Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| from typing import List, Optional | |
| import requests | |
| import logging | |
| from haystack import Document, component | |
| from haystack.lazy_imports import LazyImport | |
| from PIL import Image | |
| logger = logging.getLogger(__name__) | |
| with LazyImport(message="Run 'pip install transformers[torch,sentencepiece]'") as torch_and_transformers_import: | |
| import torch | |
| from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer, BlipProcessor, BlipForConditionalGeneration | |
| from PIL import Image | |
| class ImageCaptioner: | |
| def __init__( | |
| self, | |
| model_name: str = "Salesforce/blip-image-captioning-base", | |
| ): | |
| torch_and_transformers_import.check() | |
| self.model_name = model_name | |
| if model_name == "nlpconnect/vit-gpt2-image-captioning": | |
| self.model = VisionEncoderDecoderModel.from_pretrained(model_name) | |
| self.feature_extractor = ViTImageProcessor.from_pretrained(model_name) | |
| self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| max_length = 16 | |
| num_beams = 4 | |
| self.gen_kwargs = {"max_length": max_length, "num_beams": num_beams} | |
| else: | |
| self.processor = BlipProcessor.from_pretrained(model_name) | |
| self.model = BlipForConditionalGeneration.from_pretrained(model_name) | |
| self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| self.model.to(self.device) | |
| def run(self, image_file_path: str) -> List[Document]: | |
| i_image = Image.open(image_file_path) | |
| if i_image.mode != "RGB": | |
| i_image = i_image.convert(mode="RGB") | |
| preds = [] | |
| if self.model_name == "nlpconnect/vit-gpt2-image-captioning": | |
| pixel_values = self.feature_extractor(images=[i_image], return_tensors="pt").pixel_values | |
| pixel_values = pixel_values.to(self.device) | |
| output_ids = self.model.generate(pixel_values, **self.gen_kwargs) | |
| preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
| preds = [pred.strip() for pred in preds] | |
| else: | |
| inputs = self.processor([i_image], return_tensors="pt") | |
| output_ids = self.model.generate(**inputs) | |
| preds = self.processor.batch_decode(output_ids, skip_special_tokens=True) | |
| preds = [pred.strip() for pred in preds] | |
| # captions: List[Document] = [] | |
| # for caption, image_file_path in zip(preds, image_file_paths): | |
| # document = Document(content=caption, meta={"image_path": image_file_path}) | |
| # captions.append(document) | |
| return {"caption": preds[0]} |