Spaces:
Runtime error
Runtime error
import os | |
import argparse | |
from tqdm import tqdm | |
from random import shuffle | |
import json | |
config_template = { | |
"train": { | |
"log_interval": 200, | |
"eval_interval": 1000, | |
"seed": 1234, | |
"epochs": 10000, | |
"learning_rate": 2e-4, | |
"betas": [0.8, 0.99], | |
"eps": 1e-9, | |
"batch_size": 12, | |
"fp16_run": False, | |
"lr_decay": 0.999875, | |
"segment_size": 17920, | |
"init_lr_ratio": 1, | |
"warmup_epochs": 0, | |
"c_mel": 45, | |
"c_kl": 1.0, | |
"use_sr": True, | |
"max_speclen": 384, | |
"port": "8001" | |
}, | |
"data": { | |
"training_files":"filelists/train.txt", | |
"validation_files":"filelists/val.txt", | |
"max_wav_value": 32768.0, | |
"sampling_rate": 48000, | |
"filter_length": 1280, | |
"hop_length": 320, | |
"win_length": 1280, | |
"n_mel_channels": 80, | |
"mel_fmin": 0.0, | |
"mel_fmax": None | |
}, | |
"model": { | |
"inter_channels": 192, | |
"hidden_channels": 192, | |
"filter_channels": 768, | |
"n_heads": 2, | |
"n_layers": 6, | |
"kernel_size": 3, | |
"p_dropout": 0.1, | |
"resblock": "1", | |
"resblock_kernel_sizes": [3,7,11], | |
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]], | |
"upsample_rates": [10,8,2,2], | |
"upsample_initial_channel": 512, | |
"upsample_kernel_sizes": [16,16,4,4], | |
"n_layers_q": 3, | |
"use_spectral_norm": False, | |
"gin_channels": 256, | |
"ssl_dim": 256, | |
"n_speakers": 0, | |
}, | |
"spk":{ | |
"nen": 0, | |
"paimon": 1, | |
"yunhao": 2 | |
} | |
} | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list") | |
parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list") | |
parser.add_argument("--test_list", type=str, default="./filelists/test.txt", help="path to test list") | |
parser.add_argument("--source_dir", type=str, default="./dataset/48k", help="path to source dir") | |
args = parser.parse_args() | |
train = [] | |
val = [] | |
test = [] | |
idx = 0 | |
spk_dict = {} | |
spk_id = 0 | |
for speaker in tqdm(os.listdir(args.source_dir)): | |
spk_dict[speaker] = spk_id | |
spk_id += 1 | |
wavs = [os.path.join(args.source_dir, speaker, i)for i in os.listdir(os.path.join(args.source_dir, speaker))] | |
wavs = [i for i in wavs if i.endswith("wav")] | |
shuffle(wavs) | |
train += wavs[2:-10] | |
val += wavs[:2] | |
test += wavs[-10:] | |
n_speakers = len(spk_dict.keys())*2 | |
shuffle(train) | |
shuffle(val) | |
shuffle(test) | |
print("Writing", args.train_list) | |
with open(args.train_list, "w") as f: | |
for fname in tqdm(train): | |
wavpath = fname | |
f.write(wavpath + "\n") | |
print("Writing", args.val_list) | |
with open(args.val_list, "w") as f: | |
for fname in tqdm(val): | |
wavpath = fname | |
f.write(wavpath + "\n") | |
print("Writing", args.test_list) | |
with open(args.test_list, "w") as f: | |
for fname in tqdm(test): | |
wavpath = fname | |
f.write(wavpath + "\n") | |
config_template["model"]["n_speakers"] = n_speakers | |
config_template["spk"] = spk_dict | |
print("Writing configs/config.json") | |
with open("configs/config.json", "w") as f: | |
json.dump(config_template, f, indent=2) | |