VideoBackgroundReplacer / utilities.py
MogensR's picture
Update utilities.py
db9de0d
raw
history blame
50.8 kB
#!/usr/bin/env python3
"""
Enhanced utilities.py - Core computer vision functions with auto-best quality
VERSION: 2.0-auto-best
ROLLBACK: Set USE_ENHANCED_SEGMENTATION = False to revert to original behavior
"""
import os
import cv2
import numpy as np
import torch
from PIL import Image, ImageDraw
import logging
import time
from typing import Optional, Dict, Any, Tuple, List
from pathlib import Path
# ============================================================================
# VERSION CONTROL AND FEATURE FLAGS - EASY ROLLBACK
# ============================================================================
# ROLLBACK CONTROL: Set to False to use original functions
USE_ENHANCED_SEGMENTATION = True
USE_AUTO_TEMPORAL_CONSISTENCY = True
USE_INTELLIGENT_PROMPTING = True
USE_ITERATIVE_REFINEMENT = True
# Logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Professional background templates (unchanged)
PROFESSIONAL_BACKGROUNDS = {
"office_modern": {
"name": "Modern Office",
"type": "gradient",
"colors": ["#f8f9fa", "#e9ecef", "#dee2e6"],
"direction": "diagonal",
"description": "Clean, contemporary office environment",
"brightness": 0.95,
"contrast": 1.1
},
"studio_blue": {
"name": "Professional Blue",
"type": "gradient",
"colors": ["#1e3c72", "#2a5298", "#3498db"],
"direction": "radial",
"description": "Broadcast-quality blue studio",
"brightness": 0.9,
"contrast": 1.2
},
"studio_green": {
"name": "Broadcast Green",
"type": "color",
"colors": ["#00b894"],
"chroma_key": True,
"description": "Professional green screen replacement",
"brightness": 1.0,
"contrast": 1.0
},
"minimalist": {
"name": "Minimalist White",
"type": "gradient",
"colors": ["#ffffff", "#f1f2f6", "#ddd"],
"direction": "soft_radial",
"description": "Clean, minimal background",
"brightness": 0.98,
"contrast": 0.9
},
"warm_gradient": {
"name": "Warm Sunset",
"type": "gradient",
"colors": ["#ff7675", "#fd79a8", "#fdcb6e"],
"direction": "diagonal",
"description": "Warm, inviting atmosphere",
"brightness": 0.85,
"contrast": 1.15
},
"tech_dark": {
"name": "Tech Dark",
"type": "gradient",
"colors": ["#0c0c0c", "#2d3748", "#4a5568"],
"direction": "vertical",
"description": "Modern tech/gaming setup",
"brightness": 0.7,
"contrast": 1.3
},
"corporate_blue": {
"name": "Corporate Blue",
"type": "gradient",
"colors": ["#667eea", "#764ba2", "#f093fb"],
"direction": "diagonal",
"description": "Professional corporate background",
"brightness": 0.88,
"contrast": 1.1
},
"nature_blur": {
"name": "Soft Nature",
"type": "gradient",
"colors": ["#a8edea", "#fed6e3", "#d299c2"],
"direction": "radial",
"description": "Soft blurred nature effect",
"brightness": 0.92,
"contrast": 0.95
}
}
# Exceptions (unchanged)
class SegmentationError(Exception):
"""Custom exception for segmentation failures"""
pass
class MaskRefinementError(Exception):
"""Custom exception for mask refinement failures"""
pass
class BackgroundReplacementError(Exception):
"""Custom exception for background replacement failures"""
pass
# ============================================================================
# ENHANCED SEGMENTATION FUNCTIONS - NEW AUTO-BEST VERSION
# ============================================================================
def segment_person_hq(image: np.ndarray, predictor: Any, fallback_enabled: bool = True) -> np.ndarray:
"""
ENHANCED VERSION 2.0: High-quality person segmentation with intelligent automation
ROLLBACK: Set USE_ENHANCED_SEGMENTATION = False to revert to original behavior
Args:
image: Input image (H, W, 3)
predictor: SAM2 predictor instance
fallback_enabled: Whether to use fallback segmentation if AI fails
Returns:
Binary mask (H, W) with values 0-255
"""
if not USE_ENHANCED_SEGMENTATION:
return segment_person_hq_original(image, predictor, fallback_enabled)
logger.debug("Using ENHANCED segmentation with intelligent automation")
if image is None or image.size == 0:
raise SegmentationError("Invalid input image")
try:
# Validate predictor
if predictor is None:
if fallback_enabled:
logger.warning("SAM2 predictor not available, using fallback")
return _fallback_segmentation(image)
else:
raise SegmentationError("SAM2 predictor not available")
# Set image for prediction
try:
predictor.set_image(image)
except Exception as e:
logger.error(f"Failed to set image in predictor: {e}")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError(f"Predictor setup failed: {e}")
# ENHANCED: Intelligent automatic prompt generation
if USE_INTELLIGENT_PROMPTING:
mask = _segment_with_intelligent_prompts(image, predictor)
else:
mask = _segment_with_basic_prompts(image, predictor)
# ENHANCED: Iterative refinement
if USE_ITERATIVE_REFINEMENT and mask is not None:
mask = _auto_refine_mask_iteratively(image, mask, predictor)
# Validate mask quality
if not _validate_mask_quality(mask, image.shape[:2]):
logger.warning("Mask quality validation failed")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError("Poor mask quality")
logger.debug(f"Enhanced segmentation successful - mask range: {mask.min()}-{mask.max()}")
return mask
except SegmentationError:
raise
except Exception as e:
logger.error(f"Unexpected segmentation error: {e}")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError(f"Unexpected error: {e}")
def _segment_with_intelligent_prompts(image: np.ndarray, predictor: Any) -> np.ndarray:
"""NEW: Intelligent automatic prompt generation"""
try:
h, w = image.shape[:2]
# Generate content-aware prompts
pos_points, neg_points = _generate_smart_prompts(image)
if len(pos_points) == 0:
# Fallback to center point
pos_points = np.array([[w//2, h//2]], dtype=np.float32)
# Combine points and labels
points = np.vstack([pos_points, neg_points])
labels = np.hstack([
np.ones(len(pos_points), dtype=np.int32),
np.zeros(len(neg_points), dtype=np.int32)
])
logger.debug(f"Using {len(pos_points)} positive, {len(neg_points)} negative points")
# Perform prediction
with torch.no_grad():
masks, scores, _ = predictor.predict(
point_coords=points,
point_labels=labels,
multimask_output=True
)
if masks is None or len(masks) == 0:
raise SegmentationError("No masks generated")
# Select best mask
if scores is not None and len(scores) > 0:
best_idx = np.argmax(scores)
best_mask = masks[best_idx]
logger.debug(f"Selected mask {best_idx} with score {scores[best_idx]:.3f}")
else:
best_mask = masks[0]
return _process_mask(best_mask)
except Exception as e:
logger.error(f"Intelligent prompting failed: {e}")
raise
def _generate_smart_prompts(image: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""NEW: Generate optimal positive/negative points automatically"""
try:
h, w = image.shape[:2]
# Method 1: Saliency-based point placement
try:
saliency = cv2.saliency.StaticSaliencySpectralResidual_create()
success, saliency_map = saliency.computeSaliency(image)
if success:
# Find high-saliency regions
saliency_thresh = cv2.threshold(saliency_map, 0.7, 1, cv2.THRESH_BINARY)[1]
contours, _ = cv2.findContours((saliency_thresh * 255).astype(np.uint8),
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
positive_points = []
if contours:
# Get center points of largest salient regions
for contour in sorted(contours, key=cv2.contourArea, reverse=True)[:3]:
M = cv2.moments(contour)
if M["m00"] != 0:
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
# Ensure points are within image bounds
if 0 < cx < w and 0 < cy < h:
positive_points.append([cx, cy])
if positive_points:
logger.debug(f"Generated {len(positive_points)} saliency-based points")
positive_points = np.array(positive_points, dtype=np.float32)
else:
raise Exception("No valid saliency points found")
except Exception as e:
logger.debug(f"Saliency method failed: {e}, using fallback")
# Method 2: Fallback to strategic grid points
positive_points = np.array([
[w//2, h//3], # Upper body
[w//2, h//2], # Center torso
[w//2, 2*h//3], # Lower body
], dtype=np.float32)
# Always place negative points in corners and edges (likely background)
negative_points = np.array([
[10, 10], # Top-left corner
[w-10, 10], # Top-right corner
[10, h-10], # Bottom-left corner
[w-10, h-10], # Bottom-right corner
[w//2, 5], # Top center edge
[w//2, h-5], # Bottom center edge
], dtype=np.float32)
return positive_points, negative_points
except Exception as e:
logger.warning(f"Smart prompt generation failed: {e}")
# Ultimate fallback
h, w = image.shape[:2]
positive_points = np.array([[w//2, h//2]], dtype=np.float32)
negative_points = np.array([[10, 10], [w-10, 10]], dtype=np.float32)
return positive_points, negative_points
def _auto_refine_mask_iteratively(image: np.ndarray, initial_mask: np.ndarray,
predictor: Any, max_iterations: int = 2) -> np.ndarray:
"""NEW: Automatically refine mask based on quality assessment"""
try:
current_mask = initial_mask.copy()
h, w = image.shape[:2]
for iteration in range(max_iterations):
# Analyze mask quality
quality_score = _assess_mask_quality(current_mask, image)
logger.debug(f"Iteration {iteration}: quality score = {quality_score:.3f}")
if quality_score > 0.85: # Good enough
logger.debug(f"Quality sufficient after {iteration} iterations")
break
# Identify problem areas
problem_areas = _find_mask_errors(current_mask, image)
if np.any(problem_areas):
# Generate corrective prompts
corrective_points, corrective_labels = _generate_corrective_prompts(
image, current_mask, problem_areas
)
if len(corrective_points) > 0:
# Re-run SAM2 with additional prompts
try:
with torch.no_grad():
masks, scores, _ = predictor.predict(
point_coords=corrective_points,
point_labels=corrective_labels,
mask_input=current_mask[None, :, :], # Add batch dimension
multimask_output=False
)
if masks is not None and len(masks) > 0:
refined_mask = _process_mask(masks[0])
# Only use refined mask if it's actually better
if _assess_mask_quality(refined_mask, image) > quality_score:
current_mask = refined_mask
logger.debug(f"Improved mask in iteration {iteration}")
else:
logger.debug(f"Refinement didn't improve quality in iteration {iteration}")
break
except Exception as e:
logger.debug(f"Refinement iteration {iteration} failed: {e}")
break
else:
logger.debug("No problem areas detected")
break
return current_mask
except Exception as e:
logger.warning(f"Iterative refinement failed: {e}")
return initial_mask
def _assess_mask_quality(mask: np.ndarray, image: np.ndarray) -> float:
"""NEW: Assess mask quality automatically"""
try:
h, w = image.shape[:2]
# Quality factors
scores = []
# 1. Area ratio (person should be 5-80% of image)
mask_area = np.sum(mask > 127)
total_area = h * w
area_ratio = mask_area / total_area
if 0.05 <= area_ratio <= 0.8:
area_score = 1.0
elif area_ratio < 0.05:
area_score = area_ratio / 0.05
else:
area_score = max(0, 1.0 - (area_ratio - 0.8) / 0.2)
scores.append(area_score)
# 2. Centeredness (person should be roughly centered)
mask_binary = mask > 127
if np.any(mask_binary):
mask_center_y, mask_center_x = np.where(mask_binary)
center_y = np.mean(mask_center_y) / h
center_x = np.mean(mask_center_x) / w
center_score = 1.0 - min(abs(center_x - 0.5), abs(center_y - 0.5))
scores.append(center_score)
else:
scores.append(0.0)
# 3. Edge smoothness
edges = cv2.Canny(mask, 50, 150)
edge_density = np.sum(edges > 0) / total_area
smoothness_score = max(0, 1.0 - edge_density * 10) # Penalize too many edges
scores.append(smoothness_score)
# 4. Connectivity (prefer single connected component)
num_labels, _ = cv2.connectedComponents(mask)
connectivity_score = max(0, 1.0 - (num_labels - 2) * 0.2) # -2 because background is label 0
scores.append(connectivity_score)
# Weighted average
weights = [0.3, 0.2, 0.3, 0.2]
overall_score = np.average(scores, weights=weights)
return overall_score
except Exception as e:
logger.warning(f"Quality assessment failed: {e}")
return 0.5 # Neutral score
def _find_mask_errors(mask: np.ndarray, image: np.ndarray) -> np.ndarray:
"""NEW: Identify problematic areas in mask"""
try:
# Find areas with high gradient that might need correction
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Edge detection on original image
edges = cv2.Canny(gray, 50, 150)
# Mask edges
mask_edges = cv2.Canny(mask, 50, 150)
# Find discrepancy between image edges and mask edges
edge_discrepancy = cv2.bitwise_xor(edges, mask_edges)
# Dilate to create error regions
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
error_regions = cv2.dilate(edge_discrepancy, kernel, iterations=1)
return error_regions > 0
except Exception as e:
logger.warning(f"Error detection failed: {e}")
return np.zeros_like(mask, dtype=bool)
def _generate_corrective_prompts(image: np.ndarray, mask: np.ndarray,
problem_areas: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""NEW: Generate corrective prompts based on problem areas"""
try:
# Find centers of problem regions
contours, _ = cv2.findContours(problem_areas.astype(np.uint8),
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
corrective_points = []
corrective_labels = []
for contour in contours:
if cv2.contourArea(contour) > 100: # Ignore tiny regions
M = cv2.moments(contour)
if M["m00"] != 0:
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
# Determine if this should be positive or negative
# Sample the current mask at this point
current_mask_value = mask[cy, cx]
# If mask says background but image has strong edges, add positive point
# If mask says foreground but area looks like background, add negative point
if current_mask_value < 127:
# Currently background, maybe should be foreground
corrective_points.append([cx, cy])
corrective_labels.append(1) # Positive
else:
# Currently foreground, maybe should be background
corrective_points.append([cx, cy])
corrective_labels.append(0) # Negative
return (np.array(corrective_points, dtype=np.float32) if corrective_points else np.array([]).reshape(0, 2),
np.array(corrective_labels, dtype=np.int32) if corrective_labels else np.array([], dtype=np.int32))
except Exception as e:
logger.warning(f"Corrective prompt generation failed: {e}")
return np.array([]).reshape(0, 2), np.array([], dtype=np.int32)
def _segment_with_basic_prompts(image: np.ndarray, predictor: Any) -> np.ndarray:
"""FALLBACK: Original basic prompting method"""
h, w = image.shape[:2]
# Original strategic points with negative prompts added
positive_points = np.array([
[w//2, h//3], # Head area
[w//2, h//2], # Torso center
[w//2, 2*h//3], # Lower body
], dtype=np.float32)
negative_points = np.array([
[w//10, h//10], # Top-left corner (background)
[9*w//10, h//10], # Top-right corner (background)
[w//10, 9*h//10], # Bottom-left corner (background)
[9*w//10, 9*h//10], # Bottom-right corner (background)
], dtype=np.float32)
# Combine points
points = np.vstack([positive_points, negative_points])
labels = np.array([1, 1, 1, 0, 0, 0, 0], dtype=np.int32)
# Perform prediction
with torch.no_grad():
masks, scores, _ = predictor.predict(
point_coords=points,
point_labels=labels,
multimask_output=True
)
if masks is None or len(masks) == 0:
raise SegmentationError("No masks generated")
# Select best mask based on score
best_idx = np.argmax(scores) if scores is not None and len(scores) > 0 else 0
best_mask = masks[best_idx]
return _process_mask(best_mask)
# ============================================================================
# ORIGINAL FUNCTION PRESERVED FOR ROLLBACK
# ============================================================================
def segment_person_hq_original(image: np.ndarray, predictor: Any, fallback_enabled: bool = True) -> np.ndarray:
"""
ORIGINAL VERSION: Preserved for rollback capability
"""
if image is None or image.size == 0:
raise SegmentationError("Invalid input image")
try:
# Validate predictor
if predictor is None:
if fallback_enabled:
logger.warning("SAM2 predictor not available, using fallback")
return _fallback_segmentation(image)
else:
raise SegmentationError("SAM2 predictor not available")
# Set image for prediction
try:
predictor.set_image(image)
except Exception as e:
logger.error(f"Failed to set image in predictor: {e}")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError(f"Predictor setup failed: {e}")
h, w = image.shape[:2]
# Enhanced strategic point placement for better person detection
points = np.array([
[w//2, h//4], # Head center
[w//2, h//2], # Torso center
[w//2, 3*h//4], # Lower body
[w//3, h//2], # Left side
[2*w//3, h//2], # Right side
[w//2, h//6], # Upper head
[w//4, 2*h//3], # Left leg area
[3*w//4, 2*h//3], # Right leg area
], dtype=np.float32)
labels = np.ones(len(points), dtype=np.int32)
# Perform prediction with error handling
try:
with torch.no_grad():
masks, scores, _ = predictor.predict(
point_coords=points,
point_labels=labels,
multimask_output=True
)
except Exception as e:
logger.error(f"SAM2 prediction failed: {e}")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError(f"Prediction failed: {e}")
# Validate prediction results
if masks is None or len(masks) == 0:
logger.warning("SAM2 returned no masks")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError("No masks generated")
if scores is None or len(scores) == 0:
logger.warning("SAM2 returned no scores")
best_mask = masks[0]
else:
# Select best mask based on score
best_idx = np.argmax(scores)
best_mask = masks[best_idx]
logger.debug(f"Selected mask {best_idx} with score {scores[best_idx]:.3f}")
# Process mask to ensure correct format
mask = _process_mask(best_mask)
# Validate mask quality
if not _validate_mask_quality(mask, image.shape[:2]):
logger.warning("Mask quality validation failed")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError("Poor mask quality")
logger.debug(f"Segmentation successful - mask range: {mask.min()}-{mask.max()}")
return mask
except SegmentationError:
raise
except Exception as e:
logger.error(f"Unexpected segmentation error: {e}")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError(f"Unexpected error: {e}")
# ============================================================================
# EXISTING FUNCTIONS PRESERVED (unchanged for rollback safety)
# ============================================================================
def _process_mask(mask: np.ndarray) -> np.ndarray:
"""Process raw mask to ensure correct format and range"""
try:
# Handle different input formats
if len(mask.shape) > 2:
mask = mask.squeeze()
if len(mask.shape) > 2:
mask = mask[:, :, 0] if mask.shape[2] > 0 else mask.sum(axis=2)
# Ensure proper data type and range
if mask.dtype == bool:
mask = mask.astype(np.uint8) * 255
elif mask.dtype == np.float32 or mask.dtype == np.float64:
if mask.max() <= 1.0:
mask = (mask * 255).astype(np.uint8)
else:
mask = np.clip(mask, 0, 255).astype(np.uint8)
else:
mask = mask.astype(np.uint8)
# Post-process for cleaner edges
kernel = np.ones((3, 3), np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
# Ensure binary threshold
_, mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
return mask
except Exception as e:
logger.error(f"Mask processing failed: {e}")
# Return a basic fallback mask
h, w = mask.shape[:2] if len(mask.shape) >= 2 else (256, 256)
fallback = np.zeros((h, w), dtype=np.uint8)
fallback[h//4:3*h//4, w//4:3*w//4] = 255
return fallback
def _validate_mask_quality(mask: np.ndarray, image_shape: Tuple[int, int]) -> bool:
"""Validate that the mask meets quality criteria"""
try:
h, w = image_shape
mask_area = np.sum(mask > 127)
total_area = h * w
# Check if mask area is reasonable (5% to 80% of image)
area_ratio = mask_area / total_area
if area_ratio < 0.05 or area_ratio > 0.8:
logger.warning(f"Suspicious mask area ratio: {area_ratio:.3f}")
return False
# Check if mask is not just a blob in corner
mask_binary = mask > 127
mask_center_y, mask_center_x = np.where(mask_binary)
if len(mask_center_y) == 0:
logger.warning("Empty mask")
return False
center_y = np.mean(mask_center_y)
center_x = np.mean(mask_center_x)
# Person should be roughly centered
if center_y < h * 0.2 or center_y > h * 0.9:
logger.warning(f"Mask center too far from expected person location: y={center_y/h:.2f}")
return False
return True
except Exception as e:
logger.warning(f"Mask validation error: {e}")
return True # Default to accepting mask if validation fails
def _fallback_segmentation(image: np.ndarray) -> np.ndarray:
"""Fallback segmentation when AI models fail"""
try:
logger.info("Using fallback segmentation strategy")
h, w = image.shape[:2]
# Try background subtraction approach
try:
# Simple background subtraction
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Assume background is around the edges
edge_pixels = np.concatenate([
gray[0, :], gray[-1, :], gray[:, 0], gray[:, -1]
])
bg_color = np.median(edge_pixels)
# Create mask based on difference from background
diff = np.abs(gray.astype(float) - bg_color)
mask = (diff > 30).astype(np.uint8) * 255
# Morphological operations to clean up
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
# If mask looks reasonable, use it
if _validate_mask_quality(mask, image.shape[:2]):
logger.info("Background subtraction fallback successful")
return mask
except Exception as e:
logger.warning(f"Background subtraction fallback failed: {e}")
# Simple geometric fallback
mask = np.zeros((h, w), dtype=np.uint8)
# Create an elliptical mask in center assuming person location
center_x, center_y = w // 2, h // 2
radius_x, radius_y = w // 3, h // 2.5
y, x = np.ogrid[:h, :w]
mask_ellipse = ((x - center_x) / radius_x) ** 2 + ((y - center_y) / radius_y) ** 2 <= 1
mask[mask_ellipse] = 255
logger.info("Using geometric fallback mask")
return mask
except Exception as e:
logger.error(f"All fallback strategies failed: {e}")
# Last resort: simple center rectangle
h, w = image.shape[:2]
mask = np.zeros((h, w), dtype=np.uint8)
mask[h//6:5*h//6, w//4:3*w//4] = 255
return mask
# ============================================================================
# ALL OTHER EXISTING FUNCTIONS REMAIN UNCHANGED FOR ROLLBACK SAFETY
# ============================================================================
def refine_mask_hq(image: np.ndarray, mask: np.ndarray, matanyone_processor: Any,
fallback_enabled: bool = True) -> np.ndarray:
"""
Enhanced mask refinement with MatAnyone and robust fallbacks
UNCHANGED for rollback safety
"""
if image is None or mask is None:
raise MaskRefinementError("Invalid input image or mask")
try:
# Ensure mask is in correct format
mask = _process_mask(mask)
# Try MatAnyone if available
if matanyone_processor is not None:
try:
logger.debug("Attempting MatAnyone refinement")
refined_mask = _matanyone_refine(image, mask, matanyone_processor)
if refined_mask is not None and _validate_mask_quality(refined_mask, image.shape[:2]):
logger.debug("MatAnyone refinement successful")
return refined_mask
else:
logger.warning("MatAnyone produced poor quality mask")
except Exception as e:
logger.warning(f"MatAnyone refinement failed: {e}")
# Fallback to enhanced OpenCV refinement
if fallback_enabled:
logger.debug("Using enhanced OpenCV refinement")
return enhance_mask_opencv_advanced(image, mask)
else:
raise MaskRefinementError("MatAnyone failed and fallback disabled")
except MaskRefinementError:
raise
except Exception as e:
logger.error(f"Unexpected mask refinement error: {e}")
if fallback_enabled:
return enhance_mask_opencv_advanced(image, mask)
else:
raise MaskRefinementError(f"Unexpected error: {e}")
def _matanyone_refine(image: np.ndarray, mask: np.ndarray, processor: Any) -> Optional[np.ndarray]:
"""Attempt MatAnyone mask refinement - Python 3.10 compatible"""
try:
# Different possible MatAnyone interfaces
if hasattr(processor, 'infer'):
refined_mask = processor.infer(image, mask)
elif hasattr(processor, 'process'):
refined_mask = processor.process(image, mask)
elif callable(processor):
refined_mask = processor(image, mask)
else:
logger.warning("Unknown MatAnyone interface")
return None
if refined_mask is None:
return None
# Process the refined mask
refined_mask = _process_mask(refined_mask)
logger.debug("MatAnyone refinement successful")
return refined_mask
except Exception as e:
logger.warning(f"MatAnyone processing error: {e}")
return None
def enhance_mask_opencv_advanced(image: np.ndarray, mask: np.ndarray) -> np.ndarray:
"""Advanced OpenCV-based mask enhancement with multiple techniques"""
try:
if len(mask.shape) == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
# Ensure proper range
if mask.max() <= 1.0:
mask = (mask * 255).astype(np.uint8)
# Multi-stage refinement
# 1. Bilateral filtering for edge preservation
refined_mask = cv2.bilateralFilter(mask, 9, 75, 75)
# 2. Edge-aware smoothing using guided filter approximation
refined_mask = _guided_filter_approx(image, refined_mask, radius=8, eps=0.2)
# 3. Morphological operations for structure
kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel_close)
kernel_open = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_OPEN, kernel_open)
# 4. Final smoothing
refined_mask = cv2.GaussianBlur(refined_mask, (3, 3), 0.8)
# 5. Ensure binary output
_, refined_mask = cv2.threshold(refined_mask, 127, 255, cv2.THRESH_BINARY)
return refined_mask
except Exception as e:
logger.warning(f"Enhanced OpenCV refinement failed: {e}")
# Simple fallback
return cv2.GaussianBlur(mask, (5, 5), 1.0)
def _guided_filter_approx(guide: np.ndarray, mask: np.ndarray, radius: int = 8, eps: float = 0.2) -> np.ndarray:
"""Approximation of guided filter for edge-aware smoothing"""
try:
guide_gray = cv2.cvtColor(guide, cv2.COLOR_BGR2GRAY) if len(guide.shape) == 3 else guide
guide_gray = guide_gray.astype(np.float32) / 255.0
mask_float = mask.astype(np.float32) / 255.0
# Box filter approximation
kernel_size = 2 * radius + 1
# Mean filters
mean_guide = cv2.boxFilter(guide_gray, -1, (kernel_size, kernel_size))
mean_mask = cv2.boxFilter(mask_float, -1, (kernel_size, kernel_size))
corr_guide_mask = cv2.boxFilter(guide_gray * mask_float, -1, (kernel_size, kernel_size))
# Covariance
cov_guide_mask = corr_guide_mask - mean_guide * mean_mask
mean_guide_sq = cv2.boxFilter(guide_gray * guide_gray, -1, (kernel_size, kernel_size))
var_guide = mean_guide_sq - mean_guide * mean_guide
# Coefficients
a = cov_guide_mask / (var_guide + eps)
b = mean_mask - a * mean_guide
# Apply coefficients
mean_a = cv2.boxFilter(a, -1, (kernel_size, kernel_size))
mean_b = cv2.boxFilter(b, -1, (kernel_size, kernel_size))
output = mean_a * guide_gray + mean_b
output = np.clip(output * 255, 0, 255).astype(np.uint8)
return output
except Exception as e:
logger.warning(f"Guided filter approximation failed: {e}")
return mask
def replace_background_hq(frame: np.ndarray, mask: np.ndarray, background: np.ndarray,
fallback_enabled: bool = True) -> np.ndarray:
"""Enhanced background replacement with comprehensive error handling and quality improvements"""
if frame is None or mask is None or background is None:
raise BackgroundReplacementError("Invalid input frame, mask, or background")
try:
# Resize background to match frame
background = cv2.resize(background, (frame.shape[1], frame.shape[0]),
interpolation=cv2.INTER_LANCZOS4)
# Process mask
if len(mask.shape) == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
if mask.dtype != np.uint8:
mask = mask.astype(np.uint8)
if mask.max() <= 1.0:
logger.debug("Converting normalized mask to 0-255 range")
mask = (mask * 255).astype(np.uint8)
# Enhanced compositing with multiple techniques
try:
result = _advanced_compositing(frame, mask, background)
logger.debug("Advanced compositing successful")
return result
except Exception as e:
logger.warning(f"Advanced compositing failed: {e}")
if fallback_enabled:
return _simple_compositing(frame, mask, background)
else:
raise BackgroundReplacementError(f"Advanced compositing failed: {e}")
except BackgroundReplacementError:
raise
except Exception as e:
logger.error(f"Unexpected background replacement error: {e}")
if fallback_enabled:
return _simple_compositing(frame, mask, background)
else:
raise BackgroundReplacementError(f"Unexpected error: {e}")
def _advanced_compositing(frame: np.ndarray, mask: np.ndarray, background: np.ndarray) -> np.ndarray:
"""Advanced compositing with edge feathering and color correction"""
try:
# Create high-quality alpha mask
threshold = 100 # Lower threshold for better person extraction
_, mask_binary = cv2.threshold(mask, threshold, 255, cv2.THRESH_BINARY)
# Clean up mask
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
mask_binary = cv2.morphologyEx(mask_binary, cv2.MORPH_CLOSE, kernel)
mask_binary = cv2.morphologyEx(mask_binary, cv2.MORPH_OPEN, kernel)
# Create smooth alpha channel with edge feathering
mask_smooth = cv2.GaussianBlur(mask_binary.astype(np.float32), (5, 5), 1.0)
mask_smooth = mask_smooth / 255.0
# Apply gamma correction for better blending
mask_smooth = np.power(mask_smooth, 0.8)
# Enhance edges - boost values near 1.0, reduce values near 0.0
mask_smooth = np.where(mask_smooth > 0.5,
np.minimum(mask_smooth * 1.1, 1.0),
mask_smooth * 0.9)
# Color matching between foreground and background
frame_adjusted = _color_match_edges(frame, background, mask_smooth)
# Create 3-channel alpha mask
alpha_3ch = np.stack([mask_smooth] * 3, axis=2)
# Perform high-quality compositing
frame_float = frame_adjusted.astype(np.float32)
background_float = background.astype(np.float32)
# Alpha blending with gamma correction
result = frame_float * alpha_3ch + background_float * (1 - alpha_3ch)
result = np.clip(result, 0, 255).astype(np.uint8)
return result
except Exception as e:
logger.error(f"Advanced compositing error: {e}")
raise
def _color_match_edges(frame: np.ndarray, background: np.ndarray, alpha: np.ndarray) -> np.ndarray:
"""Subtle color matching at edges to reduce halos"""
try:
# Find edge regions (transition areas)
edge_mask = cv2.Sobel(alpha, cv2.CV_64F, 1, 1, ksize=3)
edge_mask = np.abs(edge_mask)
edge_mask = (edge_mask > 0.1).astype(np.float32)
# Calculate color difference in edge regions
edge_areas = edge_mask > 0
if not np.any(edge_areas):
return frame
# Subtle color adjustment
frame_adjusted = frame.copy().astype(np.float32)
background_float = background.astype(np.float32)
# Apply very subtle color shift towards background in edge areas
adjustment_strength = 0.1
for c in range(3):
frame_adjusted[:, :, c] = np.where(
edge_areas,
frame_adjusted[:, :, c] * (1 - adjustment_strength) +
background_float[:, :, c] * adjustment_strength,
frame_adjusted[:, :, c]
)
return np.clip(frame_adjusted, 0, 255).astype(np.uint8)
except Exception as e:
logger.warning(f"Color matching failed: {e}")
return frame
def _simple_compositing(frame: np.ndarray, mask: np.ndarray, background: np.ndarray) -> np.ndarray:
"""Simple fallback compositing method"""
try:
logger.info("Using simple compositing fallback")
# Resize background
background = cv2.resize(background, (frame.shape[1], frame.shape[0]))
# Process mask
if len(mask.shape) == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
if mask.max() <= 1.0:
mask = (mask * 255).astype(np.uint8)
# Simple binary threshold
_, mask_binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
# Create alpha mask
mask_norm = mask_binary.astype(np.float32) / 255.0
mask_3ch = np.stack([mask_norm] * 3, axis=2)
# Simple alpha blending
result = frame * mask_3ch + background * (1 - mask_3ch)
return result.astype(np.uint8)
except Exception as e:
logger.error(f"Simple compositing failed: {e}")
# Last resort: return original frame
return frame
def create_professional_background(bg_config: Dict[str, Any], width: int, height: int) -> np.ndarray:
"""Enhanced professional background creation with quality improvements"""
try:
if bg_config["type"] == "color":
background = _create_solid_background(bg_config, width, height)
elif bg_config["type"] == "gradient":
background = _create_gradient_background_enhanced(bg_config, width, height)
else:
# Fallback to neutral gray
background = np.full((height, width, 3), (128, 128, 128), dtype=np.uint8)
# Apply brightness and contrast adjustments
background = _apply_background_adjustments(background, bg_config)
return background
except Exception as e:
logger.error(f"Background creation error: {e}")
return np.full((height, width, 3), (128, 128, 128), dtype=np.uint8)
def _create_solid_background(bg_config: Dict[str, Any], width: int, height: int) -> np.ndarray:
"""Create solid color background"""
color_hex = bg_config["colors"][0].lstrip('#')
color_rgb = tuple(int(color_hex[i:i+2], 16) for i in (0, 2, 4))
color_bgr = color_rgb[::-1]
return np.full((height, width, 3), color_bgr, dtype=np.uint8)
def _create_gradient_background_enhanced(bg_config: Dict[str, Any], width: int, height: int) -> np.ndarray:
"""Create enhanced gradient background with better quality"""
try:
colors = bg_config["colors"]
direction = bg_config.get("direction", "vertical")
# Convert hex to RGB
rgb_colors = []
for color_hex in colors:
color_hex = color_hex.lstrip('#')
rgb = tuple(int(color_hex[i:i+2], 16) for i in (0, 2, 4))
rgb_colors.append(rgb)
if not rgb_colors:
rgb_colors = [(128, 128, 128)]
# Use NumPy for better performance on large images
if direction == "vertical":
background = _create_vertical_gradient(rgb_colors, width, height)
elif direction == "horizontal":
background = _create_horizontal_gradient(rgb_colors, width, height)
elif direction == "diagonal":
background = _create_diagonal_gradient(rgb_colors, width, height)
elif direction in ["radial", "soft_radial"]:
background = _create_radial_gradient(rgb_colors, width, height, direction == "soft_radial")
else:
background = _create_vertical_gradient(rgb_colors, width, height)
return cv2.cvtColor(background, cv2.COLOR_RGB2BGR)
except Exception as e:
logger.error(f"Gradient creation error: {e}")
return np.full((height, width, 3), (128, 128, 128), dtype=np.uint8)
def _create_vertical_gradient(colors: list, width: int, height: int) -> np.ndarray:
"""Create vertical gradient using NumPy for performance"""
gradient = np.zeros((height, width, 3), dtype=np.uint8)
for y in range(height):
progress = y / height if height > 0 else 0
color = _interpolate_color(colors, progress)
gradient[y, :] = color
return gradient
def _create_horizontal_gradient(colors: list, width: int, height: int) -> np.ndarray:
"""Create horizontal gradient using NumPy for performance"""
gradient = np.zeros((height, width, 3), dtype=np.uint8)
for x in range(width):
progress = x / width if width > 0 else 0
color = _interpolate_color(colors, progress)
gradient[:, x] = color
return gradient
def _create_diagonal_gradient(colors: list, width: int, height: int) -> np.ndarray:
"""Create diagonal gradient using vectorized operations"""
y_coords, x_coords = np.mgrid[0:height, 0:width]
max_distance = width + height
progress = (x_coords + y_coords) / max_distance
progress = np.clip(progress, 0, 1)
# Vectorized color interpolation
gradient = np.zeros((height, width, 3), dtype=np.uint8)
for c in range(3):
gradient[:, :, c] = _vectorized_color_interpolation(colors, progress, c)
return gradient
def _create_radial_gradient(colors: list, width: int, height: int, soft: bool = False) -> np.ndarray:
"""Create radial gradient using vectorized operations"""
center_x, center_y = width // 2, height // 2
max_distance = np.sqrt(center_x**2 + center_y**2)
y_coords, x_coords = np.mgrid[0:height, 0:width]
distances = np.sqrt((x_coords - center_x)**2 + (y_coords - center_y)**2)
progress = distances / max_distance
progress = np.clip(progress, 0, 1)
if soft:
progress = np.power(progress, 0.7)
# Vectorized color interpolation
gradient = np.zeros((height, width, 3), dtype=np.uint8)
for c in range(3):
gradient[:, :, c] = _vectorized_color_interpolation(colors, progress, c)
return gradient
def _vectorized_color_interpolation(colors: list, progress: np.ndarray, channel: int) -> np.ndarray:
"""Vectorized color interpolation for performance"""
if len(colors) == 1:
return np.full_like(progress, colors[0][channel], dtype=np.uint8)
num_segments = len(colors) - 1
segment_progress = progress * num_segments
segment_indices = np.floor(segment_progress).astype(int)
segment_indices = np.clip(segment_indices, 0, num_segments - 1)
local_progress = segment_progress - segment_indices
# Get start and end colors for each pixel
start_colors = np.array([colors[i][channel] for i in range(len(colors))])
end_colors = np.array([colors[min(i + 1, len(colors) - 1)][channel] for i in range(len(colors))])
start_vals = start_colors[segment_indices]
end_vals = end_colors[segment_indices]
result = start_vals + (end_vals - start_vals) * local_progress
return np.clip(result, 0, 255).astype(np.uint8)
def _interpolate_color(colors: list, progress: float) -> tuple:
"""Interpolate between multiple colors"""
if len(colors) == 1:
return colors[0]
elif len(colors) == 2:
r = int(colors[0][0] + (colors[1][0] - colors[0][0]) * progress)
g = int(colors[0][1] + (colors[1][1] - colors[0][1]) * progress)
b = int(colors[0][2] + (colors[1][2] - colors[0][2]) * progress)
return (r, g, b)
else:
segment = progress * (len(colors) - 1)
idx = int(segment)
local_progress = segment - idx
if idx >= len(colors) - 1:
return colors[-1]
c1, c2 = colors[idx], colors[idx + 1]
r = int(c1[0] + (c2[0] - c1[0]) * local_progress)
g = int(c1[1] + (c2[1] - c1[1]) * local_progress)
b = int(c1[2] + (c2[2] - c1[2]) * local_progress)
return (r, g, b)
def _apply_background_adjustments(background: np.ndarray, bg_config: Dict[str, Any]) -> np.ndarray:
"""Apply brightness and contrast adjustments to background"""
try:
brightness = bg_config.get("brightness", 1.0)
contrast = bg_config.get("contrast", 1.0)
if brightness != 1.0 or contrast != 1.0:
background = background.astype(np.float32)
background = background * contrast * brightness
background = np.clip(background, 0, 255).astype(np.uint8)
return background
except Exception as e:
logger.warning(f"Background adjustment failed: {e}")
return background
def validate_video_file(video_path: str) -> Tuple[bool, str]:
"""Enhanced video file validation with detailed checks"""
if not video_path or not os.path.exists(video_path):
return False, "Video file not found"
try:
# Check file size
file_size = os.path.getsize(video_path)
if file_size == 0:
return False, "Video file is empty"
if file_size > 2 * 1024 * 1024 * 1024: # 2GB limit
return False, "Video file too large (>2GB)"
# Check with OpenCV
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return False, "Cannot open video file"
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
# Validation checks
if frame_count == 0:
return False, "Video appears to be empty (0 frames)"
if fps <= 0 or fps > 120:
return False, f"Invalid frame rate: {fps}"
if width <= 0 or height <= 0:
return False, f"Invalid resolution: {width}x{height}"
if width > 4096 or height > 4096:
return False, f"Resolution too high: {width}x{height} (max 4096x4096)"
duration = frame_count / fps
if duration > 300: # 5 minutes
return False, f"Video too long: {duration:.1f}s (max 300s)"
return True, f"Valid video: {width}x{height}, {fps:.1f}fps, {duration:.1f}s"
except Exception as e:
return False, f"Error validating video: {str(e)}"