|
#app.py Modif04 |
|
#https: |
|
import gradio as gr |
|
from llama_cpp import Llama |
|
|
|
llm = Llama( |
|
model_path="/home/user/app/h2o-danube3-500m-chat-Q4_K_M.gguf", |
|
verbose=True |
|
) |
|
|
|
def predict(message, history): |
|
# messages = [{"role": "system", "content": "You are a helpful assistant."}] |
|
# messages = [{"role": "assistant", "content": "You are a helpful assistant."}] |
|
# messages = [{"role": "assistant", "content": "Bonjour, comment puis-je vous aider?"}] |
|
messages = [] |
|
for user_message, bot_message in history: |
|
if user_message: |
|
messages.append({"role": "user", "content": user_message}) |
|
if bot_message: |
|
messages.append({"role": "assistant", "content": bot_message}) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
for chunk in llm.create_chat_completion( |
|
stream=True, |
|
messages=messages, |
|
): |
|
part = chunk["choices"][0]["delta"].get("content", None) |
|
if part: |
|
response += part |
|
yield response |
|
|
|
demo = gr.ChatInterface(predict) |
|
|
|
demo.launch() |
|
|
|
|
|
|
|
##app.py Modif03 |
|
#import gradio as gr |
|
#from huggingface_hub import create_inference_endpoint, InferenceClient |
|
#from transformers import AutoModelForCausalLM, AutoTokenizer |
|
# |
|
##model_name = "MisterAI/H20GPT_h2o-danube3-500m-chat-Q4_K_M_gguf" |
|
##model = AutoModelForCausalLM.from_pretrained(model_name) |
|
##tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
# |
|
##client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
##client = InferenceClient("MisterAI/H20GPT_h2o-danube3-500m-chat-Q4_K_M_gguf") |
|
##client = InferenceClient("/home/user/app/H20GPT_h2o-danube3-500m-chat-Q4_K_M.gguf") |
|
# |
|
## Créez une instance Inference locale |
|
#endpoint = create_inference_endpoint( |
|
# "Local-Endpoint-MisterAI-H2O", |
|
# repository="MisterAI/H20GPT_h2o-danube3-500m-chat-Q4_K_M_gguf", |
|
## model_path="/home/user/app/H20GPT_h2o-danube3-500m-chat-Q4_K_M.gguf", |
|
# framework="pytorch", |
|
# task="text-generation", |
|
# accelerator="cpu", |
|
# vendor="local", |
|
# region="local", |
|
# type="unprotected", |
|
# instance_size="small", |
|
# instance_type="local", |
|
# URL="http://0.0.0.0:6789" |
|
#) |
|
# |
|
#print(f"Endpoint créé à l'URL : {endpoint.url}") |
|
# |
|
#client = endpoint.client |
|
# |
|
# |
|
# |
|
#def respond( |
|
# message, |
|
# history: list[tuple[str, str]], |
|
# system_message, |
|
# max_tokens, |
|
# temperature, |
|
# top_p, |
|
#): |
|
# messages = [{"role": "system", "content": system_message}] |
|
# |
|
# for val in history: |
|
# if val[0]: |
|
# messages.append({"role": "user", "content": val[0]}) |
|
# if val[1]: |
|
# messages.append({"role": "assistant", "content": val[1]}) |
|
# |
|
# messages.append({"role": "user", "content": message}) |
|
# |
|
# response = "" |
|
# |
|
# for message in client.chat_completion( |
|
# messages, |
|
# max_tokens=max_tokens, |
|
# stream=True, |
|
# temperature=temperature, |
|
# top_p=top_p, |
|
# ): |
|
# token = message.choices[0].delta.content |
|
# |
|
# response += token |
|
# yield response |
|
# |
|
#demo = gr.ChatInterface( |
|
# respond, |
|
# additional_inputs=[ |
|
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
# gr.Slider( |
|
# minimum=0.1, |
|
# maximum=1.0, |
|
# value=0.95, |
|
# step=0.05, |
|
# label="Top-p (nucleus sampling)", |
|
# ), |
|
# ], |
|
#) |
|
# |
|
# |
|
#if __name__ == "__main__": |
|
# demo.launch() |
|
# |
|
# |
|
# |
|
# |
|
##app.py Modif01 |
|
#import gradio as gr |
|
#from huggingface_hub import Inference, InferenceClient |
|
#from transformers import AutoModelForCausalLM, AutoTokenizer |
|
# |
|
##model_name = "MisterAI/H20GPT_h2o-danube3-500m-chat-Q4_K_M_gguf" |
|
##model = AutoModelForCausalLM.from_pretrained(model_name) |
|
##tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
# |
|
##client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
##client = InferenceClient("MisterAI/H20GPT_h2o-danube3-500m-chat-Q4_K_M_gguf") |
|
##client = InferenceClient("/home/user/app/H20GPT_h2o-danube3-500m-chat-Q4_K_M.gguf") |
|
# |
|
## Créez une instance Inference locale |
|
#inference = Inference( |
|
# model_path="/home/user/app/H20GPT_h2o-danube3-500m-chat-Q4_K_M.gguf", |
|
# device="cpu", # Utilisez le CPU pour l'inference |
|
# token=None, # Pas de token nécessaire pour cette instance |
|
#) |
|
# |
|
#client = inference |
|
# |
|
# |
|
# |
|
#def respond( |
|
# message, |
|
# history: list[tuple[str, str]], |
|
# system_message, |
|
# max_tokens, |
|
# temperature, |
|
# top_p, |
|
#): |
|
# messages = [{"role": "system", "content": system_message}] |
|
# |
|
# for val in history: |
|
# if val[0]: |
|
# messages.append({"role": "user", "content": val[0]}) |
|
# if val[1]: |
|
# messages.append({"role": "assistant", "content": val[1]}) |
|
# |
|
# messages.append({"role": "user", "content": message}) |
|
# |
|
# response = "" |
|
# |
|
# for message in client.chat_completion( |
|
# messages, |
|
# max_tokens=max_tokens, |
|
# stream=True, |
|
# temperature=temperature, |
|
# top_p=top_p, |
|
# ): |
|
# token = message.choices[0].delta.content |
|
# |
|
# response += token |
|
# yield response |
|
# |
|
#demo = gr.ChatInterface( |
|
# respond, |
|
# additional_inputs=[ |
|
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
# gr.Slider( |
|
# minimum=0.1, |
|
# maximum=1.0, |
|
# value=0.95, |
|
# step=0.05, |
|
# label="Top-p (nucleus sampling)", |
|
# ), |
|
# ], |
|
#) |
|
# |
|
# |
|
#if __name__ == "__main__": |
|
# demo.launch() |
|
# |
|
# |
|
# |
|
# |
|
# |
|
##app.py ORIGINAL |
|
#import gradio as gr |
|
#from huggingface_hub import InferenceClient |
|
# |
|
#""" |
|
#For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
#""" |
|
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
# |
|
# |
|
#def respond( |
|
# message, |
|
# history: list[tuple[str, str]], |
|
# system_message, |
|
# max_tokens, |
|
# temperature, |
|
# top_p, |
|
#): |
|
# messages = [{"role": "system", "content": system_message}] |
|
# |
|
# for val in history: |
|
# if val[0]: |
|
# messages.append({"role": "user", "content": val[0]}) |
|
# if val[1]: |
|
# messages.append({"role": "assistant", "content": val[1]}) |
|
# |
|
# messages.append({"role": "user", "content": message}) |
|
# |
|
# response = "" |
|
# |
|
# for message in client.chat_completion( |
|
# messages, |
|
# max_tokens=max_tokens, |
|
# stream=True, |
|
# temperature=temperature, |
|
# top_p=top_p, |
|
# ): |
|
# token = message.choices[0].delta.content |
|
# |
|
# response += token |
|
# yield response |
|
# |
|
#""" |
|
#For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
#""" |
|
#demo = gr.ChatInterface( |
|
# respond, |
|
# additional_inputs=[ |
|
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
# gr.Slider( |
|
# minimum=0.1, |
|
# maximum=1.0, |
|
# value=0.95, |
|
# step=0.05, |
|
# label="Top-p (nucleus sampling)", |
|
# ), |
|
# ], |
|
#) |
|
# |
|
# |
|
#if __name__ == "__main__": |
|
# demo.launch() |
|
|
|
|