Spaces:
Sleeping
Sleeping
MistaPinda
commited on
Commit
•
002fc39
1
Parent(s):
808d805
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,60 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
import torch
|
4 |
-
|
5 |
-
model = AutoModelForCausalLM.from_pretrained(
|
6 |
-
"tiiuae/falcon-7b-instruct",
|
7 |
-
torch_dtype=torch.bfloat16,
|
8 |
-
trust_remote_code=True,
|
9 |
-
device_map="auto",
|
10 |
-
low_cpu_mem_usage=True,
|
11 |
-
)
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b-instruct")
|
13 |
|
14 |
|
15 |
-
def
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
output = model.generate(
|
20 |
-
input_ids,
|
21 |
-
attention_mask=attention_mask,
|
22 |
-
max_length=200,
|
23 |
-
do_sample=True,
|
24 |
-
top_k=10,
|
25 |
-
num_return_sequences=1,
|
26 |
-
eos_token_id=tokenizer.eos_token_id,
|
27 |
-
)
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# Remove Prompt Echo from Generated Text
|
33 |
-
cleaned_output_text = output_text.replace(
|
34 |
return cleaned_output_text
|
35 |
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
],
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import urllib.request
|
3 |
import gradio as gr
|
4 |
+
from llama_cpp import Llama
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
+
def download_file(file_link, filename):
|
8 |
+
# Checks if the file already exists before downloading
|
9 |
+
if not os.path.isfile(filename):
|
10 |
+
urllib.request.urlretrieve(file_link, filename)
|
11 |
+
print("File downloaded successfully.")
|
12 |
+
else:
|
13 |
+
print("File already exists.")
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Dowloading GGML model from HuggingFace
|
17 |
+
ggml_model_path = "https://huggingface.co/CRD716/ggml-vicuna-1.1-quantized/resolve/main/ggml-vicuna-7b-1.1-q4_1.bin"
|
18 |
+
filename = "ggml-vicuna-7b-1.1-q4_1.bin"
|
19 |
+
|
20 |
+
download_file(ggml_model_path, filename)
|
21 |
+
|
22 |
+
|
23 |
+
llm = Llama(model_path=filename, n_ctx=512, n_batch=126)
|
24 |
+
|
25 |
+
|
26 |
+
def generate_text(prompt="Who is the CEO of Apple?"):
|
27 |
+
output = llm(
|
28 |
+
prompt,
|
29 |
+
max_tokens=256,
|
30 |
+
temperature=0.1,
|
31 |
+
top_p=0.5,
|
32 |
+
echo=False,
|
33 |
+
stop=["#"],
|
34 |
+
)
|
35 |
+
output_text = output["choices"][0]["text"].strip()
|
36 |
|
37 |
# Remove Prompt Echo from Generated Text
|
38 |
+
cleaned_output_text = output_text.replace(prompt, "")
|
39 |
return cleaned_output_text
|
40 |
|
41 |
|
42 |
+
description = "Vicuna-7B"
|
43 |
+
|
44 |
+
examples = [
|
45 |
+
["What is the capital of France?", "The capital of France is Paris."],
|
46 |
+
[
|
47 |
+
"Who wrote the novel 'Pride and Prejudice'?",
|
48 |
+
"The novel 'Pride and Prejudice' was written by Jane Austen.",
|
49 |
],
|
50 |
+
["What is the square root of 64?", "The square root of 64 is 8."],
|
51 |
+
]
|
52 |
+
|
53 |
+
gradio_interface = gr.Interface(
|
54 |
+
fn=generate_text,
|
55 |
+
inputs="text",
|
56 |
+
outputs="text",
|
57 |
+
examples=examples,
|
58 |
+
title="Vicuna-7B",
|
59 |
+
)
|
60 |
+
gradio_interface.launch()
|