Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import tensorflow as tf
|
5 |
+
from transformers import RobertaTokenizer, TFRobertaForSequenceClassification
|
6 |
+
from sentence_transformers import SentenceTransformer, util
|
7 |
+
import spotipy
|
8 |
+
from spotipy.oauth2 import SpotifyClientCredentials
|
9 |
+
|
10 |
+
sim_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
11 |
+
|
12 |
+
# Function to analyze sentiment of the user's input
|
13 |
+
def analyze_user_input(user_input, tokenizer, model):
|
14 |
+
encoded_input = tokenizer(user_input, return_tensors="tf", truncation=True, padding=True, max_length=512)
|
15 |
+
outputs = model(encoded_input)
|
16 |
+
scores = tf.nn.softmax(outputs.logits, axis=-1).numpy()[0]
|
17 |
+
predicted_class_idx = tf.argmax(outputs.logits, axis=-1).numpy()[0]
|
18 |
+
sentiment_label = model.config.id2label[predicted_class_idx]
|
19 |
+
sentiment_score = scores[predicted_class_idx]
|
20 |
+
return sentiment_label, sentiment_score
|
21 |
+
|
22 |
+
# Function to match songs from the dataset with the user's sentiment
|
23 |
+
def match_songs_with_sentiment(user_sentiment_label, user_sentiment_score,inputVector, score_range,songs_df):
|
24 |
+
|
25 |
+
# Filter songs with the same sentiment label
|
26 |
+
matched_songs = songs_df[songs_df['sentiment'] == user_sentiment_label]
|
27 |
+
|
28 |
+
# Calculate the score range
|
29 |
+
score_min = max(0, user_sentiment_score - score_range)
|
30 |
+
score_max = min(1, user_sentiment_score + score_range)
|
31 |
+
|
32 |
+
# Further filter songs whose scores fall within the specified range
|
33 |
+
matched_songs = matched_songs[(matched_songs['score'] >= score_min) & (matched_songs['score'] <= score_max)]
|
34 |
+
|
35 |
+
# Shuffle the matched songs to get a random order
|
36 |
+
matched_songs = matched_songs.sample(frac=1).reset_index(drop=True)
|
37 |
+
|
38 |
+
matched_songs['similarity'] = matched_songs['seq'].apply(lambda x: util.pytorch_cos_sim(sim_model.encode(x), inputVector))
|
39 |
+
|
40 |
+
top_5 = matched_songs['similarity'].sort_values(ascending=False).head(5)
|
41 |
+
|
42 |
+
# Sort the songs by how close their score is to the user's sentiment score
|
43 |
+
# matched_songs['score_diff'] = abs(matched_songs['score'] - user_sentiment_score)
|
44 |
+
# matched_songs = matched_songs.sort_values(by='score_diff')
|
45 |
+
|
46 |
+
# Select the top five songs and return
|
47 |
+
return matched_songs.loc[top_5.index, ['song','artist','seq','similarity','sentiment','score']]
|
48 |
+
|
49 |
+
client_id = 'c34955a27b6447e3a1b92305d04bbbea'
|
50 |
+
client_secret = '1d197925c0654b5da80bd3cfa1f5afdd'
|
51 |
+
|
52 |
+
client_credentials_manager = SpotifyClientCredentials(client_id=client_id, client_secret=client_secret)
|
53 |
+
sp = spotipy.Spotify(client_credentials_manager=client_credentials_manager)
|
54 |
+
|
55 |
+
def get_track_id(song_name):
|
56 |
+
# Search for the track ID using the song name
|
57 |
+
results = sp.search(q=song_name, type='track', limit=1)
|
58 |
+
if results['tracks']['items']:
|
59 |
+
track_id = results['tracks']['items'][0]['id']
|
60 |
+
return track_id
|
61 |
+
else:
|
62 |
+
print(f"No results found for {song_name}")
|
63 |
+
return None
|
64 |
+
|
65 |
+
def get_track_preview_url(track_id):
|
66 |
+
# Get the 30-second preview URL for the track
|
67 |
+
track_info = sp.track(track_id)
|
68 |
+
preview_url = track_info['preview_url']
|
69 |
+
return preview_url
|
70 |
+
|
71 |
+
# Initialize the tokenizer and model outside of the functions to speed up repeated calls
|
72 |
+
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
73 |
+
model = TFRobertaForSequenceClassification.from_pretrained('arpanghoshal/EmoRoBERTa')
|
74 |
+
|
75 |
+
# Streamlit app layout
|
76 |
+
st.set_page_config(page_title="MODUS MUSIC", layout="wide") # New: Setting page title and layout
|
77 |
+
|
78 |
+
# Custom CSS for background and text color
|
79 |
+
st.markdown("""
|
80 |
+
<style>
|
81 |
+
.stApp {
|
82 |
+
background: rgb(0,0,0);
|
83 |
+
background-size: cover;
|
84 |
+
color: white; /* Sets global text color to white */
|
85 |
+
}
|
86 |
+
/* General rule for all labels */
|
87 |
+
label {
|
88 |
+
color: white !important;
|
89 |
+
}
|
90 |
+
/* Specific color for the main title */
|
91 |
+
h1 {
|
92 |
+
color: red !important; /* Making the MODUS MUSIC title red */
|
93 |
+
}
|
94 |
+
/* Additional specific styling */
|
95 |
+
.stTextInput > label, .stButton > button, .css-10trblm, .css-1yjuwjr, .intro {
|
96 |
+
color: white !important;
|
97 |
+
}
|
98 |
+
</style>
|
99 |
+
""", unsafe_allow_html=True)
|
100 |
+
|
101 |
+
|
102 |
+
image_path = '/content/MODUSMUSIC.png' # Replace with the actual path to your image
|
103 |
+
|
104 |
+
st.image(image_path, use_column_width=False, width=250) # Adjust the width as needed
|
105 |
+
# Custom gradient background using CSS
|
106 |
+
st.markdown("""
|
107 |
+
<style>
|
108 |
+
.stApp {
|
109 |
+
background: rgb(0,0,0);
|
110 |
+
background-size: cover;
|
111 |
+
}
|
112 |
+
</style>
|
113 |
+
""", unsafe_allow_html=True)
|
114 |
+
|
115 |
+
# Custom HTML for the main title
|
116 |
+
st.markdown("<h1 style='text-align: center; font-weight: bold;'>MODUS MUSIC</h1>", unsafe_allow_html=True)
|
117 |
+
|
118 |
+
st.title('Music Suggestion Based on Your Feeling') # Existing Title
|
119 |
+
|
120 |
+
# New: Introduction Section
|
121 |
+
with st.container():
|
122 |
+
st.markdown("""
|
123 |
+
<style>
|
124 |
+
.intro {
|
125 |
+
font-size:18px;
|
126 |
+
}
|
127 |
+
</style>
|
128 |
+
<div class='intro'>
|
129 |
+
Welcome to Modus Music! Share your vibe, and let's find the perfect songs to match your mood.
|
130 |
+
Just type in your thoughts, and we'll do the rest.
|
131 |
+
</div>
|
132 |
+
""", unsafe_allow_html=True)
|
133 |
+
|
134 |
+
# User input text area
|
135 |
+
with st.container():
|
136 |
+
user_input = st.text_area("What's your vibe? Tell me about it:", key="123", height=150, max_chars=500)
|
137 |
+
m = st.markdown("""
|
138 |
+
<style>
|
139 |
+
div.stButton > button:first-child {
|
140 |
+
background-color: rgb(204, 49, 49);
|
141 |
+
|
142 |
+
}
|
143 |
+
</style>""", unsafe_allow_html=True)
|
144 |
+
# Use the custom style for the button
|
145 |
+
submit_button = st.button("Generate music")
|
146 |
+
|
147 |
+
|
148 |
+
# Processing and Displaying Results
|
149 |
+
if submit_button and len(user_input.split()) > 5:
|
150 |
+
# New: Define inputVector here
|
151 |
+
inputVector = sim_model.encode(user_input)
|
152 |
+
|
153 |
+
# Run sentiment analysis on the user input
|
154 |
+
sentiment_label, sentiment_score = analyze_user_input(user_input, tokenizer, model)
|
155 |
+
st.write(f"Sentiment: {sentiment_label}, Score: {sentiment_score:.2f}")
|
156 |
+
|
157 |
+
# Load songs dataframe
|
158 |
+
songs_df = pd.read_csv('/content/music_mental_health.csv')
|
159 |
+
|
160 |
+
# Suggest songs
|
161 |
+
suggested_songs = match_songs_with_sentiment(sentiment_label, sentiment_score, inputVector, 0.00625, songs_df)
|
162 |
+
suggested_songs['similarity'] = suggested_songs['similarity'].apply(lambda x: x.numpy()[0][0])
|
163 |
+
|
164 |
+
# Styling for the suggested songs display
|
165 |
+
with st.container():
|
166 |
+
st.markdown("<div class='song-list'>", unsafe_allow_html=True)
|
167 |
+
st.write("Based on your vibe, you might like these songs:")
|
168 |
+
for index, row in suggested_songs.iterrows():
|
169 |
+
song = row['song']
|
170 |
+
artist = row['artist']
|
171 |
+
track_id = get_track_id(song)
|
172 |
+
if track_id.strip():
|
173 |
+
preview_url = get_track_preview_url(track_id)
|
174 |
+
#st.write(f"Similarity: {row['similarity']}")
|
175 |
+
st.write(f"{song} by {artist}")
|
176 |
+
with st.expander(f"Show Lyrics for {song} by {artist}", expanded=False):
|
177 |
+
st.write(f"Lyrics: {row['seq']}")
|
178 |
+
|
179 |
+
if preview_url:
|
180 |
+
st.audio(preview_url)
|
181 |
+
else:
|
182 |
+
st.write("No Preview Available")
|
183 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
184 |
+
st.dataframe(suggested_songs[['song','artist','seq','similarity','sentiment','score']])
|
185 |
+
elif submit_button and not len(user_input.split()) > 5:
|
186 |
+
st.warning("Please provide a longer response with 5 words or more.")
|
187 |
+
st.rerun()
|