sjc / app.py
amankishore's picture
Requirements
65ab1b5
raw
history blame
7.72 kB
import numpy as np
import time
from pathlib import Path
import torch
import imageio
from my.utils import tqdm
from my.utils.seed import seed_everything
from run_img_sampling import SD, StableDiffusion
from misc import torch_samps_to_imgs
from pose import PoseConfig
from run_nerf import VoxConfig
from voxnerf.utils import every
from voxnerf.vis import stitch_vis, bad_vis as nerf_vis
from run_sjc import render_one_view, tsr_stats
import gradio as gr
import gc
import os
device_glb = torch.device("cuda")
os.system("git clone --depth 1 https://github.com/CompVis/taming-transformers.git && pip install -e taming-transformers")
def vis_routine(y, depth):
pane = nerf_vis(y, depth, final_H=256)
im = torch_samps_to_imgs(y)[0]
depth = depth.cpu().numpy()
return pane, im, depth
with gr.Blocks(css=".gradio-container {max-width: 512px; margin: auto;}") as demo:
# title
gr.Markdown('[Score Jacobian Chaining](https://github.com/pals-ttic/sjc): Lifting Pretrained 2D Diffusion Models for 3D Generation')
# inputs
prompt = gr.Textbox(label="Prompt", max_lines=1, value="A high quality photo of a delicious burger")
iters = gr.Slider(label="Iters", minimum=100, maximum=20000, value=10000, step=100)
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
button = gr.Button('Generate')
# outputs
image = gr.Image(label="image", visible=True)
# depth = gr.Image(label="depth", visible=True)
video = gr.Video(label="video", visible=False)
logs = gr.Textbox(label="logging")
def submit(prompt, iters, seed):
start_t = time.time()
seed_everything(seed)
# cfgs = {'gddpm': {'model': 'm_lsun_256', 'lsun_cat': 'bedroom', 'imgnet_cat': -1}, 'sd': {'variant': 'v1', 'v2_highres': False, 'prompt': 'A high quality photo of a delicious burger', 'scale': 100.0, 'precision': 'autocast'}, 'lr': 0.05, 'n_steps': 10000, 'emptiness_scale': 10, 'emptiness_weight': 10000, 'emptiness_step': 0.5, 'emptiness_multiplier': 20.0, 'depth_weight': 0, 'var_red': True}
pose = PoseConfig(rend_hw=64, FoV=60.0, R=1.5)
poser = pose.make()
sd_model = SD(variant='v1', v2_highres=False, prompt=prompt, scale=100.0, precision='autocast')
model = sd_model.make()
vox = VoxConfig(
model_type="V_SD", grid_size=100, density_shift=-1.0, c=4,
blend_bg_texture=True, bg_texture_hw=4,
bbox_len=1.0)
vox = vox.make()
lr = 0.05
n_steps = iters
emptiness_scale = 10
emptiness_weight = 10000
emptiness_step = 0.5
emptiness_multiplier = 20.0
depth_weight = 0
var_red = True
assert model.samps_centered()
_, target_H, target_W = model.data_shape()
bs = 1
aabb = vox.aabb.T.cpu().numpy()
vox = vox.to(device_glb)
opt = torch.optim.Adamax(vox.opt_params(), lr=lr)
H, W = poser.H, poser.W
Ks, poses, prompt_prefixes = poser.sample_train(n_steps)
ts = model.us[30:-10]
same_noise = torch.randn(1, 4, H, W, device=model.device).repeat(bs, 1, 1, 1)
with tqdm(total=n_steps) as pbar:
for i in range(n_steps):
p = f"{prompt_prefixes[i]} {model.prompt}"
score_conds = model.prompts_emb([p])
y, depth, ws = render_one_view(vox, aabb, H, W, Ks[i], poses[i], return_w=True)
if isinstance(model, StableDiffusion):
pass
else:
y = torch.nn.functional.interpolate(y, (target_H, target_W), mode='bilinear')
opt.zero_grad()
with torch.no_grad():
chosen_σs = np.random.choice(ts, bs, replace=False)
chosen_σs = chosen_σs.reshape(-1, 1, 1, 1)
chosen_σs = torch.as_tensor(chosen_σs, device=model.device, dtype=torch.float32)
# chosen_σs = us[i]
noise = torch.randn(bs, *y.shape[1:], device=model.device)
zs = y + chosen_σs * noise
Ds = model.denoise(zs, chosen_σs, **score_conds)
if var_red:
grad = (Ds - y) / chosen_σs
else:
grad = (Ds - zs) / chosen_σs
grad = grad.mean(0, keepdim=True)
y.backward(-grad, retain_graph=True)
if depth_weight > 0:
center_depth = depth[7:-7, 7:-7]
border_depth_mean = (depth.sum() - center_depth.sum()) / (64*64-50*50)
center_depth_mean = center_depth.mean()
depth_diff = center_depth_mean - border_depth_mean
depth_loss = - torch.log(depth_diff + 1e-12)
depth_loss = depth_weight * depth_loss
depth_loss.backward(retain_graph=True)
emptiness_loss = torch.log(1 + emptiness_scale * ws).mean()
emptiness_loss = emptiness_weight * emptiness_loss
if emptiness_step * n_steps <= i:
emptiness_loss *= emptiness_multiplier
emptiness_loss.backward()
opt.step()
# metric.put_scalars()
if every(pbar, percent=1):
with torch.no_grad():
if isinstance(model, StableDiffusion):
y = model.decode(y)
pane, img, depth = vis_routine(y, depth)
yield {
image: gr.update(value=img, visible=True),
video: gr.update(visible=False),
logs: f"Steps: {i}/{n_steps}: \n" + str(tsr_stats(y)),
}
# TODO: Output pane, img and depth to Gradio
pbar.update()
pbar.set_description(p)
# TODO: Save Checkpoint
with torch.no_grad():
ckpt = vox.state_dict()
H, W = poser.H, poser.W
vox.eval()
K, poses = poser.sample_test(100)
aabb = vox.aabb.T.cpu().numpy()
vox = vox.to(device_glb)
num_imgs = len(poses)
all_images = []
for i in (pbar := tqdm(range(num_imgs))):
pose = poses[i]
y, depth = render_one_view(vox, aabb, H, W, K, pose)
if isinstance(model, StableDiffusion):
y = model.decode(y)
pane, img, depth = vis_routine(y, depth)
# Save img to output
all_images.append(img)
yield {
image: gr.update(value=img, visible=True),
video: gr.update(visible=False),
logs: str(tsr_stats(y)),
}
output_video = "/tmp/tmp.mp4"
imageio.mimwrite(output_video, all_images, quality=8, fps=10)
end_t = time.time()
yield {
image: gr.update(value=img, visible=False),
video: gr.update(value=output_video, visible=True),
logs: f"Generation Finished in {(end_t - start_t)/ 60:.4f} minutes!",
}
button.click(
submit,
[prompt, iters, seed],
[image, video, logs]
)
# concurrency_count: only allow ONE running progress, else GPU will OOM.
demo.queue(concurrency_count=1)
demo.launch()