Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# V04
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
import torch
|
| 5 |
+
import requests
|
| 6 |
+
|
| 7 |
+
def get_hfhub_models():
|
| 8 |
+
"""Récupère la liste des modèles disponibles sur Hugging Face Hub"""
|
| 9 |
+
response = requests.get("https://huggingface.co/api/models")
|
| 10 |
+
if response.status_code == 200:
|
| 11 |
+
models = [model['id'] for model in response.json()['models']]
|
| 12 |
+
return models
|
| 13 |
+
else:
|
| 14 |
+
raise Exception(f"Erreur lors de la récupération des modèles : {response.status_code}")
|
| 15 |
+
|
| 16 |
+
def load_model(model_name):
|
| 17 |
+
"""Charge le modèle et le tokenizer"""
|
| 18 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 20 |
+
return model, tokenizer
|
| 21 |
+
|
| 22 |
+
def generate_text(model, tokenizer, input_text, max_length, temperature):
|
| 23 |
+
"""Génère du texte en utilisant le modèle"""
|
| 24 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 25 |
+
output = model.generate(**inputs, max_length=max_length, temperature=temperature)
|
| 26 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
| 27 |
+
|
| 28 |
+
def main(input_text, max_length, temperature, model_name):
|
| 29 |
+
"""Fonction principale pour générer le texte"""
|
| 30 |
+
model, tokenizer = load_model(model_name)
|
| 31 |
+
generated_text = generate_text(model, tokenizer, input_text, max_length, temperature)
|
| 32 |
+
return generated_text
|
| 33 |
+
|
| 34 |
+
demo = gr.Blocks()
|
| 35 |
+
|
| 36 |
+
with demo:
|
| 37 |
+
gr.Markdown("# Modèle de Langage")
|
| 38 |
+
|
| 39 |
+
with gr.Row():
|
| 40 |
+
input_text = gr.Textbox(label="Texte d'entrée")
|
| 41 |
+
with gr.Row():
|
| 42 |
+
max_length_slider = gr.Slider(50, 500, label="Longueur maximale", value=200)
|
| 43 |
+
temperature_slider = gr.Slider(0.1, 1.0, label="Température", value=0.7)
|
| 44 |
+
model_name_dropdown = gr.Dropdown(choices=get_hfhub_models(), label="Sélectionnez un modèle")
|
| 45 |
+
with gr.Row():
|
| 46 |
+
submit_button = gr.Button("Soumettre")
|
| 47 |
+
|
| 48 |
+
output_text = gr.Textbox(label="Texte généré")
|
| 49 |
+
|
| 50 |
+
submit_button.click(
|
| 51 |
+
main,
|
| 52 |
+
inputs=[input_text, max_length_slider, temperature_slider, model_name_dropdown],
|
| 53 |
+
outputs=output_text,
|
| 54 |
+
queue=False
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
if __name__ == "__main__":
|
| 58 |
+
demo.launch()
|