Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip install gradio
|
2 |
+
!pip install transformers
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
5 |
+
from threading import Thread
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1")
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1", torch_dtype=torch.float16)
|
8 |
+
model = model.to('cuda:0')
|
9 |
+
class StopOnTokens(StoppingCriteria):
|
10 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
11 |
+
stop_ids = [29, 0]
|
12 |
+
for stop_id in stop_ids:
|
13 |
+
if input_ids[0][-1] == stop_id:
|
14 |
+
return True
|
15 |
+
return False
|
16 |
+
def predict(message, history):
|
17 |
+
|
18 |
+
history_transformer_format = history + [[message, ""]]
|
19 |
+
stop = StopOnTokens()
|
20 |
+
|
21 |
+
messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) #curr_system_message +
|
22 |
+
for item in history_transformer_format])
|
23 |
+
|
24 |
+
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
|
25 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
26 |
+
generate_kwargs = dict(
|
27 |
+
model_inputs,
|
28 |
+
streamer=streamer,
|
29 |
+
max_new_tokens=1024,
|
30 |
+
do_sample=True,
|
31 |
+
top_p=0.95,
|
32 |
+
top_k=1000,
|
33 |
+
temperature=1.0,
|
34 |
+
num_beams=1,
|
35 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
36 |
+
)
|
37 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
38 |
+
t.start()
|
39 |
+
|
40 |
+
partial_message = ""
|
41 |
+
for new_token in streamer:
|
42 |
+
if new_token != '<':
|
43 |
+
partial_message += new_token
|
44 |
+
yield partial_message
|
45 |
+
|
46 |
+
import gradio as gr
|
47 |
+
|
48 |
+
demo_llm = gr.ChatInterface(predict,
|
49 |
+
chatbot=gr.Chatbot(height=500),
|
50 |
+
textbox=gr.Textbox(placeholder="Ask me a yes or no question", container=False, scale=7),
|
51 |
+
title="LLM Chatbot",
|
52 |
+
description="Chat with LLM",
|
53 |
+
theme="soft",
|
54 |
+
examples=["Hello", "What are you?", "What is the meaning of life?"],
|
55 |
+
cache_examples=True,
|
56 |
+
retry_btn=None,
|
57 |
+
undo_btn="Delete Previous",
|
58 |
+
clear_btn="Clear")
|
59 |
+
demo_llm.queue().launch()
|