sjc / adapt_sd.py
amankishore's picture
Updated app.py
7a11626
import sys
from pathlib import Path
import torch
import numpy as np
from omegaconf import OmegaConf
from einops import rearrange
from torch import autocast
from contextlib import nullcontext
from math import sqrt
from adapt import ScoreAdapter
import warnings
from transformers import logging
warnings.filterwarnings("ignore", category=DeprecationWarning)
logging.set_verbosity_error()
device = torch.device("cuda")
def curr_dir():
return Path(__file__).resolve().parent
def add_import_path(dirname):
sys.path.append(str(
curr_dir() / str(dirname)
))
def load_model_from_config(config, ckpt, verbose=False):
from ldm.util import instantiate_from_config
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.to(device)
model.eval()
return model
def load_sd1_model(ckpt_root):
ckpt_fname = ckpt_root / "stable_diffusion" / "sd-v1-5.ckpt"
cfg_fname = curr_dir() / "sd1" / "configs" / "v1-inference.yaml"
H, W = 512, 512
config = OmegaConf.load(str(cfg_fname))
model = load_model_from_config(config, str(ckpt_fname))
return model, H, W
def load_sd2_model(ckpt_root, v2_highres):
if v2_highres:
ckpt_fname = ckpt_root / "sd2" / "768-v-ema.ckpt"
cfg_fname = curr_dir() / "sd2/configs/stable-diffusion/v2-inference-v.yaml"
H, W = 768, 768
else:
ckpt_fname = ckpt_root / "sd2" / "512-base-ema.ckpt"
cfg_fname = curr_dir() / "sd2/configs/stable-diffusion/v2-inference.yaml"
H, W = 512, 512
config = OmegaConf.load(f"{cfg_fname}")
model = load_model_from_config(config, str(ckpt_fname))
return model, H, W
def _sqrt(x):
if isinstance(x, float):
return sqrt(x)
else:
assert isinstance(x, torch.Tensor)
return torch.sqrt(x)
class StableDiffusion(ScoreAdapter):
def __init__(self, variant, v2_highres, prompt, scale, precision):
if variant == "v1":
add_import_path("sd1")
self.model, H, W = load_sd1_model(self.checkpoint_root())
elif variant == "v2":
add_import_path("sd2")
self.model, H, W = load_sd2_model(self.checkpoint_root(), v2_highres)
else:
raise ValueError(f"{variant}")
ae_resolution_f = 8
self._device = self.model._device
self.prompt = prompt
self.scale = scale
self.precision = precision
self.precision_scope = autocast if self.precision == "autocast" else nullcontext
self._data_shape = (4, H // ae_resolution_f, W // ae_resolution_f)
self.cond_func = self.model.get_learned_conditioning
self.M = 1000
noise_schedule = "linear"
self.noise_schedule = noise_schedule
self.us = self.linear_us(self.M)
def data_shape(self):
return self._data_shape
@property
def σ_max(self):
return self.us[0]
@property
def σ_min(self):
return self.us[-1]
@torch.no_grad()
def denoise(self, xs, σ, **model_kwargs):
with self.precision_scope("cuda"):
with self.model.ema_scope():
N = xs.shape[0]
c = model_kwargs.pop('c')
uc = model_kwargs.pop('uc')
cond_t, σ = self.time_cond_vec(N, σ)
unscaled_xs = xs
xs = xs / _sqrt(1 + σ**2)
if uc is None or self.scale == 1.:
output = self.model.apply_model(xs, cond_t, c)
else:
x_in = torch.cat([xs] * 2)
t_in = torch.cat([cond_t] * 2)
c_in = torch.cat([uc, c])
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
output = e_t_uncond + self.scale * (e_t - e_t_uncond)
if self.model.parameterization == "v":
output = self.model.predict_eps_from_z_and_v(xs, cond_t, output)
else:
output = output
Ds = unscaled_xs - σ * output
return Ds
def cond_info(self, batch_size):
prompts = batch_size * [self.prompt]
return self.prompts_emb(prompts)
@torch.no_grad()
def prompts_emb(self, prompts):
assert isinstance(prompts, list)
batch_size = len(prompts)
with self.precision_scope("cuda"):
with self.model.ema_scope():
cond = {}
c = self.cond_func(prompts)
cond['c'] = c
uc = None
if self.scale != 1.0:
uc = self.cond_func(batch_size * [""])
cond['uc'] = uc
return cond
def unet_is_cond(self):
return True
def use_cls_guidance(self):
return False
def snap_t_to_nearest_tick(self, t):
j = np.abs(t - self.us).argmin()
return self.us[j], j
def time_cond_vec(self, N, σ):
if isinstance(σ, float):
σ, j = self.snap_t_to_nearest_tick(σ) # σ might change due to snapping
cond_t = (self.M - 1) - j
cond_t = torch.tensor([cond_t] * N, device=self.device)
return cond_t, σ
else:
assert isinstance(σ, torch.Tensor)
σ = σ.reshape(-1).cpu().numpy()
σs = []
js = []
for elem in σ:
_σ, _j = self.snap_t_to_nearest_tick(elem)
σs.append(_σ)
js.append((self.M - 1) - _j)
cond_t = torch.tensor(js, device=self.device)
σs = torch.tensor(σs, device=self.device, dtype=torch.float32).reshape(-1, 1, 1, 1)
return cond_t, σs
@staticmethod
def linear_us(M=1000):
assert M == 1000
β_start = 0.00085
β_end = 0.0120
βs = np.linspace(β_start**0.5, β_end**0.5, M, dtype=np.float64)**2
αs = np.cumprod(1 - βs)
us = np.sqrt((1 - αs) / αs)
us = us[::-1]
return us
@torch.no_grad()
def encode(self, xs):
model = self.model
with self.precision_scope("cuda"):
with self.model.ema_scope():
zs = model.get_first_stage_encoding(
model.encode_first_stage(xs)
)
return zs
@torch.no_grad()
def decode(self, xs):
with self.precision_scope("cuda"):
with self.model.ema_scope():
xs = self.model.decode_first_stage(xs)
return xs
def test():
sd = StableDiffusion("v2", True, "haha", 10.0, "autocast")
print(sd)
if __name__ == "__main__":
test()