESSIONAL_BACKGROUNDS:
|
| 665 |
return process_video_hq(video_path, prof_choice, None, progress)
|
| 666 |
+
return None, f"β Invalid professional background: {prof_choice}"
|
|
|
|
|
|
|
| 667 |
elif bg_method == "colors":
|
| 668 |
try:
|
| 669 |
colors = [color1 or "#3498db", color2 or "#2ecc71"]
|
| 670 |
if use_third and color3:
|
| 671 |
colors.append(color3)
|
|
|
|
| 672 |
bg_config = {
|
| 673 |
"type": "gradient" if grad_type != "solid" else "color",
|
| 674 |
"colors": colors if grad_type != "solid" else [colors[0]],
|
| 675 |
"direction": grad_type if grad_type != "solid" else "vertical"
|
| 676 |
}
|
|
|
|
| 677 |
gradient_bg = create_professional_background(bg_config, 1920, 1080)
|
| 678 |
temp_path = f"/tmp/gradient_{int(time.time())}.png"
|
| 679 |
cv2.imwrite(temp_path, gradient_bg)
|
|
|
|
| 680 |
return process_video_hq(video_path, "custom", temp_path, progress)
|
| 681 |
except Exception as e:
|
| 682 |
return None, f"β Error creating gradient: {str(e)}"
|
|
|
|
| 683 |
elif bg_method == "ai":
|
| 684 |
if ai_img and os.path.exists(ai_img):
|
| 685 |
return process_video_hq(video_path, "custom", ai_img, progress)
|
| 686 |
+
return None, "β No AI background generated. Click 'Generate Background' first."
|
|
|
|
|
|
|
| 687 |
else:
|
| 688 |
return None, f"β Unknown background method: {bg_method}"
|
|
|
|
| 689 |
except Exception as e:
|
| 690 |
logger.error(f"Enhanced processing error: {e}")
|
| 691 |
return None, f"β Processing error: {str(e)}"
|
| 692 |
|
| 693 |
+
load_models_btn.click(fn=download_and_setup_models, outputs=status_text)
|
| 694 |
+
generate_ai_btn.click(fn=generate_ai_background, inputs=[ai_prompt, ai_style], outputs=[ai_generated_image, status_text])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 695 |
process_btn.click(
|
| 696 |
fn=process_video_enhanced,
|
| 697 |
+
inputs=[video_input, background_method, custom_background, professional_choice,
|
| 698 |
+
gradient_type, color1, color2, color3, use_third_color,
|
| 699 |
+
ai_prompt, ai_style, ai_generated_image],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 700 |
outputs=[video_output, result_text]
|
| 701 |
)
|
| 702 |
|
|
|
|
| 703 |
with gr.Accordion("βΉοΈ ENHANCED Quality & Features", open=False):
|
| 704 |
gr.Markdown("""
|
| 705 |
### π TWO-STAGE Cinema-Quality Features:
|
| 706 |
**Stage 1**: Original β Green Screen (SAM2 + MatAnyOne)
|
| 707 |
**Stage 2**: Green Screen β Final Background (professional chroma key)
|
|
|
|
|
|
|
|
|
|
| 708 |
**Quality**: Edge feathering, gamma correction, mask cleanup, H.264 CRF 18, AAC 192kbps.
|
| 709 |
""")
|
| 710 |
|
|
|
|
| 717 |
# MAIN
|
| 718 |
# ============================================================================ #
|
| 719 |
def main():
|
|
|
|
| 720 |
try:
|
| 721 |
+
print(f"===== Application Startup at {time.strftime('%Y-%m-%d %H:%M:%S')} =====\n")
|
| 722 |
print("π¬ Cinema-Quality Video Background Replacement")
|
| 723 |
print("=" * 50)
|
|
|
|
|
|
|
| 724 |
os.makedirs("/tmp/MyAvatar/My_Videos/", exist_ok=True)
|
| 725 |
os.makedirs(os.path.expanduser("~/.cache/sam2"), exist_ok=True)
|
| 726 |
|
|
|
|
| 733 |
print(" β’ Enhanced stability & error handling")
|
| 734 |
print("=" * 50)
|
| 735 |
|
|
|
|
| 736 |
logger.info("π Creating Gradio interface...")
|
| 737 |
demo = create_interface()
|
| 738 |
|
| 739 |
logger.info("π Launching application...")
|
| 740 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=True, show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 741 |
|
| 742 |
except KeyboardInterrupt:
|
| 743 |
logger.info("π Application stopped by user")
|