huai-huai commited on
Commit
73892ff
·
1 Parent(s): 51d1feb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -26
app.py CHANGED
@@ -20,7 +20,6 @@ import piexif.helper
20
 
21
  TITLE = 'DeepDanbooru String'
22
 
23
- TOKEN = os.environ['TOKEN']
24
  MODEL_REPO = 'yo2266911/DeepDanbooru_string'
25
  MODEL_FILENAME = 'model-resnet_custom_v3.h5'
26
  LABEL_FILENAME = 'tags.txt'
@@ -47,33 +46,30 @@ def load_sample_image_paths() -> list[pathlib.Path]:
47
  dataset_repo = 'hysts/sample-images-TADNE'
48
  path = huggingface_hub.hf_hub_download(dataset_repo,
49
  'images.tar.gz',
50
- repo_type='dataset',
51
- use_auth_token=TOKEN)
52
  with tarfile.open(path) as f:
53
  f.extractall()
54
  return sorted(image_dir.glob('*'))
55
 
56
 
57
  def load_model() -> tf.keras.Model:
58
- path = huggingface_hub.hf_hub_download(MODEL_REPO,
59
- MODEL_FILENAME,
60
- use_auth_token=TOKEN)
61
  model = tf.keras.models.load_model(path)
62
  return model
63
 
64
 
65
  def load_labels() -> list[str]:
66
- path = huggingface_hub.hf_hub_download(MODEL_REPO,
67
- LABEL_FILENAME,
68
- use_auth_token=TOKEN)
69
  with open(path) as f:
70
  labels = [line.strip() for line in f.readlines()]
71
  return labels
72
 
 
73
  def plaintext_to_html(text):
74
  text = "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "</p>"
75
  return text
76
 
 
77
  def predict(image: PIL.Image.Image, score_threshold: float,
78
  model: tf.keras.Model, labels: list[str]) -> dict[str, float]:
79
  rawimage = image
@@ -93,13 +89,13 @@ def predict(image: PIL.Image.Image, score_threshold: float,
93
  if prob < score_threshold:
94
  continue
95
  res[label] = prob
96
- b = dict(sorted(res.items(),key=lambda item:item[1], reverse=True))
97
- a = ', '.join(list(b.keys())).replace('_',' ').replace('(','\(').replace(')','\)')
98
  c = ', '.join(list(b.keys()))
99
-
100
  items = rawimage.info
101
  geninfo = ''
102
-
103
  if "exif" in rawimage.info:
104
  exif = piexif.load(rawimage.info["exif"])
105
  exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
@@ -107,16 +103,16 @@ def predict(image: PIL.Image.Image, score_threshold: float,
107
  exif_comment = piexif.helper.UserComment.load(exif_comment)
108
  except ValueError:
109
  exif_comment = exif_comment.decode('utf8', errors="ignore")
110
-
111
  items['exif comment'] = exif_comment
112
  geninfo = exif_comment
113
-
114
  for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
115
  'loop', 'background', 'timestamp', 'duration']:
116
  items.pop(field, None)
117
-
118
  geninfo = items.get('parameters', geninfo)
119
-
120
  info = f"""
121
  <p><h4>PNG Info</h4></p>
122
  """
@@ -126,13 +122,13 @@ def predict(image: PIL.Image.Image, score_threshold: float,
126
  <p><b>{plaintext_to_html(str(key))}</b></p>
127
  <p>{plaintext_to_html(str(text))}</p>
128
  </div>
129
- """.strip()+"\n"
130
-
131
  if len(info) == 0:
132
  message = "Nothing found in the image."
133
  info = f"<div><p>{message}<p></div>"
134
-
135
- return (a,c,res,info)
136
 
137
 
138
  def main():
@@ -154,14 +150,14 @@ def main():
154
  label='Score Threshold'),
155
  ],
156
  [
157
- gr.outputs.Textbox(label='Output (string)'),
158
- gr.outputs.Textbox(label='Output (raw string)'),
159
  gr.outputs.Label(label='Output (label)'),
160
  gr.outputs.HTML()
161
  ],
162
  examples=[
163
- ['miku.jpg',0.5],
164
- ['miku2.jpg',0.5]
165
  ],
166
  title=TITLE,
167
  description='''
@@ -180,4 +176,4 @@ PNG Info code forked from [AUTOMATIC1111/stable-diffusion-webui](https://github.
180
 
181
 
182
  if __name__ == '__main__':
183
- main()
 
20
 
21
  TITLE = 'DeepDanbooru String'
22
 
 
23
  MODEL_REPO = 'yo2266911/DeepDanbooru_string'
24
  MODEL_FILENAME = 'model-resnet_custom_v3.h5'
25
  LABEL_FILENAME = 'tags.txt'
 
46
  dataset_repo = 'hysts/sample-images-TADNE'
47
  path = huggingface_hub.hf_hub_download(dataset_repo,
48
  'images.tar.gz',
49
+ repo_type='dataset')
 
50
  with tarfile.open(path) as f:
51
  f.extractall()
52
  return sorted(image_dir.glob('*'))
53
 
54
 
55
  def load_model() -> tf.keras.Model:
56
+ path = huggingface_hub.hf_hub_download(MODEL_REPO, MODEL_FILENAME)
 
 
57
  model = tf.keras.models.load_model(path)
58
  return model
59
 
60
 
61
  def load_labels() -> list[str]:
62
+ path = huggingface_hub.hf_hub_download(MODEL_REPO, LABEL_FILENAME)
 
 
63
  with open(path) as f:
64
  labels = [line.strip() for line in f.readlines()]
65
  return labels
66
 
67
+
68
  def plaintext_to_html(text):
69
  text = "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "</p>"
70
  return text
71
 
72
+
73
  def predict(image: PIL.Image.Image, score_threshold: float,
74
  model: tf.keras.Model, labels: list[str]) -> dict[str, float]:
75
  rawimage = image
 
89
  if prob < score_threshold:
90
  continue
91
  res[label] = prob
92
+ b = dict(sorted(res.items(), key=lambda item: item[1], reverse=True))
93
+ a = ', '.join(list(b.keys())).replace('_', ' ').replace('(', '\(').replace(')', '\)')
94
  c = ', '.join(list(b.keys()))
95
+
96
  items = rawimage.info
97
  geninfo = ''
98
+
99
  if "exif" in rawimage.info:
100
  exif = piexif.load(rawimage.info["exif"])
101
  exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
 
103
  exif_comment = piexif.helper.UserComment.load(exif_comment)
104
  except ValueError:
105
  exif_comment = exif_comment.decode('utf8', errors="ignore")
106
+
107
  items['exif comment'] = exif_comment
108
  geninfo = exif_comment
109
+
110
  for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
111
  'loop', 'background', 'timestamp', 'duration']:
112
  items.pop(field, None)
113
+
114
  geninfo = items.get('parameters', geninfo)
115
+
116
  info = f"""
117
  <p><h4>PNG Info</h4></p>
118
  """
 
122
  <p><b>{plaintext_to_html(str(key))}</b></p>
123
  <p>{plaintext_to_html(str(text))}</p>
124
  </div>
125
+ """.strip() + "\n"
126
+
127
  if len(info) == 0:
128
  message = "Nothing found in the image."
129
  info = f"<div><p>{message}<p></div>"
130
+
131
+ return (a, c, res, info)
132
 
133
 
134
  def main():
 
150
  label='Score Threshold'),
151
  ],
152
  [
153
+ gr.outputs.Textbox(label='Output (string)'),
154
+ gr.outputs.Textbox(label='Output (raw string)'),
155
  gr.outputs.Label(label='Output (label)'),
156
  gr.outputs.HTML()
157
  ],
158
  examples=[
159
+ ['miku.jpg', 0.5],
160
+ ['miku2.jpg', 0.5]
161
  ],
162
  title=TITLE,
163
  description='''
 
176
 
177
 
178
  if __name__ == '__main__':
179
+ main()