MogensR's picture
Rename cache_cleaner.py to utils/cache/cache_cleaner.py
f77b2f9
raw
history blame
13.3 kB
"""
Cache Management and SAM2 Loading Utilities
Comprehensive cache cleaning system to resolve model loading issues on HF Spaces
"""
import os
import gc
import sys
import shutil
import tempfile
import logging
import traceback
from pathlib import Path
from typing import Optional, Dict, Any, Tuple
logger = logging.getLogger(__name__)
class HardCacheCleaner:
"""
Comprehensive cache cleaning system to resolve SAM2 loading issues
Clears Python module cache, HuggingFace cache, and temp files
"""
@staticmethod
def clean_all_caches(verbose: bool = True):
"""Clean all caches that might interfere with SAM2 loading"""
if verbose:
logger.info("Starting comprehensive cache cleanup...")
# 1. Clean Python module cache
HardCacheCleaner._clean_python_cache(verbose)
# 2. Clean HuggingFace cache
HardCacheCleaner._clean_huggingface_cache(verbose)
# 3. Clean PyTorch cache
HardCacheCleaner._clean_pytorch_cache(verbose)
# 4. Clean temp directories
HardCacheCleaner._clean_temp_directories(verbose)
# 5. Clear import cache
HardCacheCleaner._clear_import_cache(verbose)
# 6. Force garbage collection
HardCacheCleaner._force_gc_cleanup(verbose)
if verbose:
logger.info("Cache cleanup completed")
@staticmethod
def _clean_python_cache(verbose: bool = True):
"""Clean Python bytecode cache"""
try:
# Clear sys.modules cache for SAM2 related modules
sam2_modules = [key for key in sys.modules.keys() if 'sam2' in key.lower()]
for module in sam2_modules:
if verbose:
logger.info(f"Removing cached module: {module}")
del sys.modules[module]
# Clear __pycache__ directories
for root, dirs, files in os.walk("."):
for dir_name in dirs[:]: # Use slice to modify list during iteration
if dir_name == "__pycache__":
cache_path = os.path.join(root, dir_name)
if verbose:
logger.info(f"Removing __pycache__: {cache_path}")
shutil.rmtree(cache_path, ignore_errors=True)
dirs.remove(dir_name)
except Exception as e:
logger.warning(f"Python cache cleanup failed: {e}")
@staticmethod
def _clean_huggingface_cache(verbose: bool = True):
"""Clean HuggingFace model cache"""
try:
# Get config for cache directories
from config.app_config import get_config
config = get_config()
cache_paths = [
os.path.expanduser("~/.cache/huggingface/"),
os.path.expanduser("~/.cache/torch/"),
config.model_cache_dir,
"./checkpoints/",
"./.cache/",
]
for cache_path in cache_paths:
if os.path.exists(cache_path):
if verbose:
logger.info(f"Cleaning cache directory: {cache_path}")
# Remove SAM2 specific files
for root, dirs, files in os.walk(cache_path):
for file in files:
if any(pattern in file.lower() for pattern in ['sam2', 'segment-anything-2']):
file_path = os.path.join(root, file)
try:
os.remove(file_path)
if verbose:
logger.info(f"Removed cached file: {file_path}")
except:
pass
for dir_name in dirs[:]:
if any(pattern in dir_name.lower() for pattern in ['sam2', 'segment-anything-2']):
dir_path = os.path.join(root, dir_name)
try:
shutil.rmtree(dir_path, ignore_errors=True)
if verbose:
logger.info(f"Removed cached directory: {dir_path}")
dirs.remove(dir_name)
except:
pass
except Exception as e:
logger.warning(f"HuggingFace cache cleanup failed: {e}")
@staticmethod
def _clean_pytorch_cache(verbose: bool = True):
"""Clean PyTorch cache"""
try:
import torch
if torch.cuda.is_available():
torch.cuda.empty_cache()
if verbose:
logger.info("Cleared PyTorch CUDA cache")
except Exception as e:
logger.warning(f"PyTorch cache cleanup failed: {e}")
@staticmethod
def _clean_temp_directories(verbose: bool = True):
"""Clean temporary directories"""
try:
from config.app_config import get_config
config = get_config()
temp_dirs = [
config.temp_dir,
tempfile.gettempdir(),
"/tmp",
"./tmp",
"./temp"
]
for temp_dir in temp_dirs:
if os.path.exists(temp_dir):
for item in os.listdir(temp_dir):
if 'sam2' in item.lower() or 'segment' in item.lower():
item_path = os.path.join(temp_dir, item)
try:
if os.path.isfile(item_path):
os.remove(item_path)
elif os.path.isdir(item_path):
shutil.rmtree(item_path, ignore_errors=True)
if verbose:
logger.info(f"Removed temp item: {item_path}")
except:
pass
except Exception as e:
logger.warning(f"Temp directory cleanup failed: {e}")
@staticmethod
def _clear_import_cache(verbose: bool = True):
"""Clear Python import cache"""
try:
import importlib
# Invalidate import caches
importlib.invalidate_caches()
if verbose:
logger.info("Cleared Python import cache")
except Exception as e:
logger.warning(f"Import cache cleanup failed: {e}")
@staticmethod
def _force_gc_cleanup(verbose: bool = True):
"""Force garbage collection"""
try:
collected = gc.collect()
if verbose:
logger.info(f"Garbage collection freed {collected} objects")
except Exception as e:
logger.warning(f"Garbage collection failed: {e}")
class WorkingSAM2Loader:
"""
SAM2 loader using HuggingFace Transformers integration - proven to work on HF Spaces
This avoids all the config file and CUDA compilation issues
"""
@staticmethod
def load_sam2_transformers_approach(device: str = "cuda", model_size: str = "large") -> Optional[Any]:
"""
Load SAM2 using HuggingFace Transformers integration
This method works reliably on HuggingFace Spaces
"""
try:
logger.info("Loading SAM2 via HuggingFace Transformers...")
# Model size mapping
model_map = {
"tiny": "facebook/sam2.1-hiera-tiny",
"small": "facebook/sam2.1-hiera-small",
"base": "facebook/sam2.1-hiera-base-plus",
"large": "facebook/sam2.1-hiera-large"
}
model_id = model_map.get(model_size, model_map["large"])
logger.info(f"Using model: {model_id}")
# Method 1: Using Transformers pipeline (most reliable for HF Spaces)
try:
from transformers import pipeline
sam2_pipeline = pipeline(
"mask-generation",
model=model_id,
device=0 if device == "cuda" else -1
)
logger.info("SAM2 loaded successfully via Transformers pipeline")
return sam2_pipeline
except Exception as e:
logger.warning(f"Pipeline approach failed: {e}")
# Method 2: Using SAM2 classes directly via Transformers
try:
from transformers import Sam2Processor, Sam2Model
processor = Sam2Processor.from_pretrained(model_id)
model = Sam2Model.from_pretrained(model_id).to(device)
logger.info("SAM2 loaded successfully via Transformers classes")
return {"model": model, "processor": processor}
except Exception as e:
logger.warning(f"Direct class approach failed: {e}")
# Method 3: Using official SAM2 with .from_pretrained()
try:
from sam2.sam2_image_predictor import SAM2ImagePredictor
predictor = SAM2ImagePredictor.from_pretrained(model_id)
logger.info("SAM2 loaded successfully via official from_pretrained")
return predictor
except Exception as e:
logger.warning(f"Official from_pretrained approach failed: {e}")
return None
except Exception as e:
logger.error(f"All SAM2 loading methods failed: {e}")
return None
@staticmethod
def load_sam2_fallback_approach(device: str = "cuda") -> Optional[Any]:
"""
Fallback approach using direct model loading
"""
try:
logger.info("Trying fallback SAM2 loading approach...")
# Try the simplest possible approach
from huggingface_hub import hf_hub_download
import torch
# Download checkpoint directly
checkpoint_path = hf_hub_download(
repo_id="facebook/sam2.1-hiera-large",
filename="sam2_hiera_large.pt"
)
logger.info(f"Downloaded checkpoint to: {checkpoint_path}")
# Try to load with minimal dependencies
try:
# Method A: Try the working transformers integration
from transformers import Sam2Model
model = Sam2Model.from_pretrained("facebook/sam2.1-hiera-large")
return model.to(device)
except Exception as e:
logger.warning(f"Transformers fallback failed: {e}")
return None
except Exception as e:
logger.error(f"Fallback loading failed: {e}")
return None
def load_sam2_with_cache_cleanup(
device: str = "cuda",
model_size: str = "large",
force_cache_clean: bool = True,
verbose: bool = True
) -> Tuple[Optional[Any], str]:
"""
Load SAM2 with comprehensive cache cleanup
Returns:
Tuple of (model, status_message)
"""
status_messages = []
try:
# Step 1: Clean caches if requested
if force_cache_clean:
status_messages.append("Cleaning caches...")
HardCacheCleaner.clean_all_caches(verbose=verbose)
status_messages.append("Cache cleanup completed")
# Step 2: Try primary loading method
status_messages.append("Loading SAM2 (primary method)...")
model = WorkingSAM2Loader.load_sam2_transformers_approach(device, model_size)
if model is not None:
status_messages.append("SAM2 loaded successfully!")
return model, "\n".join(status_messages)
# Step 3: Try fallback method
status_messages.append("Trying fallback loading method...")
model = WorkingSAM2Loader.load_sam2_fallback_approach(device)
if model is not None:
status_messages.append("SAM2 loaded successfully (fallback)!")
return model, "\n".join(status_messages)
# Step 4: All methods failed
status_messages.append("All SAM2 loading methods failed")
return None, "\n".join(status_messages)
except Exception as e:
error_msg = f"Critical error in SAM2 loading: {e}"
logger.error(f"{error_msg}\n{traceback.format_exc()}")
status_messages.append(error_msg)
return None, "\n".join(status_messages)