|
import streamlit as st
|
|
from PIL import Image
|
|
from deepface import DeepFace
|
|
import tempfile
|
|
import pandas as pd
|
|
import cv2 as cv
|
|
import threading
|
|
from time import sleep
|
|
|
|
st.title('Image Upload and Verification App')
|
|
|
|
st.write('Please upload two images for facial verification.')
|
|
|
|
|
|
uploaded_file1 = st.file_uploader("Choose the first image...", type=["jpg", "png", "jpeg"], key="1")
|
|
uploaded_file2 = st.file_uploader("Choose the second image...", type=["jpg", "png", "jpeg"], key="2")
|
|
|
|
|
|
df = None
|
|
analyze_img1 = None
|
|
analyze_img2 = None
|
|
|
|
def verify(img1_path, img2_path):
|
|
global df
|
|
model_name = 'VGG-Face'
|
|
result = DeepFace.verify(img1_path=img1_path, img2_path=img2_path, model_name=model_name)
|
|
result["img1_facial_areas"] = result["facial_areas"]["img1"]
|
|
result["img2_facial_areas"] = result["facial_areas"]["img2"]
|
|
del result["facial_areas"]
|
|
df = pd.DataFrame([result])
|
|
|
|
def analyze_image1(img1_path):
|
|
global analyze_img1
|
|
analyze_img1 = DeepFace.analyze(img_path=img1_path)[0]
|
|
|
|
def analyze_image2(img2_path):
|
|
global analyze_img2
|
|
analyze_img2 = DeepFace.analyze(img_path=img2_path)[0]
|
|
|
|
def generate_analysis_sentence(analysis):
|
|
age = analysis['age']
|
|
gender = [i for i in analysis['gender'].keys()][-1]
|
|
dominant_emotion = analysis['dominant_emotion']
|
|
dominant_race = analysis['dominant_race']
|
|
|
|
|
|
age_html = f"<span style='color:blue'>{age}</span>"
|
|
gender_html = f"<span style='color:blue'>{gender}</span>"
|
|
dominant_emotion_html = f"<span style='color:blue'>{dominant_emotion}</span>"
|
|
dominant_race_html = f"<span style='color:blue'>{dominant_race}</span>"
|
|
|
|
return f"""The person in the image appears to be {age_html} years old, identified as '{gender_html}'.
|
|
The dominant emotion detected is {dominant_emotion_html}.
|
|
Ethnicity prediction indicates {dominant_race_html}."""
|
|
|
|
def display_image_with_analysis(image, analysis):
|
|
|
|
st.image(image, caption='Image', use_column_width=True)
|
|
|
|
|
|
st.write("Analysis:")
|
|
st.markdown(generate_analysis_sentence(analysis), unsafe_allow_html=True)
|
|
|
|
def drow_rectangle():
|
|
|
|
img1 = cv.imread(img1_path)
|
|
img2 = cv.imread(img2_path)
|
|
|
|
|
|
face_area1 = df.iloc[0]["img1_facial_areas"]
|
|
p1_1 = (face_area1["x"], face_area1["y"])
|
|
p2_1 = (face_area1["x"] + face_area1["w"], face_area1["y"] + face_area1["h"])
|
|
rect_img1 = cv.rectangle(img1.copy(), p1_1, p2_1, (0, 255, 0), 2)
|
|
|
|
face_area2 = df.iloc[0]["img2_facial_areas"]
|
|
p1_2 = (face_area2["x"], face_area2["y"])
|
|
p2_2 = (face_area2["x"] + face_area2["w"], face_area2["y"] + face_area2["h"])
|
|
rect_img2 = cv.rectangle(img2.copy(), p1_2, p2_2, (0, 255, 0), 2)
|
|
|
|
|
|
rect_img1 = cv.cvtColor(rect_img1, cv.COLOR_BGR2RGB)
|
|
rect_img1 = cv.resize(rect_img1, (200, 250), interpolation=cv.INTER_AREA)
|
|
|
|
rect_img2 = cv.cvtColor(rect_img2, cv.COLOR_BGR2RGB)
|
|
rect_img2 = cv.resize(rect_img2, (200, 250), interpolation=cv.INTER_AREA)
|
|
|
|
|
|
|
|
|
|
if df["verified"].iloc[0]:
|
|
message = "The faces in the images match!"
|
|
else:
|
|
message = "The faces in the images do not match!"
|
|
|
|
st.title(message)
|
|
|
|
col1, col2 = st.columns(2)
|
|
col1.image(rect_img1, caption='Verified Image 1', use_column_width=True)
|
|
col2.image(rect_img2, caption='Verified Image 2', use_column_width=True)
|
|
|
|
def get_analyze():
|
|
|
|
st.write("Analysis for Image 1:")
|
|
try:
|
|
st.markdown(generate_analysis_sentence(analyze_img1), unsafe_allow_html=True)
|
|
except:
|
|
st.warning("can't detect image 1")
|
|
|
|
st.write("Analysis for Image 2:")
|
|
try:
|
|
st.markdown(generate_analysis_sentence(analyze_img2), unsafe_allow_html=True)
|
|
except:
|
|
st.warning("can't detect image 2")
|
|
|
|
|
|
col1, col2 = st.columns(2)
|
|
with col1:
|
|
st.text("Check if the faces in the images match!")
|
|
check = st.button("Check")
|
|
with col2:
|
|
st.text("Analyze the faces in each image!")
|
|
analyze = st.button("Analyze")
|
|
|
|
if uploaded_file1 is not None and uploaded_file2 is not None:
|
|
|
|
image1 = Image.open(uploaded_file1)
|
|
image2 = Image.open(uploaded_file2)
|
|
|
|
st.write("Here are your images:")
|
|
|
|
|
|
if image1.mode == 'RGBA':
|
|
image1 = image1.convert('RGB')
|
|
if image2.mode == 'RGBA':
|
|
image2 = image2.convert('RGB')
|
|
|
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp_file1:
|
|
image1.save(tmp_file1.name)
|
|
img1_path = tmp_file1.name
|
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp_file2:
|
|
image2.save(tmp_file2.name)
|
|
img2_path = tmp_file2.name
|
|
|
|
t1 = threading.Thread(target=verify, args=(img1_path, img2_path))
|
|
t2 = threading.Thread(target=analyze_image1, args=(img1_path,))
|
|
t3 = threading.Thread(target=analyze_image2, args=(img2_path,))
|
|
t1.start()
|
|
t2.start()
|
|
t3.start()
|
|
t1.join()
|
|
|
|
|
|
if check and not t1.is_alive():
|
|
n = 0
|
|
while True:
|
|
try:
|
|
drow_rectangle()
|
|
sleep(2)
|
|
break
|
|
except:
|
|
n = n + 1
|
|
print(f"Try : {n}")
|
|
if n == 4:
|
|
st.warning("Please make sure there are people's faces in each of the two photos or try again")
|
|
break
|
|
|
|
t2.join()
|
|
t3.join()
|
|
if analyze:
|
|
n = 0
|
|
|
|
while t2.is_alive() or t3.is_alive():
|
|
sleep(2)
|
|
while True:
|
|
try:
|
|
get_analyze()
|
|
sleep(2)
|
|
break
|
|
except:
|
|
n = n + 1
|
|
print(f"Try : {n}")
|
|
if n == 4:
|
|
st.warning("Please make sure there are people's faces in each of the two photos or try again")
|
|
break
|
|
|
|
|
|
else:
|
|
st.write("Please upload both images to proceed.")
|
|
|