Update utils/__init__.py
Browse files- utils/__init__.py +419 -425
utils/__init__.py
CHANGED
|
@@ -1,437 +1,431 @@
|
|
|
|
|
| 1 |
"""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
"""
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
import os
|
| 9 |
-
import
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
import numpy as np
|
|
|
|
| 15 |
from PIL import Image
|
| 16 |
-
import torch
|
| 17 |
-
|
| 18 |
-
# NEW: interop + bridge imports (add these files from the previous steps)
|
| 19 |
-
from utils.interop import ensure_image_nchw, ensure_mask_for_matanyone, log_shape
|
| 20 |
-
from utils.mask_bridge import sam2_to_matanyone_mask
|
| 21 |
-
|
| 22 |
-
logger = logging.getLogger(__name__)
|
| 23 |
-
|
| 24 |
-
# Professional backgrounds configuration
|
| 25 |
-
PROFESSIONAL_BACKGROUNDS = {
|
| 26 |
-
"office": {"color": (240, 248, 255), "gradient": True},
|
| 27 |
-
"studio": {"color": (32, 32, 32), "gradient": False},
|
| 28 |
-
"nature": {"color": (34, 139, 34), "gradient": True},
|
| 29 |
-
"abstract": {"color": (75, 0, 130), "gradient": True},
|
| 30 |
-
"white": {"color": (255, 255, 255), "gradient": False},
|
| 31 |
-
"black": {"color": (0, 0, 0), "gradient": False},
|
| 32 |
-
}
|
| 33 |
-
|
| 34 |
-
# -------------------------------
|
| 35 |
-
# Utility: device
|
| 36 |
-
# -------------------------------
|
| 37 |
-
def _default_device() -> str:
|
| 38 |
-
return "cuda" if torch.cuda.is_available() else "cpu"
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
# -------------------------------
|
| 42 |
-
# Video validation
|
| 43 |
-
# -------------------------------
|
| 44 |
-
def validate_video_file(video_path: str) -> bool:
|
| 45 |
-
"""Validate if video file is readable"""
|
| 46 |
-
try:
|
| 47 |
-
if not os.path.exists(video_path):
|
| 48 |
-
return False
|
| 49 |
-
cap = cv2.VideoCapture(video_path)
|
| 50 |
-
if not cap.isOpened():
|
| 51 |
-
return False
|
| 52 |
-
ret, frame = cap.read()
|
| 53 |
-
cap.release()
|
| 54 |
-
return ret and frame is not None
|
| 55 |
-
except Exception as e:
|
| 56 |
-
logger.error(f"Video validation failed: {e}")
|
| 57 |
-
return False
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
# -------------------------------
|
| 61 |
-
# SAM2 person segmentation (first-frame bootstrapping)
|
| 62 |
-
# -------------------------------
|
| 63 |
-
def segment_person_hq(
|
| 64 |
-
frame_rgb: np.ndarray,
|
| 65 |
-
*,
|
| 66 |
-
use_sam2: bool = True,
|
| 67 |
-
sam2_predictor: Any = None, # prefer injecting a ready predictor (from your ModelLoader)
|
| 68 |
-
) -> Optional[np.ndarray]:
|
| 69 |
-
"""
|
| 70 |
-
High-quality person segmentation for a single RGB frame.
|
| 71 |
-
Returns a float mask HxW in [0,1], or None on failure.
|
| 72 |
-
|
| 73 |
-
Preferred path: pass a ready-made SAM2 predictor (e.g., SAM2ImagePredictor).
|
| 74 |
-
Fallback path: simple color-based segmentation.
|
| 75 |
-
"""
|
| 76 |
-
try:
|
| 77 |
-
if use_sam2 and sam2_predictor is not None:
|
| 78 |
-
try:
|
| 79 |
-
# SAM2 official predictors accept RGB np.uint8; set + predict.
|
| 80 |
-
# We use a simple center-point prompt; adapt to your UX if needed.
|
| 81 |
-
if hasattr(sam2_predictor, "set_image"):
|
| 82 |
-
sam2_predictor.set_image(frame_rgb)
|
| 83 |
-
|
| 84 |
-
h, w = frame_rgb.shape[:2]
|
| 85 |
-
center_point = np.array([[w // 2, h // 2]])
|
| 86 |
-
center_label = np.array([1])
|
| 87 |
-
|
| 88 |
-
# Try the SAM2 "predict" API (Meta’s predictor style)
|
| 89 |
-
if hasattr(sam2_predictor, "predict"):
|
| 90 |
-
out = sam2_predictor.predict(
|
| 91 |
-
point_coords=center_point,
|
| 92 |
-
point_labels=center_label,
|
| 93 |
-
multimask_output=True,
|
| 94 |
-
)
|
| 95 |
-
# Known Meta API returns (masks, scores, logits) as numpy
|
| 96 |
-
if isinstance(out, (list, tuple)) and len(out) >= 1:
|
| 97 |
-
masks = out[0]
|
| 98 |
-
if masks is None or len(masks) == 0:
|
| 99 |
-
return None
|
| 100 |
-
# masks: (M,H,W); pick best by area
|
| 101 |
-
areas = masks.reshape(masks.shape[0], -1).sum(axis=1)
|
| 102 |
-
best = int(np.argmax(areas))
|
| 103 |
-
m = masks[best].astype(np.float32)
|
| 104 |
-
m = (m >= 0.5).astype(np.float32)
|
| 105 |
-
return m
|
| 106 |
-
|
| 107 |
-
# Some wrappers expose processor/post_process; if you use that, call separately
|
| 108 |
-
logger.warning("SAM2 predictor provided but unknown API; falling back to simple segmentation")
|
| 109 |
-
except Exception as e:
|
| 110 |
-
logger.warning(f"SAM2 segmentation failed: {e}; falling back to simple method")
|
| 111 |
-
|
| 112 |
-
# Fallback: color-based person segmentation
|
| 113 |
-
return _simple_person_segmentation(frame_rgb)
|
| 114 |
-
except Exception as e:
|
| 115 |
-
logger.error(f"Person segmentation failed: {e}")
|
| 116 |
-
return None
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
def _simple_person_segmentation(frame_rgb: np.ndarray) -> np.ndarray:
|
| 120 |
-
"""Simple person segmentation using color-based methods"""
|
| 121 |
-
hsv = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2HSV)
|
| 122 |
-
# Green screen detection
|
| 123 |
-
lower_green = np.array([40, 40, 40])
|
| 124 |
-
upper_green = np.array([80, 255, 255])
|
| 125 |
-
green_mask = cv2.inRange(hsv, lower_green, upper_green)
|
| 126 |
-
# White background detection
|
| 127 |
-
lower_white = np.array([0, 0, 200])
|
| 128 |
-
upper_white = np.array([180, 30, 255])
|
| 129 |
-
white_mask = cv2.inRange(hsv, lower_white, upper_white)
|
| 130 |
-
# Combine + invert to person
|
| 131 |
-
bg_mask = cv2.bitwise_or(green_mask, white_mask)
|
| 132 |
-
person_mask = cv2.bitwise_not(bg_mask)
|
| 133 |
-
# Morph clean
|
| 134 |
-
kernel = np.ones((5, 5), np.uint8)
|
| 135 |
-
person_mask = cv2.morphologyEx(person_mask, cv2.MORPH_CLOSE, kernel)
|
| 136 |
-
person_mask = cv2.morphologyEx(person_mask, cv2.MORPH_OPEN, kernel)
|
| 137 |
-
return (person_mask.astype(np.float32) / 255.0)
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
# -------------------------------
|
| 141 |
-
# MatAnyOne integration (first-frame + per-frame)
|
| 142 |
-
# -------------------------------
|
| 143 |
-
def refine_mask_hq(
|
| 144 |
-
mask_hw_float01: np.ndarray,
|
| 145 |
-
frame_rgb: np.ndarray,
|
| 146 |
-
*,
|
| 147 |
-
use_matanyone: bool = True,
|
| 148 |
-
mat_core: Any = None, # prefer injecting a ready InferenceCore from ModelLoader
|
| 149 |
-
first_frame: bool = True,
|
| 150 |
-
device: str | None = None,
|
| 151 |
-
) -> np.ndarray:
|
| 152 |
-
"""
|
| 153 |
-
High-quality mask refinement for a single frame + mask pair using MatAnyOne.
|
| 154 |
-
Returns refined mask HxW float in [0,1]. If use_matanyone=False or mat_core is None,
|
| 155 |
-
falls back to simple refinement.
|
| 156 |
-
|
| 157 |
-
NOTE: For videos, prefer using seed/refine helpers below that keep temporal memory.
|
| 158 |
-
"""
|
| 159 |
-
try:
|
| 160 |
-
if not use_matanyone or mat_core is None:
|
| 161 |
-
return _simple_mask_refinement(mask_hw_float01, frame_rgb)
|
| 162 |
-
|
| 163 |
-
device = device or _default_device()
|
| 164 |
-
|
| 165 |
-
# Image → (1,3,H,W)
|
| 166 |
-
img_nchw = ensure_image_nchw(torch.from_numpy(frame_rgb).to(device), device=device, want_batched=True)
|
| 167 |
-
log_shape("refine.image_nchw", img_nchw)
|
| 168 |
-
|
| 169 |
-
# Mask → (1,H,W)
|
| 170 |
-
mask_t = torch.from_numpy(mask_hw_float01).to(device)
|
| 171 |
-
mask_c_hw = ensure_mask_for_matanyone(mask_t, idx_mask=False, threshold=0.5, keep_soft=False, device=device)
|
| 172 |
-
log_shape("refine.mask_c_hw", mask_c_hw)
|
| 173 |
-
|
| 174 |
-
# MatAnyOne step (we let the global guard in ModelLoader do additional checks)
|
| 175 |
-
pred = mat_core.step(
|
| 176 |
-
image=img_nchw[0], # CHW
|
| 177 |
-
mask=mask_c_hw if first_frame else None,
|
| 178 |
-
idx_mask=False,
|
| 179 |
-
matting=True,
|
| 180 |
-
first_frame_pred=bool(first_frame),
|
| 181 |
-
)
|
| 182 |
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
return
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
# PIL Image
|
| 232 |
-
if isinstance(pred, Image.Image):
|
| 233 |
-
a = np.array(pred).astype(np.float32)
|
| 234 |
-
if a.ndim == 3 and a.shape[2] == 1:
|
| 235 |
-
a = a[:, :, 0]
|
| 236 |
-
if a.ndim == 2:
|
| 237 |
-
if a.max() > 1.0:
|
| 238 |
-
a = a / 255.0
|
| 239 |
-
return np.clip(a, 0.0, 1.0)
|
| 240 |
-
|
| 241 |
-
except Exception as e:
|
| 242 |
-
logger.debug(f"_coerce_pred_to_mask fallback due to: {e}")
|
| 243 |
-
return None
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
def _simple_mask_refinement(mask: np.ndarray, frame_rgb: np.ndarray) -> np.ndarray:
|
| 247 |
-
"""Simple mask refinement using OpenCV operations"""
|
| 248 |
-
mask_uint8 = (np.clip(mask, 0.0, 1.0) * 255).astype(np.uint8)
|
| 249 |
-
mask_blurred = cv2.GaussianBlur(mask_uint8, (5, 5), 0)
|
| 250 |
-
mask_refined = cv2.bilateralFilter(mask_blurred, 9, 75, 75)
|
| 251 |
-
return (mask_refined.astype(np.float32) / 255.0)
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
# -------------------------------
|
| 255 |
-
# Two-stage video helpers (seed + propagate)
|
| 256 |
-
# -------------------------------
|
| 257 |
-
@torch.inference_mode()
|
| 258 |
-
def seed_with_sam2_post_masks(
|
| 259 |
-
core: Any,
|
| 260 |
-
frame0_rgb: np.ndarray, # HxWx3 uint8 RGB
|
| 261 |
-
sam2_post_masks: torch.Tensor, # (1,M,H,W)
|
| 262 |
-
iou_scores: Optional[torch.Tensor] = None,
|
| 263 |
-
*,
|
| 264 |
-
device: str | None = None,
|
| 265 |
-
idx_mask: bool = False,
|
| 266 |
-
threshold: float = 0.5,
|
| 267 |
-
keep_soft: bool = False,
|
| 268 |
-
) -> Any:
|
| 269 |
-
"""
|
| 270 |
-
Seed MatAnyOne on the first frame using SAM2 post-processed masks (preferred).
|
| 271 |
-
"""
|
| 272 |
-
device = device or _default_device()
|
| 273 |
-
img0 = ensure_image_nchw(torch.from_numpy(frame0_rgb).to(device), device=device, want_batched=True)
|
| 274 |
-
log_shape("seed.image_nchw", img0)
|
| 275 |
-
|
| 276 |
-
if idx_mask:
|
| 277 |
-
m_c_hw = sam2_to_matanyone_mask(sam2_post_masks.to(device), iou_scores, threshold, "single", keep_soft=False)
|
| 278 |
-
idx_hw = ensure_mask_for_matanyone(m_c_hw, idx_mask=True, device=device, threshold=threshold)
|
| 279 |
-
log_shape("seed.idx_hw", idx_hw)
|
| 280 |
-
return core.step(
|
| 281 |
-
image=img0[0],
|
| 282 |
-
mask=idx_hw,
|
| 283 |
-
idx_mask=True,
|
| 284 |
-
matting=True,
|
| 285 |
-
first_frame_pred=True,
|
| 286 |
)
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
)
|
| 297 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
threshold: float = 0.5,
|
| 327 |
-
keep_soft: bool = False,
|
| 328 |
-
) -> None:
|
| 329 |
-
"""
|
| 330 |
-
Convenience runner for videos:
|
| 331 |
-
- Seeds on the first frame using SAM2 post-process outputs
|
| 332 |
-
- Propagates across the rest (one frame per step)
|
| 333 |
-
"""
|
| 334 |
-
device = device or _default_device()
|
| 335 |
-
it = iter(frames_rgb_iter)
|
| 336 |
-
try:
|
| 337 |
-
f0 = next(it)
|
| 338 |
-
except StopIteration:
|
| 339 |
-
return
|
| 340 |
-
|
| 341 |
-
pred0 = seed_with_sam2_post_masks(
|
| 342 |
-
core, f0, sam2_post_masks, iou_scores,
|
| 343 |
-
device=device, idx_mask=idx_mask, threshold=threshold, keep_soft=keep_soft
|
| 344 |
)
|
| 345 |
-
if on_pred: on_pred(0, pred0)
|
| 346 |
-
if progress: progress(1, total_frames)
|
| 347 |
-
|
| 348 |
-
t = 1
|
| 349 |
-
for frgb in it:
|
| 350 |
-
pred = refine_next_frame(core, frgb, device=device)
|
| 351 |
-
if on_pred: on_pred(t, pred)
|
| 352 |
-
t += 1
|
| 353 |
-
if progress: progress(t, total_frames)
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
# -------------------------------
|
| 357 |
-
# Background replacement
|
| 358 |
-
# -------------------------------
|
| 359 |
-
def replace_background_hq(frame_rgb: np.ndarray, mask_hw_float01: np.ndarray, background_rgb: np.ndarray) -> np.ndarray:
|
| 360 |
-
"""High-quality background replacement with proper compositing"""
|
| 361 |
-
try:
|
| 362 |
-
h, w = frame_rgb.shape[:2]
|
| 363 |
-
background_resized = cv2.resize(background_rgb, (w, h))
|
| 364 |
-
|
| 365 |
-
# Ensure mask is HxW float in [0,1]
|
| 366 |
-
if mask_hw_float01.ndim == 3:
|
| 367 |
-
mask_hw_float01 = mask_hw_float01[..., 0]
|
| 368 |
-
m = np.clip(mask_hw_float01.astype(np.float32), 0.0, 1.0)
|
| 369 |
-
|
| 370 |
-
# Feather edges lightly
|
| 371 |
-
m_uint8 = (m * 255).astype(np.uint8)
|
| 372 |
-
m_feather = cv2.GaussianBlur(m_uint8, (7, 7), 0).astype(np.float32) / 255.0
|
| 373 |
-
m3 = np.stack([m_feather] * 3, axis=-1)
|
| 374 |
-
|
| 375 |
-
result = frame_rgb.astype(np.float32) * m3 + background_resized.astype(np.float32) * (1.0 - m3)
|
| 376 |
-
return np.clip(result, 0, 255).astype(np.uint8)
|
| 377 |
-
except Exception as e:
|
| 378 |
-
logger.error(f"Background replacement failed: {e}")
|
| 379 |
-
return frame_rgb
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
# -------------------------------
|
| 383 |
-
# Background generators
|
| 384 |
-
# -------------------------------
|
| 385 |
-
def create_professional_background(bg_type: str, width: int, height: int) -> np.ndarray:
|
| 386 |
-
"""Create professional background of specified type and size"""
|
| 387 |
-
try:
|
| 388 |
-
if bg_type not in PROFESSIONAL_BACKGROUNDS:
|
| 389 |
-
bg_type = "office" # Default fallback
|
| 390 |
-
|
| 391 |
-
config = PROFESSIONAL_BACKGROUNDS[bg_type]
|
| 392 |
-
color = config["color"]
|
| 393 |
-
use_gradient = config["gradient"]
|
| 394 |
-
|
| 395 |
-
if use_gradient:
|
| 396 |
-
background = _create_gradient_background(color, width, height)
|
| 397 |
-
else:
|
| 398 |
-
background = np.full((height, width, 3), color, dtype=np.uint8)
|
| 399 |
-
|
| 400 |
-
return background
|
| 401 |
-
except Exception as e:
|
| 402 |
-
logger.error(f"Background creation failed: {e}")
|
| 403 |
-
return np.full((height, width, 3), (255, 255, 255), dtype=np.uint8)
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
def _create_gradient_background(base_color: Tuple[int, int, int], width: int, height: int) -> np.ndarray:
|
| 407 |
-
"""Create a vertical gradient background from base color"""
|
| 408 |
-
r, g, b = base_color
|
| 409 |
-
dark = (int(r * 0.7), int(g * 0.7), int(b * 0.7))
|
| 410 |
-
bg = np.zeros((height, width, 3), dtype=np.uint8)
|
| 411 |
-
for y in range(height):
|
| 412 |
-
t = y / max(height, 1)
|
| 413 |
-
bg[y, :] = [
|
| 414 |
-
int(dark[0] * (1 - t) + r * t),
|
| 415 |
-
int(dark[1] * (1 - t) + g * t),
|
| 416 |
-
int(dark[2] * (1 - t) + b * t),
|
| 417 |
-
]
|
| 418 |
-
return bg
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
# -------------------------------
|
| 422 |
-
# Exports
|
| 423 |
-
# -------------------------------
|
| 424 |
-
__all__ = [
|
| 425 |
-
# segment / refine (single-frame)
|
| 426 |
-
"segment_person_hq",
|
| 427 |
-
"refine_mask_hq",
|
| 428 |
-
# video runner + steps
|
| 429 |
-
"seed_with_sam2_post_masks",
|
| 430 |
-
"refine_next_frame",
|
| 431 |
-
"run_two_stage_matting",
|
| 432 |
-
# backgrounds & utils
|
| 433 |
-
"replace_background_hq",
|
| 434 |
-
"create_professional_background",
|
| 435 |
-
"PROFESSIONAL_BACKGROUNDs" if False else "PROFESSIONAL_BACKGROUNDS",
|
| 436 |
-
"validate_video_file",
|
| 437 |
-
]
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
BackgroundFX Pro - CSP-Safe Application Entry Point
|
| 4 |
+
Now with: live background preview + sources: Preset / Upload / Gradient / AI Generate
|
| 5 |
"""
|
| 6 |
|
| 7 |
+
import early_env # <<< must be FIRST
|
| 8 |
+
|
| 9 |
+
import os, time
|
| 10 |
+
from typing import Optional, Dict, Any, Callable, Tuple
|
| 11 |
+
|
| 12 |
+
# 1) CSP-safe Gradio env
|
| 13 |
+
os.environ['GRADIO_ALLOW_FLAGGING'] = 'never'
|
| 14 |
+
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
|
| 15 |
+
os.environ['GRADIO_SERVER_NAME'] = '0.0.0.0'
|
| 16 |
+
os.environ['GRADIO_SERVER_PORT'] = '7860'
|
| 17 |
+
|
| 18 |
+
# 2) Gradio schema patch
|
| 19 |
+
try:
|
| 20 |
+
import gradio_client.utils as gc_utils
|
| 21 |
+
_orig_get_type = gc_utils.get_type
|
| 22 |
+
def _patched_get_type(schema):
|
| 23 |
+
if not isinstance(schema, dict):
|
| 24 |
+
if isinstance(schema, bool): return "boolean"
|
| 25 |
+
if isinstance(schema, str): return "string"
|
| 26 |
+
if isinstance(schema, (int, float)): return "number"
|
| 27 |
+
return "string"
|
| 28 |
+
return _orig_get_type(schema)
|
| 29 |
+
gc_utils.get_type = _patched_get_type
|
| 30 |
+
except Exception:
|
| 31 |
+
pass
|
| 32 |
+
|
| 33 |
+
# 3) Logging early
|
| 34 |
+
from utils.logging_setup import setup_logging, make_logger
|
| 35 |
+
setup_logging(app_name="backgroundfx")
|
| 36 |
+
logger = make_logger("entrypoint")
|
| 37 |
+
logger.info("Entrypoint starting…")
|
| 38 |
+
|
| 39 |
+
# 4) Imports
|
| 40 |
+
from core.exceptions import ModelLoadingError, VideoProcessingError
|
| 41 |
+
from config.app_config import get_config
|
| 42 |
+
from utils.hardware.device_manager import DeviceManager
|
| 43 |
+
from utils.system.memory_manager import MemoryManager
|
| 44 |
+
from models.loaders.model_loader import ModelLoader
|
| 45 |
+
from processing.video.video_processor import CoreVideoProcessor, ProcessorConfig
|
| 46 |
+
from processing.audio.audio_processor import AudioProcessor
|
| 47 |
+
|
| 48 |
+
# Background helpers
|
| 49 |
+
from utils import PROFESSIONAL_BACKGROUNDS, validate_video_file, create_professional_background
|
| 50 |
+
# Gradient helper (add to utils; fallback here for preview only if missing)
|
| 51 |
+
try:
|
| 52 |
+
from utils import create_gradient_background
|
| 53 |
+
except Exception:
|
| 54 |
+
def create_gradient_background(spec: Dict[str, Any], width: int, height: int):
|
| 55 |
+
# Lightweight fallback preview (linear only)
|
| 56 |
+
import numpy as np
|
| 57 |
+
import cv2
|
| 58 |
+
def _to_rgb(c):
|
| 59 |
+
if isinstance(c, (list, tuple)) and len(c) == 3:
|
| 60 |
+
return tuple(int(x) for x in c)
|
| 61 |
+
if isinstance(c, str) and c.startswith("#") and len(c) == 7:
|
| 62 |
+
return tuple(int(c[i:i+2], 16) for i in (1,3,5))
|
| 63 |
+
return (255, 255, 255)
|
| 64 |
+
start = _to_rgb(spec.get("start", "#222222"))
|
| 65 |
+
end = _to_rgb(spec.get("end", "#888888"))
|
| 66 |
+
angle = float(spec.get("angle_deg", 0))
|
| 67 |
+
bg = np.zeros((height, width, 3), np.uint8)
|
| 68 |
+
for y in range(height):
|
| 69 |
+
t = y / max(1, height - 1)
|
| 70 |
+
r = int(start[0] * (1 - t) + end[0] * t)
|
| 71 |
+
g = int(start[1] * (1 - t) + end[1] * t)
|
| 72 |
+
b = int(start[2] * (1 - t) + end[2] * t)
|
| 73 |
+
bg[y, :] = (r, g, b)
|
| 74 |
+
center = (width / 2, height / 2)
|
| 75 |
+
rot = cv2.getRotationMatrix2D(center, angle, 1.0)
|
| 76 |
+
return cv2.warpAffine(bg, rot, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
|
| 77 |
+
|
| 78 |
+
# 5) CSP-safe fallbacks for models
|
| 79 |
+
class CSPSafeSAM2:
|
| 80 |
+
def set_image(self, image):
|
| 81 |
+
self.shape = getattr(image, 'shape', (512, 512, 3))
|
| 82 |
+
def predict(self, point_coords=None, point_labels=None, box=None, multimask_output=True, **kwargs):
|
| 83 |
+
import numpy as np
|
| 84 |
+
h, w = self.shape[:2] if hasattr(self, 'shape') else (512, 512)
|
| 85 |
+
n = 3 if multimask_output else 1
|
| 86 |
+
return np.ones((n, h, w), dtype=bool), np.array([0.9, 0.8, 0.7][:n]), np.ones((n, h, w), dtype=np.float32)
|
| 87 |
+
|
| 88 |
+
class CSPSafeMatAnyone:
|
| 89 |
+
def step(self, image_tensor, mask_tensor=None, objects=None, first_frame_pred=False, **kwargs):
|
| 90 |
+
import torch
|
| 91 |
+
if hasattr(image_tensor, "shape"):
|
| 92 |
+
if len(image_tensor.shape) == 3:
|
| 93 |
+
_, H, W = image_tensor.shape
|
| 94 |
+
elif len(image_tensor.shape) == 4:
|
| 95 |
+
_, _, H, W = image_tensor.shape
|
| 96 |
+
else:
|
| 97 |
+
H, W = 256, 256
|
| 98 |
+
else:
|
| 99 |
+
H, W = 256, 256
|
| 100 |
+
return torch.ones((1, 1, H, W))
|
| 101 |
+
def output_prob_to_mask(self, output_prob):
|
| 102 |
+
return (output_prob > 0.5).float()
|
| 103 |
+
def process(self, image, mask, **kwargs):
|
| 104 |
+
return mask
|
| 105 |
+
|
| 106 |
+
# ---------- helpers for UI ----------
|
| 107 |
import numpy as np
|
| 108 |
+
import cv2
|
| 109 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
PREVIEW_W, PREVIEW_H = 640, 360 # 16:9
|
| 112 |
+
|
| 113 |
+
from typing import Tuple
|
| 114 |
+
def _hex_to_rgb(x: str) -> Tuple[int, int, int]:
|
| 115 |
+
x = (x or "").strip()
|
| 116 |
+
if x.startswith("#") and len(x) == 7:
|
| 117 |
+
return tuple(int(x[i:i+2], 16) for i in (1, 3, 5))
|
| 118 |
+
return (255, 255, 255)
|
| 119 |
+
|
| 120 |
+
def _np_to_pil(arr: np.ndarray) -> Image.Image:
|
| 121 |
+
if arr.dtype != np.uint8:
|
| 122 |
+
arr = arr.clip(0, 255).astype(np.uint8)
|
| 123 |
+
return Image.fromarray(arr)
|
| 124 |
+
|
| 125 |
+
# ---------- main app ----------
|
| 126 |
+
class VideoBackgroundApp:
|
| 127 |
+
def __init__(self):
|
| 128 |
+
self.config = get_config()
|
| 129 |
+
self.device_mgr = DeviceManager()
|
| 130 |
+
self.memory_mgr = MemoryManager(self.device_mgr.get_optimal_device())
|
| 131 |
+
self.model_loader = ModelLoader(self.device_mgr, self.memory_mgr)
|
| 132 |
+
self.audio_proc = AudioProcessor()
|
| 133 |
+
self.models_loaded = False
|
| 134 |
+
self.core_processor: Optional[CoreVideoProcessor] = None
|
| 135 |
+
logger.info("VideoBackgroundApp initialized (device=%s)", self.device_mgr.get_optimal_device())
|
| 136 |
+
|
| 137 |
+
def load_models(self, progress_callback: Optional[Callable] = None) -> str:
|
| 138 |
+
logger.info("Loading models (CSP-safe)…")
|
| 139 |
+
try:
|
| 140 |
+
sam2, matanyone = self.model_loader.load_all_models(progress_callback=progress_callback)
|
| 141 |
+
except Exception as e:
|
| 142 |
+
logger.warning("Model loading failed (%s) - Using CSP-safe fallbacks", e)
|
| 143 |
+
sam2, matanyone = None, None
|
| 144 |
+
|
| 145 |
+
sam2_model = getattr(sam2, "model", sam2) if sam2 else CSPSafeSAM2()
|
| 146 |
+
matanyone_model = getattr(matanyone, "model", matanyone) if matanyone else CSPSafeMatAnyone()
|
| 147 |
+
|
| 148 |
+
cfg = ProcessorConfig(
|
| 149 |
+
background_preset="office",
|
| 150 |
+
write_fps=None,
|
| 151 |
+
max_model_size=1280,
|
| 152 |
+
use_nvenc=True,
|
| 153 |
+
nvenc_codec="h264",
|
| 154 |
+
nvenc_preset="p5",
|
| 155 |
+
nvenc_cq=18,
|
| 156 |
+
nvenc_tune_hq=True,
|
| 157 |
+
nvenc_pix_fmt="yuv420p",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
)
|
| 159 |
+
self.core_processor = CoreVideoProcessor(config=cfg, models=None)
|
| 160 |
+
self.core_processor.models = type('FakeModelManager', (), {
|
| 161 |
+
'get_sam2': lambda self_: sam2_model,
|
| 162 |
+
'get_matanyone': lambda self_: matanyone_model
|
| 163 |
+
})()
|
| 164 |
+
|
| 165 |
+
self.models_loaded = True
|
| 166 |
+
logger.info("Models ready (SAM2=%s, MatAnyOne=%s)",
|
| 167 |
+
type(sam2_model).__name__, type(matanyone_model).__name__)
|
| 168 |
+
return "Models loaded (CSP-safe; fallbacks in use if actual AI models failed)."
|
| 169 |
+
|
| 170 |
+
# ---- PREVIEWS ----
|
| 171 |
+
def preview_preset(self, preset_key: str) -> Image.Image:
|
| 172 |
+
key = preset_key if preset_key in PROFESSIONAL_BACKGROUNDS else "office"
|
| 173 |
+
bg = create_professional_background(key, PREVIEW_W, PREVIEW_H) # RGB
|
| 174 |
+
return _np_to_pil(bg)
|
| 175 |
+
|
| 176 |
+
def preview_upload(self, file) -> Optional[Image.Image]:
|
| 177 |
+
if file is None:
|
| 178 |
+
return None
|
| 179 |
+
try:
|
| 180 |
+
img = Image.open(file.name).convert("RGB")
|
| 181 |
+
img = img.resize((PREVIEW_W, PREVIEW_H), Image.LANCZOS)
|
| 182 |
+
return img
|
| 183 |
+
except Exception as e:
|
| 184 |
+
logger.warning("Upload preview failed: %s", e)
|
| 185 |
+
return None
|
| 186 |
+
|
| 187 |
+
def preview_gradient(self, gtype: str, color1: str, color2: str, angle: int) -> Image.Image:
|
| 188 |
+
spec = {
|
| 189 |
+
"type": (gtype or "linear").lower(), # "linear" or "radial" (linear in fallback)
|
| 190 |
+
"start": _hex_to_rgb(color1 or "#222222"),
|
| 191 |
+
"end": _hex_to_rgb(color2 or "#888888"),
|
| 192 |
+
"angle_deg": float(angle or 0),
|
| 193 |
+
}
|
| 194 |
+
bg = create_gradient_background(spec, PREVIEW_W, PREVIEW_H)
|
| 195 |
+
return _np_to_pil(bg)
|
| 196 |
+
|
| 197 |
+
def ai_generate_background(self, prompt: str, seed: int, width: int, height: int) -> Tuple[Optional[Image.Image], Optional[str], str]:
|
| 198 |
+
"""
|
| 199 |
+
Try generating a background with diffusers; save to /tmp and return (img, path, status).
|
| 200 |
+
"""
|
| 201 |
+
try:
|
| 202 |
+
from diffusers import StableDiffusionPipeline
|
| 203 |
+
import torch
|
| 204 |
+
model_id = os.environ.get("BGFX_T2I_MODEL", "stabilityai/stable-diffusion-2-1")
|
| 205 |
+
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 206 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 207 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype).to(device)
|
| 208 |
+
g = torch.Generator(device=device).manual_seed(int(seed)) if seed is not None else None
|
| 209 |
+
if device == "cuda":
|
| 210 |
+
with torch.autocast("cuda"):
|
| 211 |
+
img = pipe(prompt, height=height, width=width, guidance_scale=7.0, num_inference_steps=25, generator=g).images[0]
|
| 212 |
+
else:
|
| 213 |
+
img = pipe(prompt, height=height, width=width, guidance_scale=7.0, num_inference_steps=25, generator=g).images[0]
|
| 214 |
+
tmp_path = f"/tmp/ai_bg_{int(time.time())}.png"
|
| 215 |
+
img.save(tmp_path)
|
| 216 |
+
return img.resize((PREVIEW_W, PREVIEW_H), Image.LANCZOS), tmp_path, f"AI background generated ✓ ({os.path.basename(tmp_path)})"
|
| 217 |
+
except Exception as e:
|
| 218 |
+
logger.warning("AI generation unavailable: %s", e)
|
| 219 |
+
return None, None, f"AI generation unavailable: {e}"
|
| 220 |
+
|
| 221 |
+
# ---- PROCESS VIDEO ----
|
| 222 |
+
def process_video(
|
| 223 |
+
self,
|
| 224 |
+
video: str,
|
| 225 |
+
bg_source: str,
|
| 226 |
+
preset_key: str,
|
| 227 |
+
custom_bg_file,
|
| 228 |
+
grad_type: str,
|
| 229 |
+
grad_color1: str,
|
| 230 |
+
grad_color2: str,
|
| 231 |
+
grad_angle: int,
|
| 232 |
+
ai_bg_path: Optional[str],
|
| 233 |
+
):
|
| 234 |
+
if not self.models_loaded:
|
| 235 |
+
return None, "Models not loaded yet"
|
| 236 |
+
|
| 237 |
+
logger.info("process_video called (video=%s, source=%s, preset=%s, file=%s, grad=%s, ai=%s)",
|
| 238 |
+
video, bg_source, preset_key, getattr(custom_bg_file, "name", None) if custom_bg_file else None,
|
| 239 |
+
{"type": grad_type, "c1": grad_color1, "c2": grad_color2, "angle": grad_angle},
|
| 240 |
+
ai_bg_path)
|
| 241 |
+
|
| 242 |
+
output_path = f"/tmp/output_{int(time.time())}.mp4"
|
| 243 |
+
|
| 244 |
+
# Validate input video
|
| 245 |
+
ok = validate_video_file(video)
|
| 246 |
+
if not ok:
|
| 247 |
+
logger.warning("Invalid/unreadable video: %s", video)
|
| 248 |
+
return None, "Invalid or unreadable video file"
|
| 249 |
+
|
| 250 |
+
# Build bg_config based on source
|
| 251 |
+
src = (bg_source or "Preset").lower()
|
| 252 |
+
if src == "upload" and custom_bg_file is not None:
|
| 253 |
+
bg_cfg: Dict[str, Any] = {"custom_path": custom_bg_file.name}
|
| 254 |
+
elif src == "gradient":
|
| 255 |
+
bg_cfg = {
|
| 256 |
+
"gradient": {
|
| 257 |
+
"type": (grad_type or "linear").lower(),
|
| 258 |
+
"start": _hex_to_rgb(grad_color1 or "#222222"),
|
| 259 |
+
"end": _hex_to_rgb(grad_color2 or "#888888"),
|
| 260 |
+
"angle_deg": float(grad_angle or 0),
|
| 261 |
+
}
|
| 262 |
+
}
|
| 263 |
+
elif src == "ai generate" and ai_bg_path:
|
| 264 |
+
bg_cfg = {"custom_path": ai_bg_path}
|
| 265 |
+
else:
|
| 266 |
+
key = preset_key if preset_key in PROFESSIONAL_BACKGROUNDS else "office"
|
| 267 |
+
bg_cfg = {"background_choice": key}
|
| 268 |
+
|
| 269 |
+
try:
|
| 270 |
+
result = self.core_processor.process_video(
|
| 271 |
+
input_path=video,
|
| 272 |
+
output_path=output_path,
|
| 273 |
+
bg_config=bg_cfg
|
| 274 |
+
)
|
| 275 |
+
logger.info("Core processing done → %s", output_path)
|
| 276 |
+
|
| 277 |
+
output_with_audio = self.audio_proc.add_audio_to_video(video, output_path)
|
| 278 |
+
logger.info("Audio merged → %s", output_with_audio)
|
| 279 |
+
|
| 280 |
+
frames = (result.get('frames') if isinstance(result, dict) else None) or "n/a"
|
| 281 |
+
return output_with_audio, f"Processing complete ({frames} frames, background={bg_source})"
|
| 282 |
+
|
| 283 |
+
except Exception as e:
|
| 284 |
+
logger.exception("Processing failed")
|
| 285 |
+
return None, f"Processing failed: {e}"
|
| 286 |
+
|
| 287 |
+
# 7) Gradio UI
|
| 288 |
+
def create_csp_safe_gradio():
|
| 289 |
+
import gradio as gr
|
| 290 |
+
app = VideoBackgroundApp()
|
| 291 |
+
|
| 292 |
+
with gr.Blocks(
|
| 293 |
+
title="BackgroundFX Pro - CSP Safe",
|
| 294 |
+
analytics_enabled=False,
|
| 295 |
+
css="""
|
| 296 |
+
.gradio-container { max-width: 1100px; margin: auto; }
|
| 297 |
+
"""
|
| 298 |
+
) as demo:
|
| 299 |
+
gr.Markdown("# 🎬 BackgroundFX Pro (CSP-Safe)")
|
| 300 |
+
gr.Markdown("Replace your video background with cinema-quality AI matting. Now with live background preview.")
|
| 301 |
+
|
| 302 |
+
with gr.Row():
|
| 303 |
+
with gr.Column(scale=1):
|
| 304 |
+
video = gr.Video(label="Upload Video")
|
| 305 |
+
bg_source = gr.Radio(
|
| 306 |
+
["Preset", "Upload", "Gradient", "AI Generate"],
|
| 307 |
+
value="Preset",
|
| 308 |
+
label="Background Source",
|
| 309 |
+
interactive=True,
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
# PRESET
|
| 313 |
+
preset_choices = list(PROFESSIONAL_BACKGROUNDS.keys())
|
| 314 |
+
default_preset = "office" if "office" in preset_choices else (preset_choices[0] if preset_choices else "office")
|
| 315 |
+
preset_key = gr.Dropdown(choices=preset_choices, value=default_preset, label="Preset")
|
| 316 |
+
|
| 317 |
+
# UPLOAD
|
| 318 |
+
custom_bg = gr.File(label="Custom Background (Image)", file_types=["image"], visible=False)
|
| 319 |
+
|
| 320 |
+
# GRADIENT
|
| 321 |
+
grad_type = gr.Dropdown(choices=["Linear", "Radial"], value="Linear", label="Gradient Type", visible=False)
|
| 322 |
+
grad_color1 = gr.ColorPicker(value="#222222", label="Start Color", visible=False)
|
| 323 |
+
grad_color2 = gr.ColorPicker(value="#888888", label="End Color", visible=False)
|
| 324 |
+
grad_angle = gr.Slider(0, 360, value=0, step=1, label="Angle (degrees)", visible=False)
|
| 325 |
+
|
| 326 |
+
# AI
|
| 327 |
+
ai_prompt = gr.Textbox(label="AI Prompt", placeholder="e.g., sunlit modern office, soft bokeh, neutral palette", visible=False)
|
| 328 |
+
ai_seed = gr.Slider(0, 2**31-1, step=1, value=42, label="Seed", visible=False)
|
| 329 |
+
ai_size = gr.Dropdown(choices=["640x360","960x540","1280x720"], value="640x360", label="AI Image Size", visible=False)
|
| 330 |
+
ai_go = gr.Button("✨ Generate Background", visible=False, variant="secondary")
|
| 331 |
+
ai_status = gr.Markdown(visible=False)
|
| 332 |
+
ai_bg_path_state = gr.State(value=None) # store /tmp path
|
| 333 |
+
|
| 334 |
+
btn_load = gr.Button("🔄 Load Models", variant="secondary")
|
| 335 |
+
btn_run = gr.Button("🎬 Process Video", variant="primary")
|
| 336 |
+
|
| 337 |
+
with gr.Column(scale=1):
|
| 338 |
+
status = gr.Textbox(label="Status", lines=4)
|
| 339 |
+
bg_preview = gr.Image(label="Background Preview", width=PREVIEW_W, height=PREVIEW_H, interactive=False)
|
| 340 |
+
out_video = gr.Video(label="Processed Video")
|
| 341 |
+
|
| 342 |
+
# ---------- UI wiring ----------
|
| 343 |
+
|
| 344 |
+
# background source → show/hide controls
|
| 345 |
+
def on_source_toggle(src):
|
| 346 |
+
src = (src or "Preset").lower()
|
| 347 |
+
return (
|
| 348 |
+
gr.update(visible=(src == "preset")),
|
| 349 |
+
gr.update(visible=(src == "upload")),
|
| 350 |
+
gr.update(visible=(src == "gradient")),
|
| 351 |
+
gr.update(visible=(src == "gradient")),
|
| 352 |
+
gr.update(visible=(src == "gradient")),
|
| 353 |
+
gr.update(visible=(src == "gradient")),
|
| 354 |
+
gr.update(visible=(src == "ai generate")),
|
| 355 |
+
gr.update(visible=(src == "ai generate")),
|
| 356 |
+
gr.update(visible=(src == "ai generate")),
|
| 357 |
+
gr.update(visible=(src == "ai generate")),
|
| 358 |
+
gr.update(visible=(src == "ai generate")),
|
| 359 |
+
)
|
| 360 |
+
bg_source.change(
|
| 361 |
+
fn=on_source_toggle,
|
| 362 |
+
inputs=[bg_source],
|
| 363 |
+
outputs=[preset_key, custom_bg, grad_type, grad_color1, grad_color2, grad_angle, ai_prompt, ai_seed, ai_size, ai_go, ai_status],
|
| 364 |
)
|
| 365 |
|
| 366 |
+
# When source changes, also refresh preview based on visible controls
|
| 367 |
+
def on_source_preview(src, pkey, gt, c1, c2, ang):
|
| 368 |
+
src_l = (src or "Preset").lower()
|
| 369 |
+
if src_l == "preset":
|
| 370 |
+
return app.preview_preset(pkey)
|
| 371 |
+
elif src_l == "gradient":
|
| 372 |
+
return app.preview_gradient(gt, c1, c2, ang)
|
| 373 |
+
# For upload/AI we keep whatever the component change handler sets (don’t overwrite)
|
| 374 |
+
return gr.update() # no-op
|
| 375 |
+
bg_source.change(
|
| 376 |
+
fn=on_source_preview,
|
| 377 |
+
inputs=[bg_source, preset_key, grad_type, grad_color1, grad_color2, grad_angle],
|
| 378 |
+
outputs=[bg_preview]
|
| 379 |
+
)
|
| 380 |
|
| 381 |
+
# live previews
|
| 382 |
+
preset_key.change(fn=lambda k: app.preview_preset(k), inputs=[preset_key], outputs=[bg_preview])
|
| 383 |
+
custom_bg.change(fn=lambda f: app.preview_upload(f), inputs=[custom_bg], outputs=[bg_preview])
|
| 384 |
+
for comp in (grad_type, grad_color1, grad_color2, grad_angle):
|
| 385 |
+
comp.change(
|
| 386 |
+
fn=lambda gt, c1, c2, ang: app.preview_gradient(gt, c1, c2, ang),
|
| 387 |
+
inputs=[grad_type, grad_color1, grad_color2, grad_angle],
|
| 388 |
+
outputs=[bg_preview],
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
# AI generate
|
| 392 |
+
def ai_generate(prompt, seed, size):
|
| 393 |
+
try:
|
| 394 |
+
w, h = map(int, size.split("x"))
|
| 395 |
+
except Exception:
|
| 396 |
+
w, h = PREVIEW_W, PREVIEW_H
|
| 397 |
+
img, path, msg = app.ai_generate_background(
|
| 398 |
+
prompt or "professional modern office background, neutral colors, depth of field",
|
| 399 |
+
int(seed), w, h
|
| 400 |
+
)
|
| 401 |
+
return img, (path or None), msg
|
| 402 |
+
ai_go.click(fn=ai_generate, inputs=[ai_prompt, ai_seed, ai_size], outputs=[bg_preview, ai_bg_path_state, ai_status])
|
| 403 |
+
|
| 404 |
+
# model load / run
|
| 405 |
+
def safe_load():
|
| 406 |
+
msg = app.load_models()
|
| 407 |
+
logger.info("UI: models loaded")
|
| 408 |
+
return msg, app.preview_preset(preset_key.value if hasattr(preset_key, "value") else "office")
|
| 409 |
+
btn_load.click(fn=safe_load, outputs=[status, bg_preview])
|
| 410 |
+
|
| 411 |
+
def safe_process(vid, src, pkey, file, gtype, c1, c2, ang, ai_path):
|
| 412 |
+
return app.process_video(vid, src, pkey, file, gtype, c1, c2, ang, ai_path)
|
| 413 |
+
btn_run.click(
|
| 414 |
+
fn=safe_process,
|
| 415 |
+
inputs=[video, bg_source, preset_key, custom_bg, grad_type, grad_color1, grad_color2, grad_angle, ai_bg_path_state],
|
| 416 |
+
outputs=[out_video, status]
|
| 417 |
+
)
|
| 418 |
|
| 419 |
+
return demo
|
| 420 |
+
|
| 421 |
+
# 8) Launch
|
| 422 |
+
if __name__ == "__main__":
|
| 423 |
+
logger.info("Launching CSP-safe Gradio interface for Hugging Face Spaces")
|
| 424 |
+
demo = create_csp_safe_gradio()
|
| 425 |
+
demo.queue().launch(
|
| 426 |
+
server_name="0.0.0.0",
|
| 427 |
+
server_port=7860,
|
| 428 |
+
show_error=True,
|
| 429 |
+
debug=False,
|
| 430 |
+
inbrowser=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|