Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#MisterAI/Docker_Ollama
|
2 |
+
#app.py_03
|
3 |
+
#https://huggingface.co/spaces/MisterAI/Docker_Ollama/
|
4 |
+
#Ajouter Historique
|
5 |
+
|
6 |
+
import logging
|
7 |
+
import requests
|
8 |
+
from pydantic import BaseModel
|
9 |
+
from langchain_community.llms import Ollama
|
10 |
+
from langchain.callbacks.manager import CallbackManager
|
11 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
12 |
+
import gradio as gr
|
13 |
+
import threading
|
14 |
+
import subprocess
|
15 |
+
from bs4 import BeautifulSoup
|
16 |
+
|
17 |
+
logging.basicConfig(level=logging.INFO)
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
# Cache pour stocker les modèles déjà chargés
|
21 |
+
loaded_models = {}
|
22 |
+
|
23 |
+
# Variable pour suivre l'état du bouton "Stop"
|
24 |
+
stop_flag = False
|
25 |
+
|
26 |
+
def get_model_list():
|
27 |
+
url = "https://ollama.com/search"
|
28 |
+
response = requests.get(url)
|
29 |
+
|
30 |
+
# Vérifier si la requête a réussi
|
31 |
+
if response.status_code == 200:
|
32 |
+
# Utiliser BeautifulSoup pour analyser le HTML
|
33 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
34 |
+
model_list = []
|
35 |
+
|
36 |
+
# Trouver tous les éléments de modèle
|
37 |
+
model_elements = soup.find_all('li', {'x-test-model': True})
|
38 |
+
|
39 |
+
for model_element in model_elements:
|
40 |
+
model_name = model_element.find('span', {'x-test-search-response-title': True}).text.strip()
|
41 |
+
size_elements = model_element.find_all('span', {'x-test-size': True})
|
42 |
+
|
43 |
+
# # Filtrer les modèles par taille
|
44 |
+
# for size_element in size_elements:
|
45 |
+
# size = size_element.text.strip()
|
46 |
+
# if size.endswith('m'):
|
47 |
+
# # Tous les modèles en millions sont acceptés
|
48 |
+
# model_list.append(f"{model_name}:{size}")
|
49 |
+
# elif size.endswith('b'):
|
50 |
+
# # Convertir les modèles en milliards en milliards
|
51 |
+
# size_value = float(size[:-1])
|
52 |
+
# if size_value <= 10: # Filtrer les modèles <= 10 milliards de paramètres
|
53 |
+
# model_list.append(f"{model_name}:{size}")
|
54 |
+
|
55 |
+
# Filtrer les modèles par taille
|
56 |
+
for size_element in size_elements:
|
57 |
+
size = size_element.text.strip().lower() # Convertir en minuscules
|
58 |
+
if 'x' in size:
|
59 |
+
# Exclure les modèles avec des tailles de type nXm ou nXb
|
60 |
+
continue
|
61 |
+
elif size.endswith('m'):
|
62 |
+
# Tous les modèles en millions sont acceptés
|
63 |
+
model_list.append(f"{model_name}:{size}")
|
64 |
+
elif size.endswith('b'):
|
65 |
+
# Convertir les modèles en milliards en milliards
|
66 |
+
size_value = float(size[:-1])
|
67 |
+
if size_value <= 10: # Filtrer les modèles <= 10 milliards de paramètres
|
68 |
+
model_list.append(f"{model_name}:{size}")
|
69 |
+
|
70 |
+
return model_list
|
71 |
+
else:
|
72 |
+
logger.error(f"Erreur lors de la récupération de la liste des modèles : {response.status_code} - {response.text}")
|
73 |
+
return []
|
74 |
+
|
75 |
+
def get_llm(model_name):
|
76 |
+
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
77 |
+
return Ollama(model=model_name, callback_manager=callback_manager)
|
78 |
+
|
79 |
+
class InputData(BaseModel):
|
80 |
+
model_name: str
|
81 |
+
input: str
|
82 |
+
max_tokens: int = 256
|
83 |
+
temperature: float = 0.7
|
84 |
+
|
85 |
+
def pull_model(model_name):
|
86 |
+
try:
|
87 |
+
# Exécuter la commande pour tirer le modèle
|
88 |
+
subprocess.run(["ollama", "pull", model_name], check=True)
|
89 |
+
logger.info(f"Model {model_name} pulled successfully.")
|
90 |
+
except subprocess.CalledProcessError as e:
|
91 |
+
logger.error(f"Failed to pull model {model_name}: {e}")
|
92 |
+
raise
|
93 |
+
|
94 |
+
def check_and_load_model(model_name):
|
95 |
+
# Vérifier si le modèle est déjà chargé
|
96 |
+
if model_name in loaded_models:
|
97 |
+
logger.info(f"Model {model_name} is already loaded.")
|
98 |
+
return loaded_models[model_name]
|
99 |
+
else:
|
100 |
+
logger.info(f"Loading model {model_name}...")
|
101 |
+
# Tirer le modèle si nécessaire
|
102 |
+
pull_model(model_name)
|
103 |
+
llm = get_llm(model_name)
|
104 |
+
loaded_models[model_name] = llm
|
105 |
+
return llm
|
106 |
+
|
107 |
+
# Interface Gradio
|
108 |
+
def gradio_interface(model_name, input, max_tokens, temperature, history, stop_button=None):
|
109 |
+
global stop_flag
|
110 |
+
stop_flag = False
|
111 |
+
response = None # Initialisez la variable response ici
|
112 |
+
|
113 |
+
def worker():
|
114 |
+
nonlocal response # Utilisez nonlocal pour accéder à la variable response définie dans la fonction parente
|
115 |
+
llm = check_and_load_model(model_name)
|
116 |
+
response = llm(input, max_tokens=max_tokens, temperature=temperature)
|
117 |
+
|
118 |
+
thread = threading.Thread(target=worker)
|
119 |
+
thread.start()
|
120 |
+
thread.join()
|
121 |
+
|
122 |
+
if stop_flag:
|
123 |
+
return "Processing stopped by the user.", history + [[input, "Processing stopped by the user."]]
|
124 |
+
else:
|
125 |
+
history.append((input, response))
|
126 |
+
return response, history # Maintenant, response est accessible ici
|
127 |
+
|
128 |
+
model_list = get_model_list()
|
129 |
+
|
130 |
+
demo = gr.Interface(
|
131 |
+
fn=gradio_interface,
|
132 |
+
inputs=[
|
133 |
+
gr.Dropdown(model_list, label="Select Model", value="mistral:7b"),
|
134 |
+
gr.Textbox(label="Input"),
|
135 |
+
gr.Slider(minimum=1, maximum=2048, step=1, label="Max Tokens", value=256),
|
136 |
+
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label="Temperature", value=0.7),
|
137 |
+
gr.Button(value="Stop", variant="stop")
|
138 |
+
],
|
139 |
+
outputs=[
|
140 |
+
gr.Textbox(label="Output"),
|
141 |
+
gr.State(value=[]) # Ajout de l'historique
|
142 |
+
],
|
143 |
+
title="Ollama Demo",
|
144 |
+
description="""
|
145 |
+
Bienvenue sur Docker_Ollama, un espace dédié à l'exploration et au test des modèles Ollama.
|
146 |
+
|
147 |
+
Cette Démo permet aux utilisateurs de tester tous les modèles Ollama dont la taille est inférieure à 10 milliards de paramètres directement depuis cette interface.
|
148 |
+
|
149 |
+
L'Application tourne sur une machine Hugging Face Free Space : 2 CPU - 16Gb RAM
|
150 |
+
|
151 |
+
Soyez patient...
|
152 |
+
"""
|
153 |
+
)
|
154 |
+
|
155 |
+
def stop_processing():
|
156 |
+
global stop_flag
|
157 |
+
stop_flag = True
|
158 |
+
|
159 |
+
if __name__ == "__main__":
|
160 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, pwa=True)
|