CV_description / main.py
Ammar-Abdelhady-ai
d
b244901
raw
history blame
2.27 kB
import threading
from functions import extract_text_from_pdf, get_most_similar_job
from fastapi import UploadFile, HTTPException, FastAPI
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from transformers import pipeline
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
print("\n\n definition 2")
df = pd.read_csv("all.csv")
concatenated_column = pd.concat([df['job_title'] + df['job_description'] + df['job_requirements'], df['city_name']], axis=1).astype(str).agg(''.join, axis=1)
x = concatenated_column
y = df["label"]
vectorizer = TfidfVectorizer(stop_words='english')
print("df done")
vectorizer.fit(x)
df_vect = vectorizer.transform(x)
# Initialize the summarizer model
######### using summarizer model
summ_data = []
print("start api code")
app = FastAPI(project_name="cv")
@app.get("/")
async def read_root():
return {"Hello": "World, Project name is : CV Description"}
@app.post("/prediction")
async def detect(cv: UploadFile, number_of_jobs: int):
print("pf")
if (type(number_of_jobs) != int) or (number_of_jobs < 1) or (number_of_jobs > df.shape[0]):
raise HTTPException(
status_code=415, detail = f"Please enter the number of jobs you want as an ' integer from 1 to {int(df.shape[0]) - 1} '."
)
if cv.filename.split(".")[-1] not in ("pdf") :
raise HTTPException(
status_code=415, detail="Please inter PDF file "
)
print("pf2")
summ_data =[]
cv_data = extract_text_from_pdf(await cv.read())
index = len(cv_data)//3
text = [cv_data[:index], cv_data[index:2*index], cv_data[2*index:]]
for i in text:
part = summarizer(i, max_length=150, min_length=30, do_sample=False)
summ_data.append(part[0]["summary_text"].replace("\xa0", ""))
print("pf3")
data = " .".join(summ_data)
summ_data.clear()
cv_vect = vectorizer.transform([data])
indices = get_most_similar_job(data=data, cv_vect=cv_vect, df_vect=df_vect)
# Check if all threads have finished
print("ALL Done \n\n")
prediction_data = df.iloc[indices[:number_of_jobs]].applymap(lambda x: str(x)).to_dict(orient='records')
return {"prediction": prediction_data}