Spaces:
Configuration error
Configuration error
| import os | |
| import argparse | |
| import numpy as np | |
| import torch | |
| import rembg | |
| from PIL import Image | |
| from torchvision.transforms import v2 | |
| from pytorch_lightning import seed_everything | |
| from omegaconf import OmegaConf | |
| from einops import rearrange, repeat | |
| from tqdm import tqdm | |
| from huggingface_hub import hf_hub_download | |
| from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler | |
| from src.utils.train_util import instantiate_from_config | |
| from src.utils.camera_util import ( | |
| FOV_to_intrinsics, | |
| get_zero123plus_input_cameras, | |
| get_circular_camera_poses, | |
| ) | |
| from src.utils.mesh_util import save_obj, save_obj_with_mtl | |
| from src.utils.infer_util import remove_background, resize_foreground, save_video | |
| def get_render_cameras(batch_size=1, M=120, radius=4.0, elevation=20.0, is_flexicubes=False): | |
| """ | |
| Get the rendering camera parameters. | |
| """ | |
| c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) | |
| if is_flexicubes: | |
| cameras = torch.linalg.inv(c2ws) | |
| cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) | |
| else: | |
| extrinsics = c2ws.flatten(-2) | |
| intrinsics = FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) | |
| cameras = torch.cat([extrinsics, intrinsics], dim=-1) | |
| cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) | |
| return cameras | |
| def render_frames(model, planes, render_cameras, render_size=512, chunk_size=1, is_flexicubes=False): | |
| """ | |
| Render frames from triplanes. | |
| """ | |
| frames = [] | |
| for i in tqdm(range(0, render_cameras.shape[1], chunk_size)): | |
| if is_flexicubes: | |
| frame = model.forward_geometry( | |
| planes, | |
| render_cameras[:, i:i+chunk_size], | |
| render_size=render_size, | |
| )['img'] | |
| else: | |
| frame = model.forward_synthesizer( | |
| planes, | |
| render_cameras[:, i:i+chunk_size], | |
| render_size=render_size, | |
| )['images_rgb'] | |
| frames.append(frame) | |
| frames = torch.cat(frames, dim=1)[0] # we suppose batch size is always 1 | |
| return frames | |
| ############################################################################### | |
| # Arguments. | |
| ############################################################################### | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('config', type=str, help='Path to config file.') | |
| parser.add_argument('input_path', type=str, help='Path to input image or directory.') | |
| parser.add_argument('--output_path', type=str, default='outputs/', help='Output directory.') | |
| parser.add_argument('--diffusion_steps', type=int, default=75, help='Denoising Sampling steps.') | |
| parser.add_argument('--seed', type=int, default=42, help='Random seed for sampling.') | |
| parser.add_argument('--scale', type=float, default=1.0, help='Scale of generated object.') | |
| parser.add_argument('--distance', type=float, default=4.5, help='Render distance.') | |
| parser.add_argument('--view', type=int, default=6, choices=[4, 6], help='Number of input views.') | |
| parser.add_argument('--no_rembg', action='store_true', help='Do not remove input background.') | |
| parser.add_argument('--export_texmap', action='store_true', help='Export a mesh with texture map.') | |
| parser.add_argument('--save_video', action='store_true', help='Save a circular-view video.') | |
| args = parser.parse_args() | |
| seed_everything(args.seed) | |
| ############################################################################### | |
| # Stage 0: Configuration. | |
| ############################################################################### | |
| config = OmegaConf.load(args.config) | |
| config_name = os.path.basename(args.config).replace('.yaml', '') | |
| model_config = config.model_config | |
| infer_config = config.infer_config | |
| IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False | |
| device = torch.device('cuda') | |
| # load diffusion model | |
| print('Loading diffusion model ...') | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| "sudo-ai/zero123plus-v1.2", | |
| custom_pipeline="zero123plus", | |
| torch_dtype=torch.float16, | |
| ) | |
| pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( | |
| pipeline.scheduler.config, timestep_spacing='trailing' | |
| ) | |
| # load custom white-background UNet | |
| print('Loading custom white-background unet ...') | |
| if os.path.exists(infer_config.unet_path): | |
| unet_ckpt_path = infer_config.unet_path | |
| else: | |
| unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model") | |
| state_dict = torch.load(unet_ckpt_path, map_location='cpu') | |
| pipeline.unet.load_state_dict(state_dict, strict=True) | |
| pipeline = pipeline.to(device) | |
| # load reconstruction model | |
| print('Loading reconstruction model ...') | |
| model = instantiate_from_config(model_config) | |
| if os.path.exists(infer_config.model_path): | |
| model_ckpt_path = infer_config.model_path | |
| else: | |
| model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename=f"{config_name.replace('-', '_')}.ckpt", repo_type="model") | |
| state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict'] | |
| state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')} | |
| model.load_state_dict(state_dict, strict=True) | |
| model = model.to(device) | |
| if IS_FLEXICUBES: | |
| model.init_flexicubes_geometry(device, fovy=30.0) | |
| model = model.eval() | |
| # make output directories | |
| image_path = os.path.join(args.output_path, config_name, 'images') | |
| mesh_path = os.path.join(args.output_path, config_name, 'meshes') | |
| video_path = os.path.join(args.output_path, config_name, 'videos') | |
| os.makedirs(image_path, exist_ok=True) | |
| os.makedirs(mesh_path, exist_ok=True) | |
| os.makedirs(video_path, exist_ok=True) | |
| # process input files | |
| if os.path.isdir(args.input_path): | |
| input_files = [ | |
| os.path.join(args.input_path, file) | |
| for file in os.listdir(args.input_path) | |
| if file.endswith('.png') or file.endswith('.jpg') or file.endswith('.webp') | |
| ] | |
| else: | |
| input_files = [args.input_path] | |
| print(f'Total number of input images: {len(input_files)}') | |
| ############################################################################### | |
| # Stage 1: Multiview generation. | |
| ############################################################################### | |
| rembg_session = None if args.no_rembg else rembg.new_session() | |
| outputs = [] | |
| for idx, image_file in enumerate(input_files): | |
| name = os.path.basename(image_file).split('.')[0] | |
| print(f'[{idx+1}/{len(input_files)}] Imagining {name} ...') | |
| # remove background optionally | |
| input_image = Image.open(image_file) | |
| if not args.no_rembg: | |
| input_image = remove_background(input_image, rembg_session) | |
| input_image = resize_foreground(input_image, 0.85) | |
| # sampling | |
| output_image = pipeline( | |
| input_image, | |
| num_inference_steps=args.diffusion_steps, | |
| ).images[0] | |
| output_image.save(os.path.join(image_path, f'{name}.png')) | |
| print(f"Image saved to {os.path.join(image_path, f'{name}.png')}") | |
| images = np.asarray(output_image, dtype=np.float32) / 255.0 | |
| images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640) | |
| images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320) | |
| outputs.append({'name': name, 'images': images}) | |
| # delete pipeline to save memory | |
| del pipeline | |
| ############################################################################### | |
| # Stage 2: Reconstruction. | |
| ############################################################################### | |
| input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0*args.scale).to(device) | |
| chunk_size = 20 if IS_FLEXICUBES else 1 | |
| for idx, sample in enumerate(outputs): | |
| name = sample['name'] | |
| print(f'[{idx+1}/{len(outputs)}] Creating {name} ...') | |
| images = sample['images'].unsqueeze(0).to(device) | |
| images = v2.functional.resize(images, 320, interpolation=3, antialias=True).clamp(0, 1) | |
| if args.view == 4: | |
| indices = torch.tensor([0, 2, 4, 5]).long().to(device) | |
| images = images[:, indices] | |
| input_cameras = input_cameras[:, indices] | |
| with torch.no_grad(): | |
| # get triplane | |
| planes = model.forward_planes(images, input_cameras) | |
| # get mesh | |
| mesh_path_idx = os.path.join(mesh_path, f'{name}.obj') | |
| mesh_out = model.extract_mesh( | |
| planes, | |
| use_texture_map=args.export_texmap, | |
| **infer_config, | |
| ) | |
| if args.export_texmap: | |
| vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out | |
| save_obj_with_mtl( | |
| vertices.data.cpu().numpy(), | |
| uvs.data.cpu().numpy(), | |
| faces.data.cpu().numpy(), | |
| mesh_tex_idx.data.cpu().numpy(), | |
| tex_map.permute(1, 2, 0).data.cpu().numpy(), | |
| mesh_path_idx, | |
| ) | |
| else: | |
| vertices, faces, vertex_colors = mesh_out | |
| save_obj(vertices, faces, vertex_colors, mesh_path_idx) | |
| print(f"Mesh saved to {mesh_path_idx}") | |
| # get video | |
| if args.save_video: | |
| video_path_idx = os.path.join(video_path, f'{name}.mp4') | |
| render_size = infer_config.render_resolution | |
| render_cameras = get_render_cameras( | |
| batch_size=1, | |
| M=120, | |
| radius=args.distance, | |
| elevation=20.0, | |
| is_flexicubes=IS_FLEXICUBES, | |
| ).to(device) | |
| frames = render_frames( | |
| model, | |
| planes, | |
| render_cameras=render_cameras, | |
| render_size=render_size, | |
| chunk_size=chunk_size, | |
| is_flexicubes=IS_FLEXICUBES, | |
| ) | |
| save_video( | |
| frames, | |
| video_path_idx, | |
| fps=30, | |
| ) | |
| print(f"Video saved to {video_path_idx}") | |