Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -23,15 +23,30 @@ class DateRange(BaseModel):
|
|
| 23 |
end_date: str
|
| 24 |
|
| 25 |
def ema_manual(prices, span):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
ema = [np.nan] * len(prices)
|
| 27 |
alpha = 2 / (span + 1)
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
return ema
|
| 36 |
|
| 37 |
def get_dynamic_minmax():
|
|
@@ -45,18 +60,23 @@ def get_dynamic_minmax():
|
|
| 45 |
close_min = df["Close"].min()
|
| 46 |
close_max = df["Close"].max()
|
| 47 |
logging.info(f"Min/Max Close: {close_min}/{close_max}")
|
| 48 |
-
return close_min, close_max
|
| 49 |
|
| 50 |
def normalize_close(value, close_min, close_max):
|
| 51 |
-
if close_max == close_min:
|
| 52 |
-
|
|
|
|
| 53 |
return (value - close_min) / (close_max - close_min)
|
| 54 |
|
| 55 |
def analyze_trend(latest_row):
|
|
|
|
|
|
|
|
|
|
| 56 |
ema20 = latest_row["EMA20"]
|
| 57 |
ema50 = latest_row["EMA50"]
|
| 58 |
close = latest_row["close"]
|
| 59 |
|
|
|
|
| 60 |
if ema20 > ema50:
|
| 61 |
trend = "bullish"
|
| 62 |
elif ema20 < ema50:
|
|
@@ -64,7 +84,13 @@ def analyze_trend(latest_row):
|
|
| 64 |
else:
|
| 65 |
trend = "neutral"
|
| 66 |
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
if diff > 0.3:
|
| 69 |
strength = "strong"
|
| 70 |
elif diff > 0.1:
|
|
@@ -79,6 +105,7 @@ def analyze_trend(latest_row):
|
|
| 79 |
else:
|
| 80 |
price_position = "between EMAs — indecision zone"
|
| 81 |
|
|
|
|
| 82 |
return {
|
| 83 |
"trend": trend,
|
| 84 |
"strength": strength,
|
|
@@ -87,14 +114,14 @@ def analyze_trend(latest_row):
|
|
| 87 |
}
|
| 88 |
|
| 89 |
@app.post("/analyze")
|
| 90 |
-
def
|
| 91 |
try:
|
| 92 |
logging.info(f"Menerima permintaan /analyze dengan start_date={input_data.start_date}, end_date={input_data.end_date}")
|
| 93 |
start_date = pd.to_datetime(input_data.start_date)
|
| 94 |
end_date = pd.to_datetime(input_data.end_date)
|
| 95 |
extended_start = start_date - timedelta(days=60)
|
| 96 |
|
| 97 |
-
logging.info(f"Mengunduh data dari yfinance: start={extended_start}, end={end_date
|
| 98 |
df = yf.download(PAIR, start=extended_start, end=end_date + timedelta(days=1), auto_adjust=True)
|
| 99 |
|
| 100 |
if df.empty:
|
|
@@ -103,14 +130,21 @@ def analyze_ema(input_data: DateRange):
|
|
| 103 |
|
| 104 |
df = df.reset_index()[["Date", "Close"]]
|
| 105 |
df.rename(columns={"Date": "date", "Close": "close"}, inplace=True)
|
|
|
|
| 106 |
|
| 107 |
if len(df) < 50:
|
| 108 |
-
|
|
|
|
| 109 |
return {"status": "error", "message": f"Data terlalu sedikit ({len(df)} hari). Butuh minimal 50 hari untuk EMA50."}
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
df = df.dropna().reset_index(drop=True)
|
|
|
|
| 114 |
|
| 115 |
close_min, close_max = get_dynamic_minmax()
|
| 116 |
df["norm_close"] = df["close"].apply(lambda x: normalize_close(x, close_min, close_max))
|
|
@@ -135,11 +169,12 @@ def analyze_ema(input_data: DateRange):
|
|
| 135 |
}
|
| 136 |
|
| 137 |
except Exception as e:
|
| 138 |
-
|
|
|
|
| 139 |
return {"status": "error", "message": str(e)}
|
| 140 |
|
| 141 |
@app.post("/summary")
|
| 142 |
-
def
|
| 143 |
try:
|
| 144 |
logging.info(f"Menerima permintaan /summary dengan start_date={input_data.start_date}, end_date={input_data.end_date}")
|
| 145 |
start_date = pd.to_datetime(input_data.start_date)
|
|
@@ -153,14 +188,20 @@ def ema_summary(input_data: DateRange):
|
|
| 153 |
|
| 154 |
df = df.reset_index()[["Date", "Close"]]
|
| 155 |
df.rename(columns={"Date": "date", "Close": "close"}, inplace=True)
|
|
|
|
|
|
|
| 156 |
|
| 157 |
if len(df) < 50:
|
| 158 |
-
logging.
|
| 159 |
return {"status": "error", "message": f"Data terlalu sedikit ({len(df)} hari). Butuh minimal 50 hari untuk EMA50."}
|
| 160 |
|
| 161 |
-
|
| 162 |
-
df["
|
|
|
|
|
|
|
| 163 |
df = df.dropna().reset_index(drop=True)
|
|
|
|
|
|
|
| 164 |
|
| 165 |
latest = df.iloc[-1]
|
| 166 |
analysis = analyze_trend(latest)
|
|
@@ -176,5 +217,9 @@ def ema_summary(input_data: DateRange):
|
|
| 176 |
}
|
| 177 |
|
| 178 |
except Exception as e:
|
| 179 |
-
logging.error(f"Error di /
|
| 180 |
-
return {"status": "error", "message": str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
end_date: str
|
| 24 |
|
| 25 |
def ema_manual(prices, span):
|
| 26 |
+
logging.debug(f"Memulai ema_manual untuk span={span}. Jumlah harga: {len(prices)}")
|
| 27 |
+
if len(prices) < span:
|
| 28 |
+
logging.warning(f"Tidak cukup data untuk menghitung EMA span {span}. Hanya {len(prices)} tersedia.")
|
| 29 |
+
return [np.nan] * len(prices) # Kembalikan list NaN jika tidak cukup data
|
| 30 |
+
|
| 31 |
ema = [np.nan] * len(prices)
|
| 32 |
alpha = 2 / (span + 1)
|
| 33 |
+
|
| 34 |
+
# Debugging pada loop EMA
|
| 35 |
+
try:
|
| 36 |
+
for i in range(len(prices)):
|
| 37 |
+
if i < span - 1:
|
| 38 |
+
ema[i] = np.nan
|
| 39 |
+
elif i == span - 1:
|
| 40 |
+
# Tambahkan logging di sini
|
| 41 |
+
logging.debug(f"Menghitung EMA awal untuk span={span} pada indeks {i}. Data: {prices[:span]}")
|
| 42 |
+
ema[i] = np.mean(prices[:span])
|
| 43 |
+
else:
|
| 44 |
+
ema[i] = alpha * prices[i] + (1 - alpha) * ema[i - 1]
|
| 45 |
+
except Exception as e:
|
| 46 |
+
logging.error(f"Error dalam loop ema_manual (span={span}, index={i}): {e}", exc_info=True)
|
| 47 |
+
raise # Re-raise exception untuk ditangkap oleh try-except di endpoint
|
| 48 |
+
|
| 49 |
+
logging.debug(f"ema_manual selesai untuk span={span}.")
|
| 50 |
return ema
|
| 51 |
|
| 52 |
def get_dynamic_minmax():
|
|
|
|
| 60 |
close_min = df["Close"].min()
|
| 61 |
close_max = df["Close"].max()
|
| 62 |
logging.info(f"Min/Max Close: {close_min}/{close_max}")
|
| 63 |
+
return float(close_min), float(close_max) # Pastikan kembali float
|
| 64 |
|
| 65 |
def normalize_close(value, close_min, close_max):
|
| 66 |
+
if close_max == close_min:
|
| 67 |
+
logging.warning(f"Max_close ({close_max}) sama dengan min_close ({close_min}). Mengembalikan 0.5.")
|
| 68 |
+
return 0.5
|
| 69 |
return (value - close_min) / (close_max - close_min)
|
| 70 |
|
| 71 |
def analyze_trend(latest_row):
|
| 72 |
+
# Logging untuk memastikan data yang masuk valid
|
| 73 |
+
logging.debug(f"Menganalisis tren untuk data terbaru: {latest_row.to_dict()}")
|
| 74 |
+
|
| 75 |
ema20 = latest_row["EMA20"]
|
| 76 |
ema50 = latest_row["EMA50"]
|
| 77 |
close = latest_row["close"]
|
| 78 |
|
| 79 |
+
# ... (sisa fungsi analyze_trend tidak berubah)
|
| 80 |
if ema20 > ema50:
|
| 81 |
trend = "bullish"
|
| 82 |
elif ema20 < ema50:
|
|
|
|
| 84 |
else:
|
| 85 |
trend = "neutral"
|
| 86 |
|
| 87 |
+
# Pastikan ema50 tidak nol sebelum pembagian
|
| 88 |
+
if ema50 == 0:
|
| 89 |
+
logging.error("EMA50 adalah nol, tidak dapat menghitung gap persen.")
|
| 90 |
+
diff = 0
|
| 91 |
+
else:
|
| 92 |
+
diff = abs(ema20 - ema50) / ema50 * 100
|
| 93 |
+
|
| 94 |
if diff > 0.3:
|
| 95 |
strength = "strong"
|
| 96 |
elif diff > 0.1:
|
|
|
|
| 105 |
else:
|
| 106 |
price_position = "between EMAs — indecision zone"
|
| 107 |
|
| 108 |
+
logging.debug(f"Analisis tren: trend={trend}, strength={strength}, pos={price_position}")
|
| 109 |
return {
|
| 110 |
"trend": trend,
|
| 111 |
"strength": strength,
|
|
|
|
| 114 |
}
|
| 115 |
|
| 116 |
@app.post("/analyze")
|
| 117 |
+
def analyze_ema_endpoint(input_data: DateRange): # Ganti nama fungsi agar tidak sama dengan analyze_ema
|
| 118 |
try:
|
| 119 |
logging.info(f"Menerima permintaan /analyze dengan start_date={input_data.start_date}, end_date={input_data.end_date}")
|
| 120 |
start_date = pd.to_datetime(input_data.start_date)
|
| 121 |
end_date = pd.to_datetime(input_data.end_date)
|
| 122 |
extended_start = start_date - timedelta(days=60)
|
| 123 |
|
| 124 |
+
logging.info(f"Mengunduh data dari yfinance: start={extended_start.strftime('%Y-%m-%d')}, end={end_date.strftime('%Y-%m-%d')}")
|
| 125 |
df = yf.download(PAIR, start=extended_start, end=end_date + timedelta(days=1), auto_adjust=True)
|
| 126 |
|
| 127 |
if df.empty:
|
|
|
|
| 130 |
|
| 131 |
df = df.reset_index()[["Date", "Close"]]
|
| 132 |
df.rename(columns={"Date": "date", "Close": "close"}, inplace=True)
|
| 133 |
+
logging.debug(f"Jumlah baris setelah download dan rename: {len(df)}")
|
| 134 |
|
| 135 |
if len(df) < 50:
|
| 136 |
+
# Perhatikan pesan error di sini, ini akan muncul di log, bukan di 'message'
|
| 137 |
+
logging.error(f"Data terlalu sedikit ({len(df)} hari). Butuh minimal 50 hari untuk EMA50.")
|
| 138 |
return {"status": "error", "message": f"Data terlalu sedikit ({len(df)} hari). Butuh minimal 50 hari untuk EMA50."}
|
| 139 |
|
| 140 |
+
# Logging sebelum memanggil ema_manual
|
| 141 |
+
logging.debug(f"Memanggil ema_manual untuk EMA20 dengan {len(df)} data.")
|
| 142 |
+
df["EMA20"] = ema_manual(df["close"].tolist(), 20) # Kirim sebagai list agar lebih eksplisit
|
| 143 |
+
logging.debug(f"Memanggil ema_manual untuk EMA50 dengan {len(df)} data.")
|
| 144 |
+
df["EMA50"] = ema_manual(df["close"].tolist(), 50) # Kirim sebagai list
|
| 145 |
+
|
| 146 |
df = df.dropna().reset_index(drop=True)
|
| 147 |
+
logging.debug(f"Jumlah baris setelah dropna: {len(df)}")
|
| 148 |
|
| 149 |
close_min, close_max = get_dynamic_minmax()
|
| 150 |
df["norm_close"] = df["close"].apply(lambda x: normalize_close(x, close_min, close_max))
|
|
|
|
| 169 |
}
|
| 170 |
|
| 171 |
except Exception as e:
|
| 172 |
+
# PENTING: Periksa output log server Anda untuk ini!
|
| 173 |
+
logging.error(f"Error TERTANGKAP di endpoint /analyze_ema_endpoint: {e}", exc_info=True)
|
| 174 |
return {"status": "error", "message": str(e)}
|
| 175 |
|
| 176 |
@app.post("/summary")
|
| 177 |
+
def ema_summary_endpoint(input_data: DateRange): # Ganti nama fungsi
|
| 178 |
try:
|
| 179 |
logging.info(f"Menerima permintaan /summary dengan start_date={input_data.start_date}, end_date={input_data.end_date}")
|
| 180 |
start_date = pd.to_datetime(input_data.start_date)
|
|
|
|
| 188 |
|
| 189 |
df = df.reset_index()[["Date", "Close"]]
|
| 190 |
df.rename(columns={"Date": "date", "Close": "close"}, inplace=True)
|
| 191 |
+
logging.debug(f"Jumlah baris setelah download dan rename: {len(df)}")
|
| 192 |
+
|
| 193 |
|
| 194 |
if len(df) < 50:
|
| 195 |
+
logging.error(f"Data terlalu sedikit ({len(df)} hari). Butuh minimal 50 hari untuk EMA50.")
|
| 196 |
return {"status": "error", "message": f"Data terlalu sedikit ({len(df)} hari). Butuh minimal 50 hari untuk EMA50."}
|
| 197 |
|
| 198 |
+
logging.debug(f"Memanggil ema_manual untuk EMA20 dengan {len(df)} data.")
|
| 199 |
+
df["EMA20"] = ema_manual(df["close"].tolist(), 20)
|
| 200 |
+
logging.debug(f"Memanggil ema_manual untuk EMA50 dengan {len(df)} data.")
|
| 201 |
+
df["EMA50"] = ema_manual(df["close"].tolist(), 50)
|
| 202 |
df = df.dropna().reset_index(drop=True)
|
| 203 |
+
logging.debug(f"Jumlah baris setelah dropna: {len(df)}")
|
| 204 |
+
|
| 205 |
|
| 206 |
latest = df.iloc[-1]
|
| 207 |
analysis = analyze_trend(latest)
|
|
|
|
| 217 |
}
|
| 218 |
|
| 219 |
except Exception as e:
|
| 220 |
+
logging.error(f"Error TERTANGKAP di endpoint /ema_summary_endpoint: {e}", exc_info=True)
|
| 221 |
+
return {"status": "error", "message": str(e)}
|
| 222 |
+
|
| 223 |
+
@app.get("/")
|
| 224 |
+
def root():
|
| 225 |
+
return {"message": "Model B API (EMA + Trend Summary) aktif 🚀"}
|