|
import gradio as gr |
|
import sqlite3 |
|
import time |
|
import json |
|
import pandas as pd |
|
|
|
|
|
def score_file(csv_file, model_name): |
|
|
|
time.sleep(5) |
|
|
|
result = { |
|
'individual_scores': { |
|
'ab': 100.0, 'advanced_geometry': 100.0, 'aiw': 100.0, |
|
'base_conversion': 100.0, 'basic_arithmetic': 100.0, 'bf': 100.0, |
|
'binary_alternation': 100.0, 'binary_matrix': 100.0, 'bitwise_arithmetic': 100.0, |
|
'boxnet': 1.0, 'caesar_cipher': 100.0, 'calendar_arithmetic': 100.0, |
|
'chain_sum': 100.0, 'circuit_logic': 100.0, 'color_cube_rotation': 100.0, |
|
'complex_arithmetic': 100.0, 'count_bits': 100.0, 'count_primes': 100.0, |
|
'course_schedule': 100.0, 'cryptarithm': 100.0, 'decimal_arithmetic': 100.0, |
|
'decimal_chain_sum': 100.0, 'dice': 100.0, 'emoji_mystery': 100.0, |
|
'family_relationships': 100.0, 'figlet_font': 100.0, 'fraction_simplification': 100.0, |
|
'game_of_life': 100.0, 'game_of_life_halting': 100.0, 'graph_color': 0.0, |
|
'group_anagrams': 100.0, 'intermediate_integration': 100.0, 'isomorphic_strings': 100.0, |
|
'jugs': 100.0, 'largest_island': 100.0, 'lcm': 100.0, 'leg_counting': 100.0, |
|
'letter_counting': 100.0, 'letter_jumble': 100.0, 'mahjong_puzzle': 100.0, |
|
'manipulate_matrix': 100.0, 'maze': 100.0, 'mini_sudoku': 100.0, 'modulo_grid': 100.0, |
|
'n_queens': 100.0, 'needle_haystack': 100.0, 'number_filtering': 100.0, |
|
'number_format': 100.0, 'number_sequence': 100.0, 'number_sorting': 100.0, |
|
'palindrome_generation': 100.0, 'palindrome_partitioning': 100.0, |
|
'polynomial_equations': 100.0, 'polynomial_multiplication': 0.0, 'pool_matrix': 100.0, |
|
'power_function': 100.0, 'prime_factorization': 100.0, 'products': 100.0, |
|
'propositional_logic': 0.0, 'quantum_lock': 100.0, 'ransom_note': 100.0, |
|
'rectangle_count': 100.0, 'rotate_matrix': 100.0, 'rotten_oranges': 100.0, |
|
'rush_hour': 0.0, 'self_reference': 100.0, 'sentence_reordering': 100.0, |
|
'shortest_path': 100.0, 'simple_equations': 100.0, 'simple_geometry': 100.0, |
|
'simple_integration': 100.0, 'sokoban': 100.0, 'spell_backward': 100.0, |
|
'spiral_matrix': 100.0, 'string_insertion': 100.0, 'string_manipulation': 100.0, |
|
'string_splitting': 100.0, 'string_synthesis': 100.0, 'sudoku': 100.0, |
|
'time_intervals': 100.0, 'tsumego': 100.0, 'word_sequence_reversal': 100.0, |
|
'zebra_puzzles': 100.0 |
|
}, |
|
'total_score': 93.98795180722891 |
|
} |
|
return result |
|
|
|
|
|
conn = sqlite3.connect("results.db", check_same_thread=False) |
|
c = conn.cursor() |
|
c.execute(""" |
|
CREATE TABLE IF NOT EXISTS results ( |
|
id INTEGER PRIMARY KEY AUTOINCREMENT, |
|
model_name TEXT, |
|
total_score REAL, |
|
result_json TEXT, |
|
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP |
|
) |
|
""") |
|
conn.commit() |
|
|
|
def process_file(file_obj, model_name): |
|
|
|
result = score_file(file_obj, model_name) |
|
|
|
|
|
result_json = json.dumps(result) |
|
total_score = result.get("total_score", 0) |
|
c.execute("INSERT INTO results (model_name, total_score, result_json) VALUES (?, ?, ?)", |
|
(model_name, total_score, result_json)) |
|
conn.commit() |
|
|
|
|
|
df = get_saved_results() |
|
|
|
|
|
return f"Current Run Result:\n{json.dumps(result, indent=2)}", df |
|
|
|
def get_saved_results(): |
|
c.execute("SELECT id, model_name, total_score, timestamp FROM results ORDER BY total_score DESC") |
|
records = c.fetchall() |
|
|
|
df = pd.DataFrame(records, columns=["ID", "Model Name", "Total Score", "Timestamp"]) |
|
return df |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# RGBench [WIP]") |
|
gr.Markdown("Upload a CSV file with your completed results and enter the name of your model. RGBench will score and save your results.") |
|
|
|
with gr.Row(): |
|
file_input = gr.File(label="Upload CSV File", file_types=['.csv']) |
|
model_input = gr.Textbox(label="Model Name") |
|
|
|
run_button = gr.Button("Run Scoring") |
|
|
|
result_output = gr.Textbox(label="Score File Result", lines=15) |
|
table_output = gr.Dataframe(label="All Saved Results (sorted by Total Score)") |
|
|
|
run_button.click(fn=process_file, inputs=[file_input, model_input], outputs=[result_output, table_output]) |
|
|
|
|
|
demo.load(fn=get_saved_results, inputs=[], outputs=table_output) |
|
|
|
demo.launch() |
|
|
|
|